

Knowledge

Organisers

Year 11 PC1 (September Exam)

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to **recall** from a particular topic. That means that it **does not have everything on it** for a unit of study but it does have **the most essential things to learn.**

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that **the more you know** the **more you can learn.** By being able to recall the facts, you are able to understand more complicated ideas because you **already know what the key words mean.** You will also already have a set of ideas in your mind that the new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!

Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.

B1: Biology key concepts

Lesson sequence

- 1. Microscopes
- 2. Plant and animal cells
- 3. Measuring cells
- 4. Core practical: using microscopes
- 5. Specialised cells
- 6. Bacterial cells
- 7. Digestive enzymes
- 8. How enzymes work
- 9. Factors affecting enzymes
- 10. Core practical: enzymes and pH
- 11. Cell transport
- 12. Core practical: osmosis in potatoes

1. Microscopes		
*Magnification	The number of times bigger	
	something appears under a	
	microscope.	
*Eyepiece lens	The lens on a microscope that	
	you look through.	
*Objective	The lens at the bottom of a	
lens	microscope. There are normally	
	three you can choose from.	
*Total	Eyepiece lens x objective lens.	
magnification		
**Resolution	The smallest distance between	
	two points so that they can still	
	be seen as two separate points.	
**Stains	Dyes added to microscope slides	
	to show the details more	
	clearly.	
**Milli	Thousandth, 1x10 ⁻³ (a millimetre	
	is a thousandth of a metre).	
**Micro	Millionth, 1x10 ⁻⁶ (a micrometre	
	is a millionth of a metre).	
**Nano	Billionth, 1x10 ⁻⁹ (a nanometre is	
	a billionth of a metre).	
**Pico	Trillionth, 1x10 ⁻¹² (a picometre is	
	a trillionth of a metre).	

OBJECTIVE LENSES MECHANICAL STAGE		
IRIS DIAPHRAG	M COARSE	
ILLUMINATO		
	FOCUS	
1	2	
1		
	VARIABLE INTENSITY CONTROL	
2. F	Plant and animal cells	
*Cell	The basic structural unit of all	
	living things (the building blocks	
	of life).	
*Parts of an	Cell membrane, cytoplasm,	
animal cell	nucleus, ribosomes	
	mitochondria.	
*Parts of a	Cell membrane, cytoplasm,	
plant cell	nucleus, ribosomes,	
•	mitochondria, cell wall,	
	permanent vacuole,	
	chloroplasts.	
*Cell	Controls what enters and leaves	
membrane	the cell.	
*Cytoplasm	A jelly-like substance where	
, .	chemical reactions take place.	
*Nucleus	Contains DNA and controls the	
	cell.	
*Ribosome	Produces proteins.	
*Mitochondria	a Beleases energy by aerobic	
	respiration.	
*Cell wall	Protects and supports the cell.	
	made of cellulose.	
*Permanent	Stores sap and helps to support	
vacuole	the cell.	
*Chloroplast	Where photosynthesis happens.	
	contains chlorophyll.	
L		

Alimated Crophasm Aucelous Aucelous Aucelous Aucelous Cell membrane Cell m		
	3. Measuring cells	
*Micrograp	h A picture produced by a	
	microscope.	
*Light	A microscope that uses light, can	
microscope	magnify up to 1500 times.	
**Electron	A microscope that uses electrons	
microscope	to produce an image, can magnify	
	up to 1,000,000 times.	
**Actual	Actual size = measured size /	
size of a cell	magnification	
**Convert	Micrometres (µm) = millimetres	
mm to µm	(mm) x 1000	
4 Core p	ractical – using microscones (CP1)	
*CP1 - key	What do cells look like under a light	
question	microscope?	
*CP1 -	Collect the cells you are studying	
Prepare	and place them on the slide Add a	
the slide	dron of stain and cover with a cover	
	slip.	
*CP1 –	Choose between the 4x. 10x and	
Select lens	40x objective lenses.	
*CP1 -	Place slide on microscope stage	
Place slide	adjust the coarse focus until the	
in	lens is just touching the slide.	
microscope		
*CP1 -	l ooking through the eveniece	
Rough	slowly adjust the coarse focus until	
focus	you see a rough image	
liocus	you see a lough illiage.	

*CP1 – Fin	e Looking through the eyepiece,	
focus	slowly adjust the fine focus until	
	you see a sharply focussed image.	
*CP1 –	Draw what you see, label any cell	
Record the	parts you can recognise and repeat	
image	with different objective lenses.	
*CP1 -	As you increase the magnification o	
Results	the objective lens, the cells appear	
	larger and more detailed.	
	5. Specialised cells	
**Small	Job: To absorb small food molecules	
intestine	produced during digestion.	
cell	Adaptations: Tiny folds called	
	microvilli that increase their surface	
	area.	
**Sperm	Job: Fertilise an egg and deliver male	
cell	DNA.	
	Adaptations: A tail to swim,	
	mitochondria to give energy for	
	swimming, an acrosome to break	
	through the egg's jelly coat, haploid	
	nucleus with only half the total DNA.	
**Egg cell	Job: To be fertilised by a sperm and	
	then develop into an embryo.	
	Adaptations: Jelly coat to protect the	
	cell, many mitochondria and	
	nutrients to provide energy for	
	growth, haploid nucleus with only	
	half the total DNA.	
**Ciliated	Job: To clear mucus out of your lungs	
epithelial	(and other internal surfaces).	
cell	Adaptations: Small hairs on the	
	surface – called cilia – which wave to	
	sweep mucus along.	

6. Bacterial cells		
*Parts of a All bacteria: Cell membrane,		
bacterial cell	cell wall, cytoplasm,	
	ribosomes, chromosomal DNA,	
	plasmid DNA	
	Some bacteria: flagellum.	
**Chromosomal	Large piece of DNA containing	
DNA	most genes.	

**Plasmid D	DNA Small loops of DNA containing	
	a few genes.	
**Flagellum	A tail used for movement.	
**Eukaryoti	c Cells with a nucleus.	
cells		
**Prokaryo	tic Cells without a nucleus.	
cells		
***Standar	d A way of writing numbers in	
form	terms of powers of ten. E.g.	
	0.015 = 1.5 x 10 ⁻²	
	0.000458 = 4.56 x 10 ⁻	
	4	
	The index of ten (the 'minus'	
	number) tell you which	
_	decimal point to start on.	
VAC.		
Ē		
al		
ageilit		
ö	<u><u></u> <u></u></u>	
7. Digestive enzymes		
*Digestion	Breaking large food molecules	
	down into ones small enough to	
***	absorbed by the small intestine.	
*Catalyst	A substance that speeds up a	
	chemical reaction without being	
*	used up.	
Enzyme	A protein that works as a catalyst	
	to speed up the reactions in our	
*Diagetive	Cells.	
	Enzymes that break large food	
** A marsland	molecules down into smaller ones.	
Amylase	Where found: saliva, small	
	Intestine	
	What it does: breaks down starch	
***	Into simple sugars such as maltose	
***Lipase	where found: small intestine	
	what it does: breaks down fats	
**	Into fatty acids and giveerol	
**Protease	Where found: stomach (pepsin),	
	small intestine (trypsin)	

What it does: breaks down

proteins into amino acids

8. How enzymes work			
Substrate The chemical(s) that an enzyme			
	works on.		
Active site	An area of an enzyme with the		
	same shape as the substrate.		
**Lock and	The substrate moves into the		
ey	active site and reacts to form the		
nechanism	products. The products leave the		
	active site so another substrate		
	can then enter and so on.		
*Specificity	Each enzyme can only work on one		
	substrate because the shape of the		
	active site has to match.		
Denature	When the shape of the active site		
	changes shape so the enzyme		
	stops working.		
Substrato	Products		
Substrate			
Active	site		
Enzyme	Enzyme-substrate Enzyme		
	complex		
9.1	Factor affecting enzymes		
Optimum	The temperature when an		
emperature	enzyme works fastest (about 37 ^o		
	for human enzymes).		
*Changing	Increasing to optimum: rate		
he	increases because particles move		
emperature	e faster		
Increasing past optimum: rate			
	decreases as enzyme denatures		
Optimum	The pH when enzymes work		
H	fastest (around pH 6-8 for most		
	human enzymes)		
*Changing	Rate decreases as you move		
H	away from the optimum because		
	the enzyme denatures.		
*Increasing	At first the rate increases, but		
ubstrate	then it levels out as the enzyme		
oncentratio	n is working as fast as possible		
10. Core p	ractical – enzymes and pH (CP2)		

*CP2 – key	How does the rate that amylase	**Osmosis	The movement of water
question	works change as you change the		across a partially permeable
-	pH?		membrane from high
*CP2 –	2 – Place starch solution, amylase		water/low solute conc to low
Prepare your	solution and pH 7 buffer into		water/high solute conc.
reactants	separate test tubes and warm	**Osmosis	Water into plant roots, water
	them in a water bath at 40°C	examples	in/out of any cells.
*CP2 –	Place a few drops of iodine	*Active	Using energy to move
Prepare your	solution into each well of a	transport	substances from low to high
dropping tile	spotting tile.		concentration (up a
*CP2 – Start	Mix reactants together, start the		concentration gradient).
the reaction	stop watch and keep the mixture	*Active	Minerals being absorbed into
	warm in the water bath.	transport	plant roots.
*CP2 – Test	Remove a small amount of	examples	
for starch	mixture and place in a well on	42.0	
	the spotting tile.	12. Core pra	ctical – osmosis in potatoes (CP3)
*CP2 –	Repeat the test until the mixture	*CP3 –	Cut six similar pieces of potato,
Record your	does not go black (no starch).	Prepare	blot them dry and weigh them.
results	Record the time.	potatoes	
*CP2 – Vary	Repeat with different pH buffers	*CP3 – Run	Place each potato piece in a test
the pH	from pH 3 to pH 10	the	tube with sucrose (sugar)
*CP2 –	The amylase works fastest	experiment	solutions with concentrations
Results	around pH 7 and more slowly at	*000	From 0% to 50%
	pH high or lower than this.	*CP3 –	Blot each potato piece dry and
	44.0.0	Record	re-weign it.
**	11. Cell transport	results	0/ deserve (final contractions)
*Concentratio	n The number of particles in a	*CP3 -	% change = (final value – starting
	given volume (the strength of	Calculate	value) / starting value x 100
***	a solution).	percentage	
**Concentrati	on The difference in	mass change	Detete in weeken weree
gradient	concentration between two	*CP3 -	Potato in weaker sucrose
*D'ff	neighbouring areas.	Results	solutions gain mass because
*Diffusion	The movement of particles		asmosis those in stronger
	from high to low		colutions loss mass as water
	concentration (down a		logues by esmestic
*D'ff	concentration gradient).		leaves by Osifiosis.
*Diffusion	Lungs: oxygen into blood,		
examples	Last carbon diavide into last		
	every out of lost		
**Deutielle	oxygen out of leat.		
Partially	A membrane that allows some		
permeable	molecules but not others to		
membrane	pass through it (like a cell		
	membrane).		

B3: Genetics

1. Meiosis		
Gametes	Sex cells- egg and sperm	
Foutilization	Sperm cell fuses with egg cell	
rentilisation	and nuclei combine.	
Zygote	A fertilised egg cell	
	Length of DNA coding for a	
Gene	protein. Controls your	
	characteristics	
Comorna	All the DNA and genes in an	
Genome	organism	
	A cell that has 2 sets of	
Diploid	chromosomes- 23 pairs of	
	chromosomes in humans	
	A cell with 1 set of	
Haploid	chromosomes- 23 single	
	chromosomes in humans	
Meiosis	Cell division that makes gametes	
Stages of	DNA replicates, cell divides into 2	
Majorie	diploid cells, these divide into 4	
INICIOSIS	haploid daughters.	
Meiosis	One division by meiosis creates	
Daughter	4, haploid, non-identical	
Cells	daughter cells.	

2. DNA			
Chromosome	Large DNA molecule made into a small package by tightly coiling DNA around a protein.		
Chromosome a small package by tightly coiling DNA around a protein coiling DNA around a protein Two strands, double helix, complementary base pairs, sugar-phosphate backbone DNA Structure Image: the structure of the s			

	Adenine, A; thymine, T;	
DINA Dases	cytosine, C; guanine, G	
Complementary	A pairs with T	
Base Pairs C pairs with G		
	Weak force holding the two	
Hydrogen	strands of DNA together.	
Bonds	C and G form 3 bonds	
	A and T form 2 bonds	
	Uses small differences in DNA	
DNA Analysis	to determine family	
	relationships or link people to	
	crimes.	

3. DNA Extraction Method		
Mix water, salt and detergent	Salt makes DNA clump together, detergent breaks down cell membranes to release DNA.	
Mash fruit/veg and add solution	Mash to increase the surface area.	
Leave in water bath at 60°c	Heat makes it react quicker.	
Filter the mixture and collect filtrate	Removes unwanted lumps.	
Measure out 10cm ³ of filtrate and add two drops of protease	Protease breaks down proteins around the DNA	
Gently add ice cold ethanol	DNA is insoluble in ethanol so precipitates.	
Leave for several minutes	So a white DNA layer forms.	

4. Alleles		
Allele	Different version of the same	
	gene. We have two alleles of	
	each gene.	
Homozygous	Two copies of the same allele	
Heterozygous	Two different copies of an allele	
Dominant Allele	One copy needed for	
	characteristic to show. Written as	
	a capital.	
Recessive Allele	Two copies for the characteristic	
	to show. Written as lowercase.	
Genotype	The combination of alleles in an	
	organism.	

5. Inheritance		
Sex	Female: XX	
Chromosomes	Males: XY	
Punnet Squares	Uses the genotypes of male and female gametes to predict the genotypes of the offspring.	
Inheriting Sex	female XY male gametes X Y Female X X X X X X XY	
Cystic Fibrosis	Illness that affects the lungs and digestive system caused by inheriting two copies of a faulty recessive allele.	
Family Pedigree Chart	Chart showing how genotypes are inherited down through a family. Reduing Dane Reduing Addition Being Carefy has children with fixed (Reduing and Dane have to children Dane To Carefy has children and Dane's sure)	

6. Gene Mutation		
Autation	A change to the bases in a	
natation	gene.	
ffects of	Sometimes harmless, can be	
Mutations	harmful, very rarely beneficial	

Cause of Mutations	Mistakes copying DNA during cell division, DNA damage from chemicals or radiation
Human Genome Project	(HGP) Project involving many scientists from many countries to find the order of bases in human DNA. Allows us to tailor drugs to genes to design better drugs.

7. Variation		
Variation	Natural differences between members of a species that affect the chance of survival.	
Genetic Variation	Variation caused by genes.	
Environmental Variation	Caused by interaction with the surroundings.	
Acquired Characteristics	Characteristics caused only by the environment.	
Continuous Variation	Data can be any value in a range (height, weight, etc.)	
Discontinuous Variation	Data can be a limited set of values (blood group, eye colour, etc.)	
Normal Distribution	Bell-shaped curve formed by continuous data with more in the middle and fewer either side.	

Lesson	Memorised?
1. Meiosis	
2. DNA	
3. DNA Extraction	
4. Alleles	
5. Inheritance	
6. Gene Mutation	
7. Variation	

Disease

Anaemia

Kwashiorkor

B5: Health, Disease & the Development of Medicines

1. Health and Disease		
I la alth	A state of complete physical,	
Health	social and mental wellbeing.	
	Being free from disease, active,	
Physical Health	fit, sleeping well and no	
	substance abuse.	
Mental Health	How you feel about yourself.	
	Having healthy relationships	
Social Health	and how your surroundings	
	affect you.	
	An illness that prevents the	
Disease	body from functioning	
	normally.	
Communicable	Diseases caused by pathogens,	
Disease	can be spread from one person	
Disease	to another.	
Non-	Diseases caused by genes or	
Communicable	lifestyle. Cannot be spread	
Disease	from one person to another.	
	Getting one disease increases	
Correlated	your chance of another due to	
Dispasos	diseases weakening organ	
Discuses	systems, damaged immune	
	system, and weaker defences.	
Pathogen	A microorganisms that causes	
i attiogen	disease.	
2 Non-C	ommunicable Diseases	
2. Non-C	Diseases	
Genetic	Diseases caused by inneriting	
Disoraers	Taulty genes from parents.	
Malnutrition	Getting too little or too much of	
- 4 -	a particular nutrient.	
Deficiency	Disease caused by the lack of a	

certain nutrient.

energy.

Lack of iron. Causes fewer and smaller red blood cells and low

Lack of protein. Swollen belly,

small muscles, stunted growth.

Rickets	Lack of calcium or vitamin D.	
	Causes weak bones leading to	
	bowed legs.	
	Lack of vitamin C. Swollen	
Scurvv	bleeding gums, muscle and joint	
,	pain, lack of energy.	
	Chemical that changes the way	
Drug	the body works	
	Eatal liver disease caused by	
Cirrhocic	drinking too much alcohol over	
CITTIOSIS	a long pariod of time	
	a long period of time.	
Impact of Liver	Fifth largest causes of death in	
Disease /	the UK, increasing 450% in the	
Alcohol	last 30 years. Costs £500 million	
	each year to treat.	
2 601	diovaccular Disease	
5. Car	ulovasculai Disease	
	A condition in which someone is	
Obesity	overweight for their height and	
,	large amounts of fat builds up	
	around major organs.	
Cardiovascular	Disease in which the heart or	
Disease	circulatory system is affected.	
	When the heart stops pumping	
Heart Attack	due to a lack of oxygen reaching	
	it.	
	Body mass Index	
	(weight in kilograms)	
BMI	$BMI = \frac{(Weight in Kiograms)}{2}$	
	neight in meters	
	BMI over 30 is obese	
	Waist measurement ÷ hip	
Maint.kim	measurement	
waist:nip	Better method of measuring	
Katio	abdominal fat which is linked	
	with cardiovascular disease.	
	Harmful substances from smoke	
	can damage blood vessels.	
Smoking	increase blood pressure make	
Shioking	blood vessels parrower and	
	increase risk of blood clots	
	A small mesh tubo that is	
Stent	A small mesh tube that is	
	inserted into a narrowed artery	
	and opened up to widen it.	
Treating Heart	More exercise and a better diet	
Disease with	can treat cardiovascular disease	
Lifestyle	and giving up smoking.	

	4. Pathogens	
Types of Pathogen	Bacteria, virus, protist, fungi.	Bodily Flu
Tuberculosis	Bacteria. Damages lungs causing bloody cough, fever and weight	Hygiene
Cholera	Bacteria. Sever life-threatening diarrhoea.	Epidemic
Chalara Ash Dieback	Fungi. Kills the leaves of ash trees, killing the tree.	6. P
Malaria	Protist. Multiplies inside red blood cells and liver cells and causes fever and weakness.	Chemical Defences
Haemorrhagic Fever	Virus, e.g. Ebola. Liver and kidney damage, internal bleeding and fever.	Lysozyme
HIV	Human immunodeficiency virus attacks white blood cells, causing	Hydrochle Acid
AIDS	Albs. Acquired Immunodeficiency Syndrome. Weakened immune system making simple infections	Mucus
lliddau	Many types of bacteria live in our bodies. Some are essential for	Ciliated C
Hidden Pathogens	most of the time. <i>Helicobacter</i> pylori can cause stomach ulcers	Skin
5. 5	some of the time.	STIs
51.0	Spread through the air.	
Airborne	Colds/flus/TB by infected droplets in saliva being passed into the air	Preventin
Andorne	by coughing or sneezing. Chalara ash dieback by fungal spores carried by wind.	Screening
Waterborne	Spread through contaminated water. Cholera	
Oral Route	Pathogen enters body through the mouth by eating/drinking.	Immune
Vectors	Organisms that carry a pathogen from one person to the next. Mosquitos are vectors for	System Antigens
	malaria.	

Bodily Fluids	Spreading through contact with bodily fluids such as blood or semen. HIV	
lygiene	Keeping things clean to remove or kill pathogens.	
pidemic	When many people over a large area are infected with the same pathogen at the same time	
C Dhus	and R. Chaminal Dominus	
6. Physi		
Chemical Defences	Kill pathogens or make them inactive before they can infect us.	
ysozyme	Enzyme found in mucus, tears and sweat that kills some bacteria.	
lydrochloric Acid	Found in the stomach, reducing pH to 2, killing most pathogens.	
Physical Barrie	Block or trap pathogens so they cannot enter the body.	
Aucus	Sticky secretion that traps pathogens- found in most body openings (nose, mouth, etc.).	
Ciliated Cells	Specialised cells with hair like cells that sweep mucus out of the body.	
ikin	Blocks pathogens from entering the body.	
STIS	Sexually transmitted infections – pathogens spread via sexual activity.	
Preventing STI	Use barrier contraception (such as condoms) to prevent mixing of fluids.	
Screening	Large scale testing of people to check if they have an STI so they can be treated. This helps to reduce the spread of STIs.	
7. The Immune System		
mmune System	Destroys pathogens that manage to infect us. Chemical markers on the	

surface of pathogens that

Unique to each pathogen.

identify them as a pathogen.

Lymphocyte	White blood cells that produce	
	antibodies. Each lymphocyte	
	produces a different antibody.	Antibi
	Molecules with a specific shape	
	that can attach to a specific	
Antibodies	antigen on a pathogen and kill	Penici
	it.	
A structure of	When an antigen sticks to an	
	antibody, it activates the	
Activated	lymphocyte causing it to make	Resist
Lymphocyte	many copies of itself that make	
	the same antibodies.	
Memory Lymphocyte	Lymphocytes left over after an	Drug
	infection that retain the ability	Devel
	to fight the pathogen.	Disco
Immune	The body has memory	Phase
	lymphocytes to fight the	
	pathogen if it returns so it can't	Pre-Cl
	be harmed by it.	Phase
Primary Respo	nse vs. Secondary Response	

Antbody numbers	prmary 20 100 110		
first infection with pathogen	Time (days) second infection with the same pathogen		
Vaccine	A weakened or inactive version		
vaccine	of a pathogen.		
	Vaccines are harmless versions		
	of pathogen that still have the		
How vaccines	antibodies on them, so the		
work	immune response is triggered		
	without any risk of disease.		
How the Immune System Attacks Pathogens			

	8. Antibiotics
	Substances that kill bacteria or
Antibiotics	inhibit their processes without
	harming human cells.
	The first antibiotic discovered
Penicillin	by Alexander Fleming. Produced
	by a mould.
	Widespread use of antibiotics
Resistance	has led to resistance, meaning
Resistance	many antibiotics don't work as
	well as they once did.
Drug	Developing new medicines
Development	involves many stages that take a
Development	lot time and money.
Discovery	Developing new chemicals that
Phase	might work as medicines.
Pre-Clinical	Testing on cells grown in the
Phase	lab, or on animals, to see if the
	chemical has any useful effect.
Small Clinical	Testing on a few healthy people
Trial	to check for safety.
Large Clinical	Testing on many patients to
Trial	discover how effective the drug
	is and determine the dose.
	Unwanted effects of the
Side Effects	medication that can be quite
	harmful.
	The correct amount of the
Dose	medicine that needs to be given
	to the patient.

Lesson	Memorised?
1. Health and Disease	
2. Non-Communicable Diseases	
3. Cardiovascular Disease	
4. Pathogens	
5. Spreading Pathogens	
6. Physical & Chemical Barriers	
7. The Immune System	
8. Antibiotics	

B6: Plant Structures and their Functions

1.	Photosynthesis	
Photosynthesis	How plants produce glucose	
	using the energy from light.	
Photosynthesis	Carbon dioxide + water $ ightarrow$	
equation	glucose + oxygen	
Chloroplast	Part of a plant cell where	
	photosynthesis happens.	
Chlorophyll	A green pigment that enables	
	photosynthesis by trapping the	
	energy in light.	
Glucose	Sugar formed by	
	photosynthesis.	
Starch	As soon as they are made,	
	glucose molecules are joined	
	together into long chains to	
	form starch.	
Sucrose	Starch is be broken down into	
	sucrose to be transported	
	around the plant.	
Uses of	Sucrose is converted into:	
sucrose	- Glucose for respiration	
	- Starch for storage	
	- Other molecules for growth	
Endothermic	Reactions where the products	
	have more energy than the	
	reactants. Photosynthesis is an	
	exothermic reaction.	
Leaf	To do more photosynthesis,	
adaptations	leaves have: a large surface	
	area, a waxy cuticle, palisade	
	cells, a spongy layer, stomata.	
Large surface	Allows the leaf to absorb more	
area	light.	
Waxy cuticle	A waxy coating that stops water	
•	evaporating from the leaf.	
Palisade cells	Tall cells in a leaf with many	
	, chloroplasts for lots of	
	photosynthesis.	

Stomata	Microscopic pores in the
(singular =	bottom of the leaf that allow
stoma)	carbon dioxide in and oxygen
	and water vapour out.
Stomata	Each stoma is surrounded by
structure	two guard cells that can swell to
	open it or shrink to close it.
How stomata	During the day, the stomata
work	open to allow gas exchange. At
	night the stomata close.
	Stomata also close during dry
	spells to stop water loss.
Leaf Structure	cultice (wary coating) upper equations containing signify packed cells upper equations containing signify packed cells upper equations call to early and upper equations containing signify coating upper equations containing signify coating
	lower repidemis contraining storada diffusion of water vapour would guard call would guard call
2. Factors T	hat Affect Photosynthesis
Limiting factor	A factor that holds back the rate
-	of photosynthesis when in short
	supply.
	Carbon dioxide concentration,
	light intensity and temperature
Carbon	To start with, increasing CO ₂
Carbon Dioxide and	To start with, increasing CO ₂ levels will increase the rate of
Carbon Dioxide and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually
Carbon Dioxide and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect
Carbon Dioxide and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the
Carbon Dioxide and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor.
Carbon Dioxide and Photosynthesis Light Intensity	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light
Carbon Dioxide and Photosynthesis Light Intensity and	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they.
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they. Eventually increasing it further
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they. Eventually increasing it further has no effect as they are no
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they. Eventually increasing it further has no effect as they are no longer limiting.
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis Temperature	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they. Eventually increasing it further has no effect as they are no longer limiting. Increasing temperature towards
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis Temperature and	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they. Eventually increasing it further has no effect as they are no longer limiting. Increasing temperature towards the optimum increases the rate
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis Temperature and photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they. Eventually increasing it further has no effect as they are no longer limiting. Increasing temperature towards the optimum increases the rate as particles move faster and
Carbon Dioxide and Photosynthesis Light Intensity and Photosynthesis Temperature and photosynthesis	To start with, increasing CO ₂ levels will increase the rate of photosynthesis. Eventually further increases have no effect because they are no longer the limiting factor. To start with, increasing light intensity will increase the rate of photosynthesis because they. Eventually increasing it further has no effect as they are no longer limiting. Increasing temperature towards the optimum increases the rate as particles move faster and collide more. Increasing past

enzymes denature.

Inverse squ	Jare	$I_{orig} \times d_{orig}^2$	Osmosis	M
law		$I_{new} = \frac{d^2}{d^2}$		lo۱
		A relationshin between two	Diffusion	pe
Linear		variables shown by a straight	Diffusion	vv
Relationshi	ip	line on a graph.	in roots	are
		A linear relationship in which a	Ormosia	
Direct		change in a variable occurs with	Usmosis in roots	vv.
Proportion		an equal percentage change in	mroots	ce ro
		another variable.	Minorals	
			in the soil	Г I С
	3	. Core Practical	in the soli	no
Кеу	H	ow does light intensity affect the	Absorbing	Pla
Question	ra	te of photosynthesis?	minerals	tra
Method	Μ	easure the pH of solutions with	minerais	
	al	gal balls in at different distances		00
	av	vay from a light source.	5. Trar	nsp
Dependent	t Cł	nange in pH/hour	Transpirati	ion
Variable	(r	ate of photosynthesis)		
Independe	nt Di	stance of algal balls from light		
Variable	sc	ource.	Xylem	
Control	N	umber/size of algal balls, volume	-	
Variables	of	indicator solution, temperature		
	(t	ank of water is placed between	Xylem	
	lig	ht source and jars with algal	Adaptation	าร
	ba	alls to absorb heat).		
Results	Tł	ne closer to the light source the		
	gr	eater the rate of photosynthesis		
	(a	nd greater final pH).	Factors	
Explanatio	n Tł	ne closer to the light source the	increasing	
	al	gal balls are, the greater the light	transpirati	on
	In	tensity and the greater the level	Potometer	
	01	photosynthesis.		
4. Absor	rhin	g Water and Mineral Ions	Translocati	ion
Water	In nl	ants used for carrying dissolved		
mater	mine	eral ions, keeping cells rigid.		
	cool	ing leaves and photosynthesis.	Phloem	
Root hair	Role	: To guickly absorb water and		
cells	mine	erals from soil	<u> </u>	_
	Ada	ptations: A long hair which	Sieve tube	S
	incre	eases their surface area & thin		
	cell	wall for fast water absorption.	Contraction	
Diffusion	Mov	ement from a high	Companio	n
	cond	centration to low until	cens	
	equi	librium is reached.		

Osmosis	Movement of a solvent from high to	
	low concentrations across as semi-	
	permeable membrane.	
Diffusion	Water diffuses along the cell walls	
in roots	around the outside of each cell until	
	it reaches the xylem.	
Osmosis	Water travels from cell to cell across	
in roots	cell membranes by osmosis until it	
	reaches the xylem.	
Minerals	Plants absorb minerals from soil	
in the soil	such as nitrates inhosphates and	
	notassium	
Absorbing	Plants absorb minerals by active	
minerals	transport because their	
	concentration is low	
5. Trar	spiration and Translocation	
Transpirati	on The movement of water into a	
	plant's roots, up its stem and	
	evaporating out of the leaves.	
Xvlem	Hollow tubes that carry water	
	from the roots, up the stem to	
	the leaves.	
Yvlem	Hollow dead cells to let water	
	nass no walls between	
Adaptation	neighbours to allow water	
	through rings of lignin to make	
	them strong	
Factors	Air movement (wind) driver air	
increasing	(low humidity) higher	
transnirati	now humany, mgner	
Potomotor	Equipment used to measure rate	
rotometer	of transpiration	
Tranclasst	The movement of sucrose (sucrose)	
mansiocati	around a plant through the	
Dhlag	Tissue that transments success	
rnioem	issue that transports sucrose	
	around plants, made of sleve	
a	tupes and companion cells.	
Sieve tube	cells in phloem with a large	
	channel running through them to	
	carry sucrose solution.	
Companior	n Cells in phloem that sit next to	
cells	the sieve tubes and pump sucrose	
	into the sieve tubes- lots of	
	mitochondria for active transport	

	C5-7: Bonding	**Forming	Electrons are transferred from a	3. Pr	operties of ionic compounds	**Valency	The number of covalent bonds an
		ionic bonds	metal atom to a non-metal atom	**Melting	High because melting needs a lot		atom can form.
	Lesson sequence		to form a positive metal cation	point of	of energy to break strong ionic	**Valency	Group 4 = 4 (4 electrons needed)
13. Ionic b	oonding		and a negative metal anion. The	ionic	bonds.	and groups	Group 5 = 3 (3 electrons needed)
14. Ionic c	compounds		oppositely charged ions are	compounds			Group 6 = 2 (2 electrons needed)
15 Bropo	rtios of ionic compounds		attracted to each other.	*Solubility	Many ionic compounds dissolve in		Group 7 = 1 (1 electron needed)
13. Prope	rties of forme compounds		2. Ionic compounds	of ionic	water.	**Working	Find the lowest common multiple
16. Covale	ent bonding	*Chemical	Shows the number of atoms of	compounds		out	of the valency of each atom. Use
17. Covale	ent structures	formula	each element present in one	**Electrical	Solid: Do not conduct because ions	molecular	the number of an atom required to
18. Allotro	opes of carbon		'unit' of a compound.	conductivity	can't move.	formulae	reach the LCM.
19. Metal	lic bonding	*Writing	- Each chemical symbol starts	of ionic	Liquid (molten or solution): Do		$\langle X \rangle$
20 Classif	fving materials	formulae	with a capital letter.	compounds	conduct because ions can move.		(н (😓) н)
20. 6105511			- The number of each atom	**How	When they are in a liquid form, the		
	1. Ionic bonding		present is shown with a	ionic	positive cations move to the		\bigcirc
*Bond	An attraction between two atoms		subscript number after the	compounds	the negative electrode (cathode) and		\checkmark
	that holds them together.		symbol. E.g. H ₂ SO ₄ .	conduct	the negative amons move the		(н 🖄 сі 🏌
*lon	An atom that has gained a charge	**Determini	ng - Ensure the total number of	electricity	positive electrode (anode).		
	by gaining or losing electrons.	ionic formula	e positive and negative charges		4. Covalent bonding		
*Charge	Whether an ion is positive or		balance.	*Covalent	An electrostatic attraction between		· · · · · · · · · · · · · · · · · · ·
	negative.		- Change the number of each ion	bond	two atoms and a share pair of		(○(≧) ○)
*Cation	Positive ion formed by losing		present by changing the		electrons.		
	electrons. Formed by metal		subscript numbers.	**Double	A covalent bond involving two		
	atoms.	*Compound	An ion made from two or more	bond	shared pairs of electrons.		
*Anion	Negative ion formed by gaining	ions	atoms that share a charge.	*Dot and	A bonding diagram showing the		
	electrons. Formed by non-metal	*Common	Hydroxide: OH-	cross	electrons in the outer shell of each		(н н
	atoms.	compound	Nitrate: NO ₃ -	diagram	atom, with electrons drawn as dots		
**Size of	The number of electrons	ions	Sulfate: SO ₄ ²⁻		or crosses.		
charge	transferred affects the size of		Sulfite: SO_3^{2-}	*Hydrogen,	Two overlapping circles both		
	charge: losing two electrons		Carbonate: CO ₃ ²⁻	H2	labelled H. One pair in the overlap.		(O())C())
	makes a 2+ charge, gaining three		Ammonium: NH4 ⁺	**Hydrogen	Two overlapping circles labelled H		
	electrons makes a 3- charge.	**Including	If you need more than one, put	chloride,	and Cl. One pair in the overlap, 6		
**How many	Metals: however many electrons	compound	brackets around it. E.g. $Mg(OH)_2$	HCI	electrons around Cl.		
electrons are	are in the outer shell			**Oxygen,	Two overlapping circles both		(Н)
gained or	Non-metals: nowever many	formulae	The structure of ionic	O ₂	labelled O. Two pairs in the		
iost?	electrons are needed to mit the	· Ionic lattice	rine structure of forfic		overlap, 4 electrons around each		(н(🕉)С(😓)н)
	outer shell.		compounds: a repeating SD				
*Electroctatio	A force of attraction between a		and nogative ions	**Water,	I hree overlapping circles in a line		(н)
force	nositive and negative particle	**Crystal	A piece of material with a	H ₂ O	labelled H, U, H. A pair in each		
*lonic bond	When two oppositoly charged	Crystal	A piece of material with a	**0	overlap, 4 electrons around O.		
	ions are held together by an		formed by the regular pattern of		Inree overlapping circles in a line		
	electrostatic force		ions in an ionic lattice	dioxide,	labellea U, C, U. Two pairs in each		
		L		CO ₂	overlap, 4 electrons around each		
				*****	U.		
				""ivietnane,	Five circles with one in the centre		

CH₄

labelled C and 4 labelled H around

it. A pair in each overlap.

5. Covalent structures		6.	Allotropes of carbon
*Molecule	A particle made from two or	*Allotrope	A different structural
	more atoms bonded together.		element made of the
*Simple	A structure made of small		atoms just bonded to
molecular	molecules in which a few		differently.
structure	atoms join together to form a	*Carbon's	Graphite, diamond, g
	small particle.	allotropes	fullerenes
**Structure of	Atoms in a molecule are held	**Graphite	Structure: stacked sh
molecular	together by strong covalent		carbon in a honeycom
substances	bonds. Neighbouring		with delocalised elect
	molecules are held close by		between them.
	weak intermolecular forces.		Properties: sheets slid
**Intermolecular	A weak electrostatic force		easily, excellent cond
force	that holds two neighbouring		Uses: lubricants
	molecules together.	**Diamond	Structure: Repeating
**Melting point	Low because melting only		4 atoms bonded to 4
of simple	needs a little energy to break		Properties: Extremely
molecular	weak intermolecular forces.		Uses: Cutting tools an
compounds		**Graphene	Structure: A single lay
**Electrical	Do not conduct because there		atoms in a honeycom
conductivity of	are no electrons that are free		Properties: Very stro
simple molecular	to move.		excellent conductor.
compounds			Uses: None yet, but p
*Examples of	Hydrogen gas, oxygen gas,		many.
simple molecular	water, carbon dioxide,	**Buckminster	Structure: Ball-shape
substances	methane.	fullerene	molecules of C ₆₀ .
*Giant molecular	A structure made of a		Properties: Low melti
structure	repeating pattern of atoms		Uses: None
	covalently bonded together.	**Carbon	Structure: Cylinders n
**Melting point	High because melting requires	nanotubes	carbons bonded in a h
of giant	breaking strong covalent		pattern.
molecular	bonds.		Properties: Very stron
compounds			excellent conductors
**Electrical	Do not conduct (except		Uses: Strong and flexi
conductivity of	graphite) because there are		materials, electronics
simple molecular	no electrons free to move.		
compounds			7. Metallic bonding
*Examples of	Silicon dioxide (silica),	*Structure of	A lattice of positive me
simple molecular	diamond, graphite.	metals	surrounded by a cloud
substances			, delocalised electrons.
*Polymer	A large molecule made of a	**Delocalised	Electrons that are not
-	small unit repeated many	electrons	single atom but move
	times.		around many.
*Monomer	A small molecule that can be	**Metallic	, The electrostatic attra
	joined together many times to	bonding	between the lattice of
	form a polymer.	U U	metal ions and the clo
			delocalised electrons.

6.	Allotropes of carbon
llotrope	A different structural form of an
	element made of the same
	atoms just bonded together
	differently.
arbon's	Graphite, diamond, graphene,
otropes	fullerenes
Graphite	Structure: stacked sheets of
	carbon in a honeycomb pattern
	with delocalised electrons
	between them.
	Properties: sheets slide apart
	easily, excellent conductor
	Uses: lubricants
Diamond	Structure: Repeating pattern of
	4 atoms bonded to 4 others.
	Properties: Extremely hard.
	Uses: Cutting tools and drills
Graphene	Structure: A single layer of
	atoms in a honeycomb pattern.
	Properties: Very strong,
	excellent conductor.
	Uses: None yet, but potentially
	many.
Buckminster	Structure: Ball-shaped
lerene	molecules of C ₆₀ .
	Properties: Low melting point
	Uses: None
Carbon	Structure: Cylinders made of
notubes	carbons bonded in a honeycomb
	pattern.
	Properties: Very strong,
	excellent conductors
	Uses: Strong and flexible
	materials, electronics.
	7. Metallic bonding
ructure of	A lattice of positive metal ions
etals	surrounded by a cloud of
	delocalised electrons.
Delocalised	Electrons that are not bound to a
ctrons	single atom but move freely
	around many.
Metallic	The electrostatic attraction
nding	between the lattice of positive
-	metal ions and the cloud of

**Electrical	Metals are good conductors
conductivity	because the electrons are free to
of metals	move.
**Comparing	Metals with more electrons in
the	the outer shell – such as Al – are
conductivity	better conductors than those
of metals	with fewer – such as Li – because
	there are more delocalised
	electrons that are able to move.
*Malleable	When a substance dents when it
	is hit instead of shattering.
**Malleability	Metals are malleable because
of metals	the atoms are arranged in
	regular sheets and these sheets
	can easily slide over each other
	when hit.
**Melting	High because melting them
point of	requires breaking the strong
metals	force of attraction between the
	lattice of metal ions and the
	cloud of delocalised electrons.

	0. Deve d'are avec de la
	8. Bonding models
**Classifying	The properties of a material can
materials	be used to determine the type of
	bonding in it.
**Properties	High melting point, often soluble
of ionic	in water, solid does not conduct
compounds	electricity, liquid/solution does.
**Properties	Low melting point, does not
of simple	conduct electricity, sometimes
molecular	soluble in water.
compounds	
**Properties	High melting point, does not
of giant	conduct electricity (except
molecular	graphite), insoluble in water.
compounds	
**Properties	High melting point, does conduct
of metallic	electricity, insoluble in water.
compounds	
**Bonding	The ideas and drawings that we
models	use to explain the bonding of
	atoms.
**Problems	 Dot and cross diagrams make
with	electrons seem different, they are
bonding	not
models	 Atoms appear stationary but are
	actually vibrating
	 Atoms don't appear to be
	touching when they actually are.

CC13: Groups in the Periodic Table

	1. Group 1
Alkali	The name we give to group 1 –
metals	lithium, sodium, potassium and so
	on.
Group 1	Li – lithium
symbols	Na – sodium
	K – potassium
Properties	- soft
of alkali	 relatively low melting points
metals	
Reaction	Metal + water $ ightarrow$ metal hydroxide +
of alkali	hydrogen
metals	
with	E.g:
water	sodium + water $ ightarrow$ sodium hydroxide
	+ hydrogen
	$2Na + 2H_2O \rightarrow 2NaOH + H_2$
Lithium	Floats. Bubbles (of hydrogen).
and water	Moves slowly.
Sodium	Floats. Melts. Bubbles (of hydrogen).
and water	Moves more quickly
Potassium	Floats. Melts. Bubbles (of hydrogen)
and water	catch fire (lilac flame). Moves very
	quickly
Group 1	Reactivity increases as you move
reactivity	down the group.
Explaining	When metals react they lose their
group 1	outer electrons. Further down the
reactivity	group there are:
	- more shells of electrons
	 so the outer electrons are further
	from the nucleus
	- so outer electrons are less
	attracted to the nucleus
	 so outer electrons are easier to
	remove.
	OPPOSITE PATTERN TO GROUP 7

			react
		2. Group 7	
lalogens	The na	me given to group 7 – fluorine,	
	chlorin	e, bromine and iodine.	
Chlorine	Cl ₂ . A p	oale green gas.	
Bromine	Br ₂ . A r	ed-brown liquid.	
odine	I2. A sh	iny purple-black solid.	Displ
Reaction	Halo	ogen + metal $ ightarrow$ metal halide	react
) Jogone	E a.		iiaiog
with	L.g. Br	omine + sodium -> sodium	
metals	DI	bromide	
netais		$Br_2 + 2Na \rightarrow 2NaBr$	
Reaction	Halo	$p_{\text{gen}} + hydrogen \rightarrow hydrogen$	
of		halide	
alogens			
with	E.g:		
nydrogen	Chlo	rine + hydrogen → hydrogen	Redo
		chloride	react
		$Cl_2 + H_2 \rightarrow 2HCl$	halog
Hydrogen	Hydrog	gen halides dissolve in water to	
nalides	form a	cids, for example hydrogen	
	chlorid	e makes hydrochloric acid.	
Chlorine	Chlorin	ne gas turns damp blue litmus	
est	red the	en quickly bleaches it white .	
1	Read	ctivity of halogens	
Group 7	Rei	activity increases as you go up	
eactivity	the	eroup.	
	Wł	hen non-metals react they	
group 7	cor	mplete their outer shells. Going	
eactivity	up	the group there are:	
	- le	ess shells of electrons	
	- so	o the outer electrons are closer	
	to	the nucleus	
	- sc	o outer electrons are more	
	att	racted to the nucleus	
	- so	o more able to hold an extra	
	out	ter electron	
	OP	POSITE PATTERN TO GROUP 1	

Displacement	Reactions in which a more		
reactions	reactive metal displaces a less		
	reactive metal from a salt eg:		4. Group 0
	copper sulfate + zinc \rightarrow zinc	Noble	The name given to group 0 – helium,
	sulfate + copper	gases	neon, argon, krypton and xenon.
	Does not work backwards as	Melting	They are all gases at room
	copper is less reactive than zinc.	point of	temperature but the melting and
Displacement	A more reactive halogen	noble	boiling point increase down the
reactions of	displaces a less reactive halide	gases	group.
halogens	ion by taking its electrons.	Reactivity	The noble gases do not (easily) do
		of group 0	any reactions – they are inert.
	E.g:	Explaining	When elements react they try to
	bromine + sodium iodide $ ightarrow$	reactivity	complete their outer shells. Because
	iodine + sodium bromide	of group 0	group 0's outer shells are already
			complete, they do not react.
	$Br_2 + 2Nal \rightarrow l_2 + 2NaBr$	Uses of	-Helium is used in airships because it
		noble	is inert and has low density
	[bromine more reactive]	gases	 Argon is used in fire extinguishers
Redox	Displacement reactions are		because it is inert and denser than
reactions of	REDOX because the more		air.
halogens	reactive halogen oxidises the less		 Neon is used in lighting because it
	reactive halide by taking its		glows red when electricity is passed
	electrons. The more reactive		through it.
	halogen is reduced.		
	E.g:		
	$Br_2 + 2l^- \rightarrow 2Br^- + l_2$		
OIL RIG	Oxidation Is Loss (of electrons)		
	Reduction Is Gain (of electrons)		

	glows red when elect through it.	tricity is passed
.esson		Memorised?
1.	Group 1	
2.	Group 7	
3.	Reactivity of	
	halogens	

4. Group 0

					· · · · · · · · · · · · · · · · · · ·		
C14 Rates	of Reaction	**Effect of	 Increased concentration means 	*CP11 – Aim	To explore how particle size and	*CP11 –	Draw a cross on a piece of paper
	-	concentration	that there are more particles in		concentration affect the rate of	Colour chang	ge and place a beaker on it.
	Lesson sequence	on rate	the same volume	****	reaction	– setup	Measure out 50 cm ³ of sodium
21. Rates	of reaction		• So there are more collisions per	*CP11 – Gas	See diagram		thiosulfate solution and 5 cm ³ of
22. Collisi	on theory		second.	collection –			hydrochioric acid into two test
23. Core r	oractical – rates of reaction	**=======	So a faster reaction	setup	Depart the volume of get		tubes and leave to warm in a water bath at 30° C
(CP11)	**Effect of	 Increased surface area means 	CPII - Gas	collected few seconds until it	*CD11 _	Quickly pour both test tubes
24 Cataly) vete	surface area	that there are more particles at	measurements	stons	Colour chans	into the beaker mix and start
24. Cataly	/515	on rate	• So there are more collicions nor	*CP11 – Gas	Repeat with a different size of	– run the	the stopwatch. Looking down
			• So there are more conisions per	collection –	marble chips.	experiment	through the beaker, stop when
	1. Rates of reaction		• So a fastor reaction	independent			you can no longer see the cross.
*Rate of	The rate at which reactants are	**Effect of	Increased gas pressure means	variable		*CP11 –	Repeat with water baths set to
reaction	used up or products are made.	pressure on	that there are more particles in	*CP11 – Gas	The amount of gas collected	Colour chang	ge 35°C, 40°C, 45°C and 50°C.
*Reactants	Starts high and curves downward,	rate	the same volume	collection –	increases quickly at first and	– independe	nt
vsume	then more cently. Steeper line -		• So there are more collisions per	results	then more slowly. The smaller	variable	
graph	faster rate		second.		marble chips produce gas more	*CP11 –	The cross disappears most
*Products vs	Starts low and curves upwards		So a faster reaction		quickly, but the same amount in	Colour chang	ge quickly at 50°C and least quickly
time granh	increasing rapidly at first and then	**Effect of	Increased temperature means		total.	– results	at 30 ^o C.
time graph	more gently Steeper line = faster	temperature	that that particles have a	*CP11 –	You could keep the chip size the		
	rate	on rate	higher kinetic energy and move	similar	same and use different		1 Cataluat
**Measuring	- Collect gas in a gas syringe and		faster	experiments	temperatures, or different	*Cotokist	4. Catalyst
rates –	measure the volume every 30		• So there are more collisions per		concentrations	*Catalyst	A substance that speeds up a
reactions	secs.		second.	*CP11 –	Gas escaping, so the reaction		reaction without being
that produce	- Collect gas over water (up-		• But these collisions also are at	common	looks slower than it really is	**Effort of	Catalysts increase the rate of
gas	turned measuring cylinder full of		higher energy so more	problems		catalysts	eaction by reducing the activation
-	water) and measure volume every		collisions result in reactions	*CP11 –	Use a gas syringe (CO ₂ dissolves	on rate	energy so that a greater proportion
	30 secs.		 So a faster reaction 	improvements	in water so you don't get a	onnate	of collisions lead to reactions
	- Do reaction on a balance and				perfect reading)	**Reaction	A graph that shows the changes in
	record the change in mass every					profile	energy during a reaction. Starts with
	30 secs.						arge 'hump' that represents the
**Measuring	Do the reaction in a beaker placed			2002		á	activation energy.
rates –	on piece of paper with a cross				Clamp	**Effect of	The 'hump' representing the
reactions	marked on it. Looking down				Giamp	catalysts a	activation energy is smaller.
that go	through the beaker, time how it			E		on	
cloudy	takes for the cross to disappear.	Deliver		IF IT	— Measuring cylinder	reaction	
	2. Collision theory	Delivery	tube	F		profiles	
*Collision	States that for two particles to		11	Fol		*Enzyme	A protein that works as a catalyst to
theory	react they must:		HH	Fo		5	speed up the reactions in our cells.
,	- Collide with each other		/"(.	Eal	- Trough	*Enzymes	Alcoholic drinks are produced using
	- Collide with enough energy to			N o	_ nough	in alcohol	enzymes found in yeast which
	react			600		production	catalyse a reaction that turns
*Activation	The minimum energy that two	Acid and			r tator	£	glucose into ethanol.
energy	particles must have when they	marble					
	collide in order to react.	chips					

3. Core practical – rates of reaction (CP11)

ide a	**Energy	The energy change in a reaction
	changes and	is the difference between the
	bond	energy required to break the
s.	formation	old bonds and the energy
		released by making the new
		ones.
	**Exothermic	Exothermic reactions break
	reactions and	weaker bonds and make
ak	bonds	stronger ones.
	**Endothermic	Endothermic reactions break
nore	reactions and	stronger bonds and make
	bonds	weaker ones.
	***Bond	The energy required to break
	strength	one mole of a particular
		covalent bond in kJ/mol.
	***Calculating	Add up the total strength of old
	energy	bonds broken and subtract the
	changes from	total strength of new bonds
	bond strengths	made. A negative answer is
		exothermic.

CP3 Conservation of Energy

Lesson sequence

- 27. Energy stores and transfers
- 28. Energy efficiency
- 29. Keeping warm
- 30. Stored energies
- 31. Non-renewable energy resources
- 32. Renewable energy resources

1. Ener	gy st	ores and transfers		
Energy		The capacity to do work.		
Joules		The units of energy, symbol		
		L =		
Kilojoules		1000 J, symbol = kJ		
Thermal energ	y	Energy stored in hot		
		objects.		
Kinetic energy		Energy stored in moving		
		objects.		
Chemical energ	3Y	Energy stored in chemicals		
		such as fuels.		
Nuclear energy	/	Energy stored in the		
		nucleus of atoms. Also		
		called atomic energy.		
Gravitational		Energy stored in objects		
potential energy		based on how high they		
		are.		
Elastic potential		Also called strain energy.		
energy		Energy stored in bent or		
		stretched objects.		
Energy stores		Light, thermal(heat),		
examples		sound, electrical, kinetic		
		(movement)		
Law of		Energy cannot be created		
conservation o	f	or destroyed, just		
energy		transferred from one		
		energy store to another.		
Energy transfe	rs	Say from what store the		
		energy starts as and what		
		its new store is.		
energy stored in en		ergy transferred by energy stored in hot brakes		
(kinetic energy)	fore	ces during braking (thermal energy)		

Shows energy transfers.

Sankey diagram

2.	Energy efficiency
Dissipation	The way energy spreads out into
	the surroundings, becoming less
	useful as it does.
Wasted	Energy that is transferred into
energy	stores that aren't useful.
Friction	Causes thermal energy loss as
	heat when two surfaces rub
	together.
Lubrication	Allows surfaces to move
	smoothly, reduces energy loss
	from friction.
Electrical	Causes wires to heat up, wasting
resistance	electrical energy.
Calculating	efficiency = $\frac{(\text{useful energy transferred by the device})}{(\text{total energy supplied to the device})}$
efficiency	Efficiency is expressed as a
	decimal.
Energy	Efficiency is between 0 and 1.
efficiency	1 = no energy wasted
numbers	0 = all energy wasted

3. Keeping warm			
Convection	Heat transfer caused when hot fluids (gas or liquid) rise because		
	they are less dense.		
Conduction	Heat transfer through solids		
	caused by vibrating particles		
	bumping into each other.		
Radiation	Heat transfer by infrared		
	radiation which heats objects up		
	when they absorb it.		
Radiation and	Infrared radiation is absorbed		
surfaces	(taken in) and emitted (given		
	out) easily by dull, dark surfaces.		
	Radiation is absorbed and		
	emitted poorly by shiny, light		
	surfaces.		
Insulation	Materials that contain lots of		
	tiny air pockets that prevent		
	heat loss by conduction.		
Thermal	A measure of how well a		
conductivity	material conducts heat.		
Reducing the	Increase thickness of material		
rate of energy	Decrease thermal conductivity		
transfer	Decrease temperature		
	difference		

4. S	4. Stored energies			
Gravitational	The strength of gravity.			
field strength g	Different on different planets.			
	On Earth g = 10 N/kg.			
Calculating	$GPE = mg\Delta h$			
gravitational potential energy	ΔGPE $m \times g \times \Delta h$			
	GPE is gravitational potential energy (J) m is mass (kg) g is gravitational field strength (N/kg) Δh is height change (m)			

5. Non-rene	wable energy resources
Non-renewable	A resource that will one day
resource	run out because it is being
	used faster than it is being made.
Fossil fuels	Coal, oil, natural gas. All are non-renewable.
Harm from	Carbon dioxide gas is released
burning fossil	which causes global warming.
fuels	Sulfur dioxide is released which
	causes acid rain.
Nuclear power	Electricity generated from non-
	renewable nuclear fuels such
	as uranium.
Nuclear power	😊 Lasts a long time, releases
pros and cons	no carbon dioxide
	😕 Produces very harmful
	waste, expensive to
	decommission, although rare,
	accidents are very dangerous.
Climate	Changes that happen to
change	global weather patterns as
	a result of global warming.

6. Renew	able energy resources	Carbon neutral	When burnin	g a fuel releases
Renewable	A resource will not run out.		the same CO	it absorbed
resource			when it was g	growing, so there
Wind power	Large turbines spun by the		is no CO ₂ incr	ease.
-	wind turn kinetic energy into			
	electrical energy.			
	Lots needed, ugly?, no wind			
	no power			
Solar power	Solar cells turn light energy			
	from the Sun into electrical	7. Red	ducing energ	y losses
	energy.		HIGHER ON	LY)
	[™] No CO ₂		Increases the e	efficiency of a
	😕 No sun no power, need lots	Reducing	device or proc	ess, e.g. engines.
	of space, not suitable for all	oporav	This can be by	reducing friction;
	countries	energy	by making sure	e all fuel is
Tidal power	Uses kinetic energy from water	losses	burned; or by	using energy that
	movement from tides to spin		would otherwi	se be wasted.
	turbines and produce electrical			
	energy.			
Tidal barrage	A damn built across an estuary			
	that fills up when tide goes in.			
	When stored water is released			
	its kinetic energy produces	Lesson		Memorised?
	electrical energy.	1. Energy st	ores and	
	🕲 Huge amounts of energy,	transfers		
	no CO ₂			
	Bestroys important mudflat	2. Energy ef	fficiency	
	habitats	-		
Hydroelectricity	A damn is built across a river	3. Keeping	warm	
	valley, water released from the	or neeping (
	damn spins turbine and its			
	kinetic energy produces	4. Stored er	nergies	
	electrical energy.	E Non rong	wahla	
	Lots of energy, no CO ₂	5. Non-rene	wable	
	Destroys habitat by	energy reso	urces	
D'a fa a la		6. Renewab	le energy	
BIOTUEIS	Fuels made from recently plant	resources		
	or animal matter, otten waste,	7. Reducir	ng energy	
	are a store of chemical energy.			
	Carbon neutral	105	Ses	
	Needs a lot of land,	(HIGHEF	(ONLY)	
	increases food prices			

P5 Light and the Electromagnetic waves

1. E	lectromagnetic waves
Electromagnetic	A group of waves that all travel
waves	at the same speed (speed of
	light) in a vacuum, and are all
	transverse.
Speed of light	300,000,000 m/s (3 x 10 ⁸ m/s)
Frequency	The number of waves that pass
	a point every second.
	One hertz (Hz) is one wave per
	second.
Wavelength	The distance between a point
	on one wave and the same
	point on the next wave.
EM wave	All are transverse, all travel at
similarities	the speed of light.
EM wave	Different frequencies, different
differences	wavelengths.
Visible light	The only type of EM radiation
	that our eyes can detect.
Interface	The boundary between two
	different materials.
Refraction and	Light travels at different
wave speed	speeds in different materials
	causing it to refract when
	hitting the interface at an
	angle.
Prisms and the	Different wavelengths slow
colour	down by different amounts
spectrum	when they hit glass causing
	each colour to refract
	differently.
Infrared	Light split into a spectrum.
discovery	Thermometer placed on every
	colour plus next to red. Red
	was hot, next to red was
	hottest.

2. Core practical – Investigating refraction	
Iormal	A line at right angles to the
	interface.

Angle of	Angle between the incident ray	
incidence	and the normal.	
Angle of	Angle between the refracted ray	
refraction	and the normal.	
CP5 – Aim	To explore how changing the	
	angle of incidence changes the	
	angle of refraction.	
CP5 - Setup	Place a glass block on a sheet of	
	paper, point a beam of light	
	from a ray box at it, trace around	
	the block and draw in the light	
	ray.	
СР5 -	Use a protractor to draw a	
Measurement	normal, then measure the angles	
	of incidence and refraction.	
CP5 -	Repeat 5 times, from 5 different	
Variations	angles, including head-on.	
CP5 - Results	The greater the angle of	
	incidence, the greater the angle	
	of refraction.	
2 The electromagnetic enerty we		
3. The ele	ectromagnetic spectrum	
3. The ele	ectromagnetic spectrum	
3. The ele EM spectrum	ectromagnetic spectrum <u>Rubbish Memories Include</u> Visiting Ur X Girlfriend	
3. The ele EM spectrum mnemonic EM spectrum -	ectromagnetic spectrum <u>R</u> ubbish <u>M</u> emories Include <u>V</u> isiting <u>Ur X G</u> irlfriend	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe	ectromagnetic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light.	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or	ectromagnetic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy	ectromagnetic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays.	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum –	Rubbish Memories Include Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays,	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe	Ctromagnetic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light,	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength	Action Action Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, ultraviolet, visible light, infrared, microwaves,	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength	ectromagnetic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, est infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves.	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum	ectromagnetic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves.	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum	Action Action Rubbish Memories Include Visiting Visiting V Adio waves, microwaves, micro	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum EM Radiation	Action Action Rubbish Memories Include Visiting Visiting V Adio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the	Automatic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the atmosphere	Automatic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere,	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the atmosphere	Automatic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere, most is absorbed.	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the atmosphere Space telescop	Automatic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere, most is absorbed. es For radiation absorbed by the	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the atmosphere Space telescop	Additional action Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere, most is absorbed. es For radiation absorbed by the atmosphere, a telescope	
3. The ele EM spectrum mnemonic EM spectrum – lowest to highe frequency or energy EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the atmosphere Space telescop	Ectromagnetic spectrum Rubbish Memories Include Visiting Ur X Girlfriend Radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere, most is absorbed. es For radiation absorbed by the atmosphere, a telescope must be placed in space.	

4. Using the long wavelengths	
Visible light uses	Illumination, photography
Infrared uses	Short-range communications
	(TV remotes), fibre optics,
	cooking (grills and toasters),
	security cameras, thermal
	images.
Microwave uses	Microwave ovens, mobile
	phone and satellite
	communications.
Radio wave uses	Radio and TV signals,
	communications between
	controllers and spacecraft,
	satellite communications.
Producing radio	Oscillating electricity in a
waves	metal rod produces radio
	waves.
Receiving radio	Radio waves absorbed by a
waves	metal rod cause electrical
	oscillations.

5. Using the short wavelengths	
Fluorescence	Absorbing ultraviolet and re-
	emitting it as visible light.
Ultraviolet uses	Security marking, fluorescent
	lamps, detecting forged bank
	notes and disinfecting water.
X-ray uses	Observing the internal
	structure of objects, airport
	security scanners and medical
	X-rays.
Gamma ray	Sterilising food and medical
uses	equipment, and the detection
	of cancer and its treatment.

6. EM radiation dangers	
Infrared	Surface heating causing skin
dangers	burns.
Microwave	Absorbed by water causing it
dangers	to heat up $ ightarrow$ internal heating
	of body cells.
Ionisation	High-energy radiation causes
	ions to form in our cells,
	damaging DNA and causing
	cancer.
Ultraviolet	Damage to surface cells and
dangers	eyes leading to skin cancer and
	eye conditions.
X-ray dangers	Cancer, mutation or damage to
	cells in the body.
Gamma ray	Cancer, mutation or damage to
dangers	cells in the body.

Lesson	Memorised?
1. Electromagnetic	
waves	
2. Core practical –	
Investigating refraction	
3. The electromagnetic	
spectrum	
4. Using the long	
wavelengths	
5. Using the short	
wavelengths	
6. EM radiation dangers	

P7/8 Energy and Forces and their Effects

1. Work and Power	
Energy	Needed to make things happen
	or change.
Joules	The units of energy, symbol = J.
Kilojoules	1000 J, symbol = kJ.
Work	The energy transferred by a
Done	force.
Calculating	Work done = force x distance
Work	E = F x d
Done	
	Work done = joules
	Force = newtons
	Distance = metres
Power	The rate of energy transfer.
Watts, W	The unit of power: 1 W = 1
	joule per second
Calculating	Power = work done / time
Power	P = E / t
	Power = watts
	Work done = joules
	Time = seconds
2 Cont	act & Non-Contact Forces

2. Contact & Non-Contact Forces	
Contact	A force that acts when two
Force	objects touch.
Contact	Normal contact force,
Force	friction, upthrust, air
Examples	resistance.
Normal	Force that acts at right angles
Contact	to a surface as a reaction to a
Force	force on that surface.
Non-contact	A force that acts at a
Force	distance.
Non-contact	Gravity, magnetism,
Force	electrostatic force.
Examples	

Action-	If, A applies an action force to
Reaction	B, B applies a reaction force
Forces	of same size and opposite
	direction to A.
Force Field	The area around an object
	where its force can affect
	other objects.
Magnetic	The area of magnetic force
Field	around a magnet.
Magnet	Attracts magnetic materials
	(iron, nickel, cobalt) and
	attracts or repels other
	magnets.
Electric Field	The area of electrostatic
	force around an object
	charged with static
	electricity.
Vectors	Arrows that show size and
	direction.
2 Voctor	Diagrams (HICHER ONLY)
5. vector	Diagrams (HIGHER ONLY)
	A diagram chowing all the

parallelogram. Resultant force = the diagonal of the

parallelogram.

Diagram

Lesson	Memorised?
1. Work and Power	
2. Contact & Non- Contact Forces	
3. Vector Diagrams	

CP9 Electricity and Circuits

Lesson sequence

- 33. Electrical circuits
- 34. Current and potential difference
- 35. Current, charge and energy
- 36. Current, resistance and potential difference
- 37. More about resistance
- Core practical investigating resistance (CP15)
- 39. Transferring energy
- 40. Electrical power
- 41. Using electricity
- 42. Electrical safety

	Circuit symbols
Switch	<
Cell	
Battery	B B
Lamp	-8-
Ammeter	—(A)—
Voltmeter	—(v)—
Resistor	
Variable resistor	
Diode	
LDR	
**Thermistor	

1. Electrical circuits	
Delocalised	Electrons that are free to move
electrons	between many different atoms.
Conventional	The flow of positive charge from
current	the positive terminal towards
	the negative terminal (goes in
	the opposite direction to
	electrons).
Electron flow	Electrons flow from the negative
	terminal towards the positive
	terminal.
Series circuit	A circuit in which there is only
	one path for the current to flow.
Parallel circuit	A circuit with multiple paths for
	the current to flow.

2. Current	and Potential Difference
Amperes, A	The unit of measurement for
•	current. Amps for short.
Ammeter	Used for measuring current.
	Connected in series to measure
	the current passing through a
	component or circuit.
Potential	Also called voltage.
difference	This is what pushes electrons
	around a circuit.
Volts, V	The unit of measurement for
	potential difference.
Voltmeter	Used for measuring potential
	difference. Connected in parallel
	to measure the potential
	difference across a component
	or circuit.
Current in	The same at all points in the
series circuits	circuit.
Current in	Less on the branches than at the
parallel	battery. Current on branches
circuits	adds up to that at the battery.
Potential	Potential difference is shared
difference in	between the components on a
series circuits	circuit. It adds up to be the same
	as the battery.
Potential	Potential difference is the same
difference in	across each branch as it is across
parallel	the battery.
circuits	

3. Curren	t, charge and energy	4. Currei
harge	The amount electricity that	
	has flowed through a circuit.	Resistance
Coulombs, C	The unit of measurement for	
	charge.	
Current, I	The number of coulombs of	Ohms, Ω
	charge that flows past a point	-
	each second.	High/low
	1 amp = 1 coulomb per	resistance
	second	
alculating	Charge = current x time	
harge	Q = I x t	Changing
		current
	Q is charge (C)	
	l is current (A)	
	T is time = (s)	Calculating
		resistance
	1 * 1	
oltage. V	The amount of energy	1
0 /	transferred by each coulomb	/ I A R
	of charge.	
	One volt = 1 joule per	
	coulomb.	
alculating	Energy = charge x potential	Resistors
nergy	difference	
	E = Q x V	
	E is energy (J)	Resistors in
	Q is charge (C)	series
	V is potential difference (V)	Voltage and
		resistors in
	E	series
	OXV	
	-	Resistors in
		parallel
		1

4. Current, resistance and potential			
	difference		
Resistance	The difficulty with which		
	current passes through		
	materials.		
Ohms, Ω	The unit of measurement for		
	resistance.		
High/low	Higher resistance $ ightarrow$ better		
resistance	insulator $ ightarrow$ lower current		
	Lower resistance $ ightarrow$ better		
	conductor \rightarrow higher current		
Changing	Higher voltage $ ightarrow$ higher		
current	current		
	Higher resistance $ ightarrow$ lower		
	current		
Calculating	Current = potential difference /		
resistance	resistance		
	I = V / R		
	I is current (A)		
IVD	V is potential difference (V)		
	Note: This equation is normally		
	Note: This equation is normally written as $V = IP$		
- • •			
Resistors	Circuit components with		
	differing resistance to control		
	now much current nows to		
Posistors in	Total resistance is the sum of		
corios	all of the resistors		
Voltage and	Voltage is shared in proportion		
resistors in	to the resistance. The resistor		
series	with more resistance takes		
	more of the voltage. Calculate		
	this using V=IR.		
Resistors in	Think about each branch of the		
parallel	circuit as a different series		
	circuit. Resistors on different		
	branches do not affect each		
	other.		
	The total resistance of resistors		
	in parallel will always be less		
	than resistors in series.		

5. Mo	re about resistance	
LDR	Light-dependent resistor. High	
	resistance in light.	СР15 - А
Thermistor	High resistance when cold, low resistance when hot.	CP15 - Investiga
Diode	High resistance in one direction, low resistance in the other.	resistan
Filament lamp	High resistance causes the filament to heat up, producing light.	CP15 - Investiga series ciu
Resistor graph	Current increases in direct proportion to voltage (straight line going through the origin (0,0)).	CP15 -
Filament lamp graph	Current increases as voltage increases, but levels out eventually as resistance increases with temperature.	parallel
Diode graph	Graph slopes up with a positive voltage but stays at 0 with a negative voltage.	CP15 - R

Current (A)

6. Core practical CD15	
	tigating resistance
CD1E Aim	
CP15 - Alm	To explore now resistance
	changes in different circuits.
CP15 -	Set up a circuit with an
Investigating	ammeter, resistor and
resistance	voltmeter across the resistor.
	Vary the voltage and record
	voltage and current.
СР15 -	Set up a series circuit with an
Investigating	ammeter, two bulbs and
series circuits	voltmeters across each bulb
	and the power supply. Vary the
	voltage and record all readings
СР15 -	Set up a parallel circuit with
Investigating	two bulbs and ammeters on
parallel circuits	each branch and by the power
	supply, and voltmeters across
	each bulb and the powers
	supply. Vary voltage, record all
	readings.
CP15 - Results	Resistor – doubling voltage
	doubles current
	Series circuit – voltage at bulbs
	half of that at power supply
	Parallel circuit – voltage at
	hulbs equal to power supply
	current half that at nower
	sunnly
	Supply
7. Tr	ansferring energy
Calculating	Energy = current x potential
energy transfer	difference x time
	$E = I \times V \times t$
	Energy (J)
	Current (A)
	Potential difference (V)

Time (s)

Resistance and Electrons flowing through

energy transfer wires collide with atoms and

lose energy. This energy is

transferred to heat.

Electrical	When electrical energy is	
energy	transferred to the	Live
dissipation	surroundings as wasted heat	
	energy by resistance.	
How to reduce	Use thicker wires, use shorter	Neu
resistance	wires, use lower-resistance	
	metals, reduce the	Eart
	temperature.	
8.	Electrical power	
Power	The rate of energy transfer.	Fue
Watts, W	The unit of power:	i use
	1 W = 1 joule per second	
Power and	E E	Circ
work done	$P = \frac{1}{t}$	circi
	P is power (W)	Adv
	E is work done (J)	circi
	t is time (s)	circe
Power, current	$P = I \times V$	
and voltage	P is power (W)	Les
	l is current (A)	Cir
	V is the potential difference (V)	1 6
Power, current	$P = I^2 \times R$	1.1
and resistance	P is power (W)	2.0
	l is current (A)	dif
	R is resistance (Ω)	3. (
		en
9.	Using electricity	4.
Mains	The electricity supplied from	ро
electricity	wall sockets.	5.1
National grid	The systems of power lines and	res
Ū	sub-stations that distributes	6.
	electricity from power stations	inv
	to homes and businesses.	7 -
Heaters	Transfer energy from electrical	
	to thermal.	8.
Motors	Transfer energy from electrical	9.
	to kinetic.	10.
Direct current	Current that flows in one	
	direction.	
Alternating	Current that switches direction	
current	many times each second.	Rec
Frequency of	Mains current alternates	roci
mains current	(switches direction) 50 times	163
	each second. The frequency is	

10.	Electrical safety	
Live wire	Brown, bottom right, 230 V, connects the appliance to the power station.	
Neutral wire	Blue, bottom left, 0 V, completes the circuit.	
Earth wire	Green and yellow, top, 0 V. Connects the appliance to the ground so current can flow there in the event of a short circuit.	
Fuse	A thin metal wire that melts and breaks the circuit if there is too much current.	
Circuit breaker	Breaks the circuit if too much current flows.	
Advantages of circuit breakers	Quicker than fuses, just need switching - not replacing.	
Lesson	Memorised?	

Lesson	Memorised?
Circuit symbols	
1.Electrical circuits	
2. Current and potential	
difference	
3. Current, charge and	
energy	
4. Current, resistance &	
potential difference	
5. More about	
resistance	
6. Core practical CP15	
investigating resistance	
7. Transferring energy	
8. Electrical power	
9. Using electricity	
10. Electrical safety	

Reducing resistance (HIGHER AND TRIPLE ONLY)

cing	Use a low resistance metal for
tanco	the wires.
lance	Make the wire thicker.
	Cool the wires so ions do not
	vibrate as much.