Sequences

1.	Linear Sequence	A number pattern with a common difference. $2,5,8,11 \ldots$ is a linear sequence
2.	Term	Each value in a sequence is called a term In the sequence $2,5,8,11 . . ., 8$ is the third term of the sequence.
3.	Term-to-term rule	A rule which allows you to find the next term in a sequence if you know the previous term. First term is $\mathbf{2}$. Term-to-term rule is 'add 3' Sequence is: $2,5,8,11$...
4.	nth term	A rule which allows you to calculate the term that is in the $\boldsymbol{n t h}$ position of the sequence. Also known as the 'position-to-term' rule. n refers to the position of a term in a sequence. nth term is $3 n-1$ The $100^{\text {th }}$ term is $3 \times 100-1=299$
5.	Finding the nth term of a linear sequence	1. Find the difference. 2. Multiply that by n. 3. Substitute $n=1$ to find out what number you need to add or subtract to get the first number in the sequence. Find the nth term of: $3,7,11,15 . .$. 1. Difference is +4 2. Start with $4 n$ 3. $4 \times 1=4$, so we need to subtract 1 to get 3 . nth term $=4 n-1$

6.	Fibonacci type sequences	A sequence where the next number is found by adding up the previous two terms. The Fibonacci sequence iss $1,1,2,3,5,8,13,21,34 \ldots$ An example of a Fibonacci-type sequence iss 4, 7, 11, 18, 29 ...
7.	Triangular numbers	The sequence which comes from a pattern of dots that form a triangle. $1,3,6,10,15,21 \ldots$
Fractions and percentages		
1.	Fraction	A mathematical expression representing the division of one integer by another. Fractions are written as two numbers separated by a horizontal line. $\frac{2}{7}$ is a 'proper' fraction. $\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2.	Numerator	The top number of a fraction. In the fraction $\frac{3}{5}, 3$ is the numerator.
3.	Denominator	The bottom number of a fraction. In the fraction $\frac{3}{5}, 5$ is the denominator.
4.	Mixed Number	A number formed of both an integer part and a fraction part.

		$3 \frac{2}{5}$ is an example of a mixed number.
5.	Simplifying Fractions	Divide the numerator and denominator by the highest common factor. $\frac{20}{45}=\frac{4}{9}$
6.	Equivalent Fractions	Fractions which represent the same value. $\frac{2}{5}=\frac{4}{10}=\frac{20}{50}=\frac{60}{150} \text { etc. }$
7.	Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common denominator. Ascending means smallest to biggest. Descending means biggest to smallest. Put in to ascending order: $\frac{3}{4}, \frac{2}{3}, \frac{5}{6}, \frac{1}{2}$. Equivalent: $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$ Correct order: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$
8.	Adding or Subtracting Fractions	Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator. $\frac{2}{3}+\frac{4}{5}$ Multiples of 3: 3, 6, 9, 12, 15.. Multiples of 5: 5, 10, 15 .. LCM of 3 and $5=15$ Then just add or subtract the numerators and keep the denominator the same. $\frac{2}{3}=\frac{10}{15}$

		$\begin{aligned} \frac{4}{5} & =\frac{12}{15} \\ \frac{10}{15}+\frac{12}{15} & =\frac{22}{15}=1 \frac{7}{15} \end{aligned}$
9.	Multiplying Fractions	Multiply the numeraters together and multiply the denominators together. $\frac{3}{8} \times \frac{2}{9}=\frac{6}{72}=\frac{1}{12}$
10.	Dividing Fractions	'Keep it, Flip it, Change it - KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second fraction. $\frac{3}{4} \div \frac{5}{6}=\frac{3}{4} \times \frac{6}{5}=\frac{18}{20}=\frac{9}{10}$
11.	Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ etc. are examples of unit fractions.
12.	Percentage	Number of parts per 100. $31 \% \text { means } \frac{31}{100}$
13.	Finding 10\%	To find $\mathbf{1 0 \%}$, divide by $1 \mathbf{1}$ $10 \% \text { of } £ 36=36 \div 10=£ 3.60$
1.	Finding 1\%	To find $\mathbf{1 \%}$, divide by 100 $1 \% \text { of } £ 8=8 \div 100=£ 0.08$
15.	Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify

		$14 \%=\frac{14}{100}=\frac{7}{50}$
16.	Percentages to Decimals	Divide by 100 $\mathbf{8} \%=\mathbf{8} \div \mathbf{1 0 0}=\mathbf{0 . 0 8}$
17.	Decimals to Percentages	Multiply by 100 $0.4=0.4 \times 100 \%=40 \%$
18.	Increase or Decrease by a Percentage	Non-calculator: Find the percentage and add or subtract it from the original amount. Calculator: Find the percentage multiplier and multiply. Increase 500 by 20\% (Non Calc): 10% of $500=50$ $\text { so } 20 \% \text { of } 500=100$ $500+100=600$ $83 \% \div 100=0.83$ $0.83 \times 800=664$
19.	Percentage Multiplier	The number you multiply a quantity by to increase or decrease it by a percentage. The multiplier for increasing by 12% is 1.12 The multiplier for decreasing by 12% is 0.88
20.	Simple Interest	Interest calculated as a percentage of the original amount. £1000 invested for 3 years at 10\% simple interest. $10 \% \text { of } £ 1000=£ 100$ Interest $=3 \times £ 100=£ 300$

Probability

1.	Probability	The likelihood/chance of something happening. Is expressed as a number between © (impossible) and 1 (certain). Can be expressed as a fraction, decimal, percentage or in words (likely, unlikely, even chance etc.)
2.	Probability Notation	$\mathbf{P}(\mathbf{A})$ refers to the probability that event \mathbf{A} will occur. P (Red Queen) refers to the probability of picking a Red Queen from a pack of cards.
3.	Theoretical Probability	Number of Favourable Outcomes $\overline{\text { Total Number of Possible Outcomes }}$ Probability of rolling a 4 on a fair 6 -sided die $=\frac{1}{6}$
4.	Relative Frequency	$\frac{\text { Number of Successful Trials }}{\text { Total Number of Trials }}$ A coin is flipped 50 times and lands on Tails 29 times. The relative frequency of getting Tails $=\frac{29}{50}$
5.	Expected Outcomes	To find the number of expected outcomes, multiply the probability by the number of trials. The probability that a football team wins is 0.2 How many games would you expect them to win out of 40 ? $0.2 \times 40=8 \text { games }$

6.	Exhaustive	Outcomes are exhaustive if they cover the entire range of possible outcomes. The probabilities of an exhaustive set of outcomes adds up to 1. When rolling a six-sided die, the outcomes $1,2,3,4,5$ and 6 are exhaustive, because they cover all the possible outcomes.
7.	Mutually Exclusive	Events are mutually exclusive if they cannot happen at the same time. The probabilities of an exhaustive set of mutually exclusive events adds up to 1. Examples of mutually exclusive events: - Turning left and right - Heads and Tails on a coin Examples of non mutually exclusive events: - King and Hearts from a deck of cards, because you can pick the King of Hearts
8.	Frequency Tree	A diagram showing how information is categorised into various categories. The numbers at the ends of branches tells us how often something happened (frequency). The lines connected the numbers are called branches.
9.	Sample Space	The set of all possible outcomes of an experiment.

