			Year 8 Mathematics Extending HT 5	
Probability - definitions				
1.	Probability	The extent to which an event is likely to occur Written as a fraction, decimal or percentage	For equally likely outcomes the probability that an event will happen is$P=\frac{\text { number of successful outcomes }}{\text { total number of possible outcomes }}$	
2.	Theoretical probability	Calculated without doing an experiment		
3.	Experimental probability	Probabilities based on the data collected during an experiment	$\text { estimated probability }=\frac{\text { frequency of event }}{\text { total frequency }}$	
		Also known as estimated probability		
		The more trials you do the more reliable your set of results		
4.	$P()$ notation	P () mean s the probability of the thing inside the brackets happening e.g. P (tails)		
5.	Experiment	A repeatable process that gives rise to a number of outcomes		
6.	Relative frequency	In an experiment, how often something happens as a proportion of the number of trials	Relative frequency	$\frac{\text { ow often something happens }}{\text { all outcomes }}$
7.	Predictions	You can predict the number of outcomes you will get using relative frequency		
		Predicted number of outcomes $=$ probability \times number of trials		
8.	Event	A collection of one or more outcomes		
9.	Independent	When one event has no effect on another	Here $P(A$ and $B)=P(A) \times P(B)$	
10.	Dependent	When the outcome of one event, changes the probability of the next event		
11.	Exhaustive	Events are exhaustive if they cover all possible outcomes		
12.	Biased	Unfair		
13.	Unbiased	Fair		
14.	Sample space	The set of all possible outcomes		
15.	Sample space diagram	A diagram showing all possible outcomes from an experiment		

26.	Compass directions	Terminology needed to accurately describe a location or directions				
27.	Sketch	An approximate drawing of an object				
28.	Scale	A ratio that shows the relationship between a length on a drawing/map and the actual length				
29.	S.I. Units	Standard units of measurement used by scientists across the world				
30.	Metric units	Standard units of measurement that vary by powers of 10				
31.	Imperial units	Older units of measurement, some of which are still common e.g. miles, gallons				
32.	Velocity	Speed in a given direction			Usually measured in m/s	
33.	Acceleration	The rate of change of velocity			Usually measured in $\mathrm{m} / \mathrm{s}^{2}$	
34.	Speed	The distance travelled Usually measured in m spee	an amount of time mph or km / h $\frac{\text { distance }}{\text { time }}$			
35.	Units of time	Standard units of time are seconds, minutes, hours, days, years				
		60 seconds $=1$ minute	60 minutes $=1$ hour	24 h	s = 1 day	365 days $=1$ year
36.	Units of mass	Metric units of mass are milligrams, grams, kilograms and tonnes				
		$1000 \mathrm{mg}=1 \mathrm{~g}$	1000	1kg		00kg $=1$ tonne
37.	Units of length	Metric units of length are millimetres, centimetres, metres and kilometres				
		$10 \mathrm{~mm}=1 \mathrm{~cm}$	$100 \mathrm{~cm}=1 \mathrm{~m}$			000m $=1 \mathrm{~km}$
38.	Units of area	Metric units of length are millimetres ${ }^{2}$, centimetres ${ }^{2}$, metres 2 and kilometres 2				
		$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$				

Two triangles are congruent if...

48. \quad sss \quad All 3 sides are equal

Coordinate geometry

15.	Gradient	The steepness of a graph $\begin{aligned} \text { Gradient }= & \frac{\text { change in } y}{\text { change in } x} \\ & =\frac{\text { rise }}{\text { run. }} \end{aligned}$	
16.	Gradient between two points	$\text { If } \mathrm{A}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { and } \mathrm{B}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ The gradient of line $A B=$ $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	
17.	Parallel lines	Have the same gradients	
18.	Perpendicular	Lines that are at right angles to one another	If a line has a gradient of m, the gradient of a line perpendicular to it will have a gradient of $-\frac{1}{m}$
		Lines that are perpendicular are the negative reciprocal of one another	
		If two lines are perpendicular, the product of their two gradients is -1	
19.	Mid-point	The coordinate half way between two point	If $\mathrm{A}=\left(x_{1}, y_{1}\right)$ and $\mathrm{B}=\left(x_{2}, y_{2}\right)$ the mid-point is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

