

Integ	Integers, Place Value and Decimals								
Num	ber Skills								
1.	Addition	To find the sum or total of two or more numbers.							
2.	Subtraction	To find the difference between two numbers.							
3.	Multiplication	Repeated addition of a number. Also called 'product'							
4.	Division	The process of calculating the number of times one number is contained in another.							
5.	Divisible	Can be divided by a number without a remainder.							
Multipl	ication methods								
6.	Lattice	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
7.	Grid	Eg) 574 x 29 500 70 4 20 10000 1400 80 9 4500 630 36 11480 + 5166 16646 Finished!							
8.	Column	36 30 6 × 15 10 5 30 (6×5) 60 (6×10) 1 50 (30×6) 300 (30×10)							
Division	methods	·							
9.	Short	e.g. 6497 ÷ 8							

10. Long e.g. 13032 ÷ 24	1 - 24 24 13032 2 - 48 - 120
--------------------------	---------------------------------

×	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Divisib	ility Rules																
A number is divisible																	
	by:	if:	if:														
	2	The last	The last digit is divisible by 2														
	3	The sum	he sum of the digits is divisible by 3														
	4	The num	ber	mac	de by	y the	last	two	dig	its is o	divisi	ble	by 4				
11.	5	The last	digit	is 5	or O)											
	6	The num	ber	is di	visib	le by	2 a	nd 3	}								
	8	The num	The number made by the last 3 digits is divisible by 8														
	9	The sum															-
	10	The last	digit	is O	•												
		The valu	e of	a di	git k	asec	d on	its p	lace	in a	num	ber					
12.	Place value		Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones	Decimal point ←	Tenths	Hundredths	Thousandth	Ten-Thousandths	Hundred-Thousandth	Millionths	
					wn	iole p	art			•		D	ecim	al pa	rt		

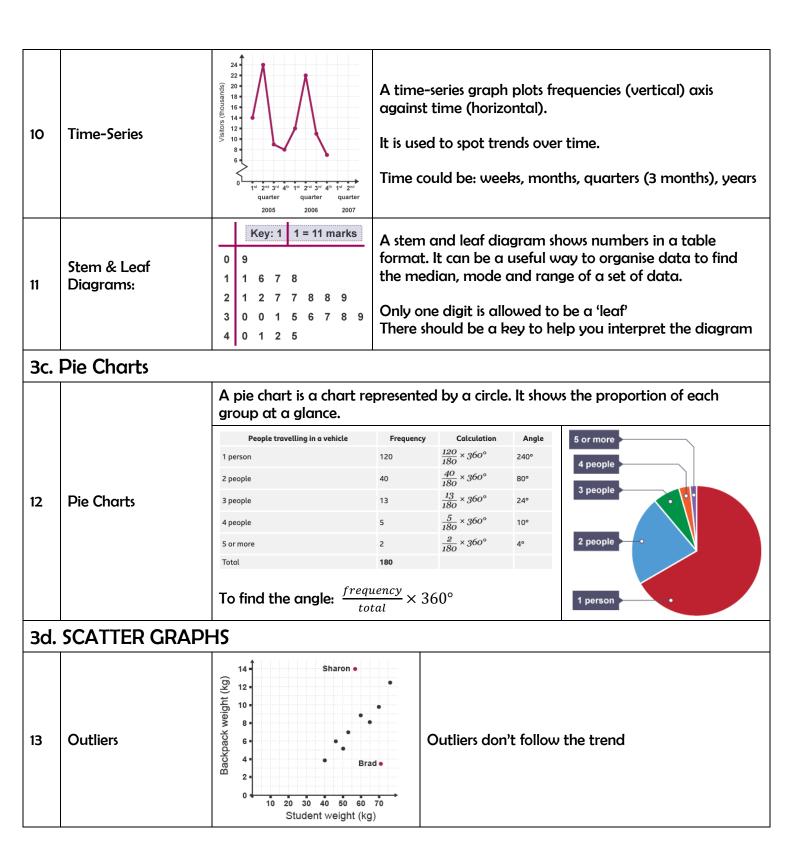
40	D: ::	A single symbol used to make a number							
13.	Digit	0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are the ten digi	its we use every day.						
14.	Integer	A whole number that is can be positive, negative or zero.							
15.	Negative number	A number that is less than zero.							
16.	Negative number rules	When multipllying or dividing with numbers that include negative numbers to following applies:	<pre> x + = + + + + + + + + + + + + + + + + +</pre>						
17.	Ascending order	A set of numbers arranged from smallest to biggest.							
18.	Descending order	A set of numbers arranged from biggest to smallest.							
19.	Decimal	A number with a decimal point in it, which can be negative or positive.							
20.	Terminating decimal	A decimal that has digits that end.	0.25 (it has two decimal digits) 3.0375 (it has four decimal digits)						
21.	Recurring decimal	A decimal with a digit or groups of dithat repeat forever.	gits $\frac{1}{3} = 0.333 = 0.3 = 0.3$ Fraction Ways to show recurring decimals						
22.	Decimal place	The number of digits after the decima	al point						
23.	Rounding	Changing a number to a simpler, easy	y to use value.						
24.	Approximate	An easier figure to use close to the val	lue.						
25.	Significant figure	The digits of a number that express a size to a given degree of accuracy just to not significant (any zero at start)							
Rounding to decimal places									

				T				
	Count th	e number of deci	mal places you need	9↑				
26.		the number direct it rounds up or do	tly to the right of that digit to own	9 8 7 6 5				
	• 5 or mor down	e means it rounds	up; 4 or less means it rounds	down 3 2 1				
			256.1 873	To 1 d.p. is 256.2				
27.	e.g. 256.187	3	256.18 73	To 2 d.p. is 256.19				
			256.187 3	To 3 d.p. is 256.187				
Roundi	ng large numbers							
	Count th	e number of digit	s you need from the left	*				
28.		the number to the p or down	e right of the digit to decide if it	9 8 7 6 5				
20.	• 5 or mor down	e means it rounds	up; 4 or less means it rounds	down 3 2				
	Replace	remaining digits v	vith zeros as placeholders	Ψ.				
	•		2 56.1873	To 1 s.f. is 300				
29.	e.g. 256. 1873		25 6.1873	To 2 s.f. is 260				
			256 .1873	To 3 s.f. is 256				
Roundi	ng small numbers	to significant figu	ıres					
	Zeros are	not significant ur	ntil after the first non-zero term					
		first non-zero terr u need from there	m and count the number of	9 8 7 6				
30.		the number direct it rounds up or do	tly to the right of that digit to own	down 3				
	• 5 or mor down	e means it rounds	up; 4 or less means it rounds	Ψ'				
	_		0.002 3681	To 1 s.f. is 0.002				
31	e.g. 0.0023681		0.0023 681	To 2 s.f. is 0.0024				
			0.00236 81	To 3 s.f. is 0.00237				
Inequal	ity notation							
32.	=	Equal to						
33.	#	Not equal to						
34.	<	Less than						
35.	>	Greater than						
36.	≤ Less than or equal to							
37.	2 Greater than or equal to							

Indice	es, powers an	d roots								
		Symbols and words t	o show ho	w to combir	ne numbers.					
38.	Operations	×	Multiply			+	Add			
		÷	Divide			_	Subtract			
	Order of	The order in which operations should be	carried		В		Brackets Indices			
39.	operations	out.	DM		Divide and Multiply					
	operation.			AS Add and Subtract						
		The operation used t	o reverse	the original operation						
40.	Inverse	+ and - are inverse			× and ÷ are	e inverse				
40.	operations	Finding the square ro	oot is the i	nverse of fin	ding the squa	re of a n	umber.			
		Finding the cube root is the inverse of finding the cube of a number.								
				4	••	2 ²	or 2 x 2 = 4			
41.	Square numbers	The product of a nur multiplied by itself.	nber	4		2 (or 2 x 2 = 4			
42.	Cube numbers	The product of multi number by itself thre		2 ³	= 2 x 2	x 2	=8			
					$\overline{1} = \pm 1$	/01	= ±9			
							= ±9			
				√	$4 = \pm 2$	$\sqrt{100}$	$= \pm 10$			
				√	$9 = \pm 3$	$\sqrt{121}$	= ±11			
		A value that can be		$\sqrt{}$	$16 = \pm 4$	$\sqrt{144}$	= ±12			
43.	Square root	multiplied by itself to the original number	give		$\frac{1}{25} = \pm 5$		= ±13			
		the original number			$\frac{1}{36} = \pm 6$		= ±14			
					_		_			
					$49 = \pm 7$	√225	$= \pm 15$			
				$\sqrt{\epsilon}$	$64 = \pm 8$					
				3√.	$\overline{1} = 1$	³ √216	= 6			
		A value that can be			$\frac{1}{8} = 2$					
		multiplied by itself th	ree							
44.	Cube root	times to give the orig		√2	$\overline{7} = 3$	∜512	= 8			
		number		$\sqrt[3]{6}$	$\overline{64} = 4$	$\sqrt[3]{729}$	= 9			
						³ √1000				
		A small number to th	ne upper r			,				
45.	Index	base number is multi								
46.	Power	Another word for an	index.							

47.	Indices	The plural of index.							
48.	Index form	A nun	nber written to the powe	er of an inde	х.				
Laws o	f indices	_							
49.	Multiplying	Add t	Add the powers $x^7 \times x^6 = x^{13}$						
50.	Dividing	Subtro	Subtract the powers $x^5 \div x^6 = x^{-1}$						
51.	Brackets	Multip	Add the powers $x^7 \times x^6 = x^{13}$ Subtract the powers $x^5 \div x^6 = x^{-1}$ Multiply the powers $(x^2)^3 = x^6$						
52.	Power of 0	_	Always = 1 $x^0 = 1$						
53.	Negative	Mean	Always = 1 $x^{0} = 1$ Means "1 over" $x^{-n} = \frac{1}{x^{n}}$ Means root						
54.	Unit Fraction	Mean	s root		$x^{\frac{1}{n}} = \sqrt[n]{x}$ $x^{\frac{a}{n}} = (\sqrt[n]{x})$;			
55.	Fractional	Means	root and bracket		$x^{\frac{a}{n}} = (\sqrt[n]{x})$) ^a			
Facto	rs, multiples	and p	rimes	•					
56.	Multiple	The re	esult of multiplying a nur	nber by an i	nteger.				
57.	Factor	A nun	A number that divides into another number without a remainder.						
58.	Remainder	An an	An amount left over after dividing.						
		A nun	nber with exactly two fa	ctors; 1 and it	tself.				
59.	Prime number		5, 7, 11, 13, 17, 19, 23 3, 89, 97.	, 29, 31, 3	7, 41, 43, 47, 53, 5	9, 61, 67, 71, 73,			
60.	Product	The a	nswer when two or more	numbers ar	e multiplied together.				
61.	Prime factor decomposition		ng a number as a produc factors.	t of its	60 2 30 2 15 3 5 5 1 60 = 2 × 2 × 3 × 5 60 = 2 ² × 3 × 5	72 2 36 2 18 2 9 3 3 1 72 = 2 × 2 × 2 × 3 × 3 72 = 2 ³ × 3 ²			
62.	Highest common factor	HCF	The highest number that divides e.g. the HCF of 12						

63.	Lowest common multiple	LCM	The smallest positive integer that is a multiple of two or more numbers.	e.g. the LCM of 12 adm 8 is 24		
-----	------------------------------	-----	--	-----------------------------------	--	--


Algeb	ora: the basics		- 1						
Definit									
1.	Variable	A letter representing a varying or u	nknown quantity.						
2.	Coefficient	A number which multiplies a variab	A number which multiplies a variable e.g. 4 is the coefficient in 4a						
		One part of an expression/equation/	e.g. 4C						
3.	Term	Can involve multiplying and dividin and variables	w						
		Separated from other terms by add subtraction	ition and $\overline{5}$						
4.	Like terms	Terms that have the same variable but have different coefficients	e.g. $c + 4c$ are like terms c^2 and c^3 are not like terms						
		A fixed value.	Coefficient Variable						
5.	Constant	A number on its own or sometimes a letter such as a, b or c to represent a fixed number.	Operator Constants						
6.	Expression	One or a group of terms. Can include variables, constants, operators and grouping symbols.	e.g. 3y -3						
		No 'equals' sign	3y ² +y ³						
7.	Equation	Contains an 'equals' sign, = Has at least one variable	e.g. 3y - 3 = 12						
8.	Formula	A special type of equation that show variables	vs the relationship between a set of						
9.	Formulae	Plural of 'formula'							
10.	Identity	An equation that is true no matter what values are chosen, ≡	e.g. $3y \equiv 2y - y$ for any value of y.						
11.	Subject	The variable on its own on one side							
12.	Substitute	Replace a variable with a number.	a = 3, b = 2 and c = 5. Find:						
13.	Simplify	Minimising the size of an expression							

14.	Factorise	Splitting an expression into	t of factors					
15.	Expand	Removing brackets by usin	ng multipli	cation				
16.	Solve	Find the value of an unknown						
Algebr	aic Notation	,						
17.	Adding like terms	Add the coefficients		b + 2b = 3b				
18.	Subtracting like terms	Subtract the coefficients		5b - 4b = b				
19.	Multiplying like terms	If the base is the same, add powers	d the	$b \times b = b^2$				
20.	Dividing terms	If the base is the same, sub the powers	otract	$b^5 \div b^2 = b^3$				
21.	Adding different terms	Cannot combine if the terr different.	ms are	b + 2c = b + 2c				
22.	Subtracting different terms	Cannot combine if the terr different.	ms are	3c - 4 = 3c - 4				
23.	Multiplying different terms	Combine with no 'x' sign		$d \times e = de$				
24.	Multiplying different terms with coefficients	Combine with no 'x' sign, the coefficients	multiply	$2d \times 3e = d6e$				
25.	Dividing different terms	Write as fractions with no	'÷' sign	$3d \div e = \frac{3d}{e}$				
26.	Dividing different terms with coefficients	Write as fractions with no simplify the coefficients who possible.		$14d \div 7e = \frac{2d}{e}$				
Expar	ding (single brackets)							
27.		the bracket, by the term o	n the outsid	de.				
28.	3(a + 4) = 3	3a+12	$\frac{2x}{4x^2}$	$\begin{array}{c c} -3 \\ -6x \end{array}$				
Facto	rising (single brackets)	,						
29.	 Find the highest conterms This goes outside the Divide each term by new terms inside the 	e bracket the factor to get the bracket		+ 4y				
F	Always check by expanding your bracket							
Expre	xpressions							
30.	Linear	Can be represented by a s	traight	e.g. $2x + 2$				
		No indices above 1						
31.	Quadratic	An expression where the highest index is 2 e.g. $2x^2 + 2x + 2$						

За.	3a. TABLES								
1	TYPES OF DATA								
1a	Qualitative Data	Non-numer	rical data				i.e. Colour	of car	
1b	Quantitative Data	Numerical o	data				i.e. House	number	
1c	Discrete Data	Numerical of decimals	data that <u>CAN</u>	NO.	T be show	n in	i.e. Numb	er of childr	en in a class
1d	Continuous Data	Numerical of decimals	data that <u>CAN</u>	l be	shown in		i.e. The he	eights of chi	ldren in a class
1e	Grouped Data	Numerical (data given in i	inter	vals		i.e. Year g Year 7-9	roup range Year 10-1	
					Colour	of Car	Tally		Frequency
		Three Colur	nns:		Red		IIII		4
2	Data Collection	Data vo	Data values		White	White			5
_	Data Collection	Tally		Grey		III		3	
		Frequency (how many) Black				HH III		8	
					Blue		 		6
3	Mode	Most popul	ar (i.e. most co	mm	on colour	of car is	Black)		
4a	24-hour clock	15:30	Uses hours O	0 (M	idnight) to	o 23 (11 i	in the eve	ning)	
4b	12-hour clock	03:30 pm	Uses hours O	1 to 1:	2 with mo	rning (A	AM) and a	ifternoon/e	vening (PM)
			Boys	Gi	rls	TOTA	L J	a. talala	
5	Two-Way Tables	Pet	9	4		13		ng data wi	es are a way of
3	Two-way rables	No Pet	2	5		7		ng data wi gories.	itii two
		TOTAL	11	9		20		.go:103.	
3b.	Charts and Grap	hs							
6	Plotting Points	Co-ordinate (x, y)	Co-ordinates show an exact position (x, y)			3			

7	Pictograms	Movie genre Frequency Horror Action Romance Comedy Other = 4 people = 2 people = 1 person	Used to show frequencies Pictures and images used to represent frequency A key at the bottom helps you interpret the diagram
8a	Bar Charts	15 10 10 10 11-15 16-20 21-25 Number of customers	Frequency on the vertical axis, and categories along the horizontal axis. Used to compare frequencies
8b	Composite Bar Chart	Number of pets Boys Boys Gris Boys Boys	Frequency on the vertical axis, and categories along the horizontal axis. Two shades used to show difference in proportion between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
8c	Comparative Bar Chart	Solution Rainfall 40 40 40 30 Cm 20 Jan Feb Mar Apr May Month Dual Bar Chart	Frequency on the vertical axis, and categories along the horizontal axis. Bars are next to each other and used to show difference in frequency between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
9	Line Graph	22 22 22 22 22 22 22 22 22 22 22 22 22	A line graph is used to show a change or relationship between two variables. Once the points are plotted, they are joined with straight lines.

14	Line of Best Fit	50	A sensible straight line that goes as centrally as possible through the points plotted. It should also follow the same steepness of the crosses.	
15	Interpolate	50 45 40 90 90 90 90 90 90 90 90 90 9	Using a line of best fit to estimate data WITHIN our range For example: To estimate how many umbrellas are sold with 3mm rain. Find where 3 mm of rainfall is on the graph. Draw a line by going across from 3 mm and then down.	
16	Extrapolate	80 75 70 65 60 88 89 45 89 10 Rainfall (mm)	Continuing a line of best fit to estimate data BEYOND our range (not as reliable as interpolation) For example: To estimate how many umbrellas are sold with 10mm rain. Continue the line of best fit. Find where 10mm of rainfall is on the graph. Draw a line by going across from 10mm and then down.	
17a	Positive Correlation	102 98 94 99 90 98 86 87 88 88 88 88 88 88 88 88 88	BOTH variables increase with each other	i.e. Ice creams sold vs Temperature
17b	Negative Correlation	Dios greeo o o serio de construir de constru	ONE variable increases as the other decreases	i.e. Coats sold vs temperature

17c	No Correlation	x x	x x x x x x x x x x x x x x x x x x x	NO rela between	-	i.e. IQ and House Number
18	Causation	• i.	variable causes a change in the other. e. an increase temperature WILL cause an increase ice cream sales e. the number of bee stings WILL NOT cause an increase in ice cream sales although both will increase in hot weather)			
Fra	ctions	<u> </u>			<u> </u>	
1.	Fraction		Part of a whole			
2.	Numerator		The number on the top	of the fract	ion	numerator
3.	Denominator		The number on the bott	om of the f	fraction	denominator
4.	Equivalent fractions		Fractions that have the same value but look different.			$\frac{1}{2} \frac{2}{4} \frac{3}{6} \frac{4}{8}$
5.	5. Improper fraction		A fraction where the numerator is larger than the denominator.			e.g. $\frac{4}{3}$
6.	Mixed number		A number made from integer and fraction parts.			e.g. $2\frac{2}{3}$
7.	Unit fraction		A fraction that has a nu	merator of	1	
0	Pacinrocal		The reciprocal of a number.	ne reciprocal of a number is 1 e.g. the vided by the number.		reciprocal of 3 is $\frac{1}{3}$
0.	8. Reciprocal		Dividing by a number is the same e.g. \times by as multiplying by its reciprocal		$v^{\frac{1}{3}}$ is the same as ÷ by 3	
Frac	Fractions - processes					
9.	9. Simplifying fractions		Divide the numerator and denominator by the HCF.		nator	$\frac{24}{30} = \frac{4}{5}$
10.	O. Finding equivalent fractions		Multiply the numerator and denominator by the same number		$\frac{4}{8} \times 2 = 8$ $\times 2 = 16$	
11.	II. Comparing fractions Write them with a common denominator					
12.	Fraction of an amoun	t	Amount divided by the denominator then multiplied by the numerator		tor	e.g. $\frac{5}{7}$ of 42
					l.	42 ÷ 7 x 5 = 30

13.	Multiply fractions	Multiply the numerators and multiply the denominators	$\frac{6}{7} \times \frac{4}{5} = \frac{6 \times 4}{7 \times 5} = \frac{24}{35}$			
14.	Divide fractions	 Flip the second fraction (find the reciprocal). Change the divide to multiply. Multiply the fractions. 	$\frac{4}{7} \div \frac{5}{6} = \frac{4}{7} \times \frac{6}{5} = \frac{4 \times 6}{7 \times 5} = \frac{24}{35}$			
15.	Add or subtract fractions	 Write as fractions with a common denominator. Add or subtract the numerators 	$\frac{2}{8} + \frac{1}{6} = \frac{6}{24} + \frac{4}{24} = \frac{10}{24} = \frac{5}{12}$			
16.	Convert improper fractions to mixed numbers	 Divide the numerator by the denominator The answer gives the whole number part. The remainder becomes the numerator of the fraction part with the same denominator. 	$\frac{43}{6} = 7\frac{1}{6}$			
17.	Convert mixed numbers to improper fractions	 Multiply the denominator by the whole number part. Add the numerator to this. Put the answer to this back over the denominator 	$7\frac{1}{6} = \frac{6 \times 7 + 1}{6} = \frac{43}{6}$			
Per	Percentages					
18.	Percentage	Means 'out of 100'				
19.	Multiplier	A decimal you multiply by to represent a	ı percentage			
19.	Mainpliei	To use a multiplier to find a percentage, divide your percentage by 100, then multiply the amount by this value.				
		Calculate the percentage and add onto t	the original			
20.	Percentage increase	Or use a multiplier	$amount \times \frac{100 + \% increase}{100}$			
		Calculate the percentage and subtract fr	om the original			
21.	Percentage decrease	Or use a multiplier	amount $\times \frac{100 - \% increase}{100}$			
22.	Percentage change	$\frac{Change}{Original} \times 100$				
23.	Express one number as a percentage of another	$\frac{Number\ 1}{Number\ 2} \times 100$				

	Use when asked to find the priginal amount after a percentage increase decrease.							
24.	Pauarra parcantaga	Original Value x Multiplier = New Value						
24.	Reverse percentage	Original Value = <u>New Value</u>						
			ltiplier					
25.	Interest	A fee paid for borrowing money or m	noney earnt through investing.					
		Interest that is calculated as a	I = Prt					
26.	Simple interest	percentage of the original	I – Interest P – Original amount					
			r – interest rate					
		When interest is calculate on the original amount and any previous interest	$P\left(1 + \frac{R}{100}\right)^n$					
27.	Compound interest	OR	P – Original amount					
		Original × Multiplier ^{time}	R – Interest rate n – the number of interest periods (e.g. yrs)					
		, very						
28.	28. Tax A financial charge placed on sales or savings by the government e.g. V							
29.	Loss	Income minus all expenses, resulting i	come minus all expenses, resulting in a negative value					
30.	Profit	Income minus all expenses, resulting i	n a positive value					
31.	Depreciation	A reduction in the value of a product over time						
32.	Annual	Means yearly						
33.	Per annum	Means per year						
34.	Salary	A fixed regular payment, often paid	monthly					
FDI	P Conversions							
35.	Percentage to decimal	Divide by 100						
36.	Decimal to percentage	Multiply by 100						
37.	Fraction to percentage	Find an equivalent fraction with 100 as the denominator						
38.	Percentage to fraction	Write as a fraction over 100 then simplify						
39.	Fraction to decimal	Carry out division or convert to a percentage first						
40. Decimal to fraction Use place value to find the denominator and simplify or converge first.								
Bas	ics to memorise							
41.	Fraction — –	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{3}{4} \end{array}$					

Decimal	0.01	0.1	0.125	0.2	0.25	0. 3	0.5	0. 6	0.75
Percentage	1%	10%	12.5%	20%	25%	33. 3%	50%	66. 7%	75%

Equa	tions						
-		Contains an 'equals' sign					
1. Equation		Has at least one variable	e.g. 3y – 3 = 12				
_		Produces a straight line graph					
2.	Linear	No indices above 1					
		One part of an expression/equation/formula	e.g. 4c				
3.	Term	Can involve multiplying and dividing coefficients and variables	<u>w</u>				
		- 5					
		One or a group of terms.	e.g. 3y -3				
4.	Expression	Can include variables, constants, operators and grouping symbols.	3y ² +y ³				
		No 'equals' sign					
5.	Formula	A special type of equation that shows the relationship between a set of variables					
6.	Identity	An equation that is true no matter what values are chosen, ≡	e.g. $3y \equiv 2y - y$ for any value of y.				
7.	Unknown	A letter representing a number					
8.	Solve	TO find the value of the unknown	TO find the value of the unknown				
		The operation used to reverse the original operation					
	Inverse	$+$ and $-$ are inverse \times and \div a	are inverse				
9.	operations						
		Finding the cube root is the inverse of finding the cube	e of a number.				
Solving	g equations	1					
10.	To solve equat	tions we need to use inverse operations					
11.	What ever you	What ever you do to one side of the equals sign you must do the same to the other					
12.	One step		$ \begin{array}{c cccc} 18 & \frac{\chi}{4} & = & 6 \\ (\div 3) & (\times 4) & (\times 4) \\ 1 & \chi & = & 24 \end{array} $				

			,
13.	Two step	Requires the use of two inverse operations	2x - 7 = 19 $2x = 26$ $x = 13$
14.	With brackets	Expand the brackets first $5(2x + 1) = 35$ $10x + 5 = 35$ $10x = 30$ $x = 3$	OR if possible divide by the number outside of the bracket first $4(2x + 4) = 20$ $2x + 4 = 5$ $2x = 1$ $x = \frac{1}{2}$
15.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.	5x + 2 = 3x - 8 $2x + 2 = -8$ $2x = -10$ $x = -5$
16.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\frac{f}{5}+2=8$ $\frac{f}{5}=6$ $f=30$	If everything is part of the fraction then multiply by the denominator first. $\frac{f+2}{5}=8$ $f+2=40$ $f=38$
Inequa	alities		
17.	Inequality	The relationship between two expressions that are	e not equal
18.	=	Equal to	
19.	#	Not equal to	
20.	<	Less than	x < -1
21.	>	Greater than	x > 5
22.	≤	Less than or equal to	x≤5
23.	2	Greater than or equal to	x ≥ 3 -1 0 1 2 3 4 5 6 7 8 9 10 11

24.	Inclusive	Gives a finites rnage of solutions	e.g. $3 < x \le 8$				
25.	Exclusive	Gives an infinite range of solutions	e.g. $x > 5$ $-4 \le x$				
26.	Integer	A whole number that can be positive negative or	zero				
		Inequalities are solved in the same way as solving equations					
27.	Solve	Only exception: if you multiply or divide by a neg sign e.g. less than to greater than	gative number you must swap the				
		Give the integers that satisfy the inequality					
28.	List integers solutions	e.g. x > 6 integer solutions are 6, 7, 8					
		e.g5 < x ≤ 5 integer solutions are -4, -3, -2, -1, 0,	1, 2, 3, 4, 5				
		An empty circle shows the value is not included	0				
29.	Represent on a number line	A shaded circle shows the value is included					
		An arrow shows that the solution continues to infinity	○ →				
30.	Inequalities on graphs	The region $y \ge 2$ The region $x < 4$ $y = 2$ $-10 -5 0 5 10$ $-10 -5 0 5 10$ The unwanted sections are shaded Dashed lines are used to represent < or > Solid line is used to represent $\le or \ge$	The region that satisfies: x < 4 $y \ge 3$ y < 2x + 3 y = 2				
Seque	iences						
31.	Sequence	An order pattern of numbers or diagrams					
32.	Term	One of the numbers or diagrams in a sequence					
33.	Term to term rule	The rule for moving from one term to the next in a sequence					
34.	Formula	A rule written to describe a realtionship between twp quantities					
35.	Arithmetic sequence	A sequence where the term to term rule is to addd or subtract the same amount each time					

26	Quadratic	A sequence where the term to term rule is changing by the same amount each time					
36.	sequence	The second difference is a constant amount.					
37.	Geometric sequence	A sequence where the term to term rule is to multiply by the same amount edime	ach				
20	Common	The value a geometric sequence is multiplied by from one term to the next					
38.	ratio	Denoted by the letter <i>r</i>					
39.	Series	he sum of the terms in a sequence					
40.	Position to term rule	he rule for finding any value of a sequence					
		The rule to find any term in a sequence of numbers					
41.	nth term rule for an arithmetic sequence	 Find the common difference between the terms This becomes you coefficient of n (this is the times table the sequenc is linked to) The number you need to add or subtract to get to the second term becomes the second term in the nth term rule Now compare the sequence to the 4 times table 6, 10, 14, 18, 22 Each term is 2 bigger than the 4 times table increases by 4, so the nth term starts with 4n So the nth term is 4n + 2 					
42.	nth term for a geometric sequence	 Divide the second sequence by the first to find the common ratio, r The nth term is arⁿ⁻¹ where a is the first term and n is the term position in the sequence 					
43.	Finite	Has a final point					
44.	Infinite	Carries on forever					
45.	Ascending	ncreases					
46.	Descending	Decreases					
47.	Linear function	An aruthmetic sequence that can be represented by a straight line graph					
Special	pecial Sequences						
48.	Square numbe		16				
49.	Cube numbers	1, 8, 27, 64, 125	125				

50.	Triangular numbers	1, 3, 6, 10, 15, 21, 28	1 3 6 10			
E1	Eibonassi saguansa	A sequence where each term is the sum of the two previous terms				
51.	Fibonacci sequence	e.g. 1, 1, 2, 3, 5, 8, 13, 21				

Shape	es and angles - de	efinitions					
1.	Angle	A measure of turn, measured in degrees ·					
2.	Protractor	Instrument used to measure the size of an angle					
3.	Acute angle	An angle less than 90°					
4.	Right angle	A 90∘ angle					
5.	Obtuse angle	An angle more than 90° but less than 180°					
6.	Reflex angle	An angle more than 180°					
7.	Parallel lines	Lines that are equal distance apart that will never meet even when extended					
8.	Perpendicular lines	Lines that intersect at a right angle					
9.	Polygon	A 2D shape with straight lines only					
		A polygon where:					
10.	Regular polygon	All sides are the same length All angles are the same size					
11.	Interior angles (I)	An angle inside a polygon					
12.	Exterior angles (E)	An angle outside a polygon I + E = 1800					
13.	Congruent	Shapes that are the same shapes and size, they are identical.					
14.	Similar	Shapes that are the same shape but are different sizes					
15.	Bisect	Cut in half					
16.	Tessellate	Fit together without leaving gaps					
17.	Symmetry	A shape has symmetry if a central line is drawn to show both sides are exactly the same.					
		We call these lines of symmetry					
18.	Rotational symmetry	A shape has rotational symmetry when it looks the same after some rotation of less than a full turn Original shape 90 degrees Original = 180 degrees Original = 360 degrees Original = 360 degrees Original = 360 degrees					

Quadri	Quadrilaterals (4 sided shapes)							
19.	Square		4 equal sides 4 equal angles 2 pairs of parallel sides Diagonals cross at right angles	4 lines symmetry Rotational symmetry order 4				
20.	Rectangle		2 pairs of equal sides 4 right angles 3 pairs of parallel sides	2 lines of symmetry Rotational symmetry order 2				
21.	Rhombus		4 equal sides 2 pairs of equal angles 2 pairs of parallel sides Diagonals cross at right angles	2 lines of symmetry Rotational symmetry order 2				
22.	Parallelogram		2 pairs of equal sides 2 pairs of equal angles 2 pairs of parallel sides	O lines of symmetry Rotational symmetry order 2				
23.	Kite		2 pairs of equal sides 1 pair of equal angles 2 pairs of parallel sides Diagonals cross at right angles	1 line of symmetry Rotational symmetry order 1				
24.	Trapezium		One pair of parallel lines					
25.	Isosceles trapezium		1 pair of parallel sides 1 pair of equal sides 2 pairs of equal angles	1 line of symmetry Rotational symmetry order 1				
Triangl	es (3 sided shapes)							
26.	Equilateral		3 equal sides 3 equal angles	3 lines of symmetry Rotational symmetry order 3				
27.	Isosceles		2 equal sides 2 equal angles	1 line of symmetry Rotational symmetry order 1				
28.	Scalene		No equal sides No equal angles					
29.	Right-angled		1 right angle Can be scalene or isosceles					
Basic (angle rules							
30.	Angles on a straight li	ne add to 180°						

31.	Angles around a point add up to 360°	
32.	Vertically opposite angles are equal	x° y° x°
33.	Angles in a triangle add to 180°	a' + b' + c' = 180
34.	Angles in a quadrilateral add up to 360°	A A + B + C + D = 360
Angle	on parallel lines	
35.	Alternate angles are equal	o d
36.	Corresponding angles are equal	$\stackrel{\times}{\longleftrightarrow} \stackrel{\vee}{\longleftrightarrow} \stackrel{\vee}$
37.	Co-interior angles add up to 180°	
Angle	s in polygons	
38.	Interior and exterior angles add to give 180°	Interior angle For any polygon: $I + E = 180^{\circ}$
39.	Sum of interior angles	For a 'n' sided polygon Sum of interior angles = 180 x (n-2)
40.	Size of one interior angle	For a 'n' sided polygon Interior angle = $\frac{180 x (n-2)}{n}$
41.	Sum of exterior angles	For all polygons, sum of exterior angles = 360°
42.	Regular polygons	Exterior angle = 360 ÷ number of sides Number of sides = 360 ÷ exterior angle

Interior angle = 180 – exterior angle

Statis	Statistics and sampling: definitions							
1.	Primary	Data that is collector by the researcher first hand						
2.	Secondary	Data that is collect	ed by someone other	than the user				
3.	Qualitative	Data described by	words	e.g. favourite colou	r			
4.	Quantitative	Data that is catego can be discrete or o	=	e.g. height, shoe size	9			
5.	Discrete	Can be counted, co	an only have a finite values	e.g. number of peo	ple in a class			
6.	Continuous	Can be measured, number of possible given range	can have an infinite values within a	e.g. height, weight,	time, distance			
7.	Population	The whole group						
8.	Census	A survey of the wh	ole population					
9.	Sample	A selection of the v	vhole population					
10.	Survey	A tool used to gather information from individuals						
11.	Bias	Prejudice or favour shown for one person, group, thing or opinion over another. e.g. asking people leaving a library whether they enjoyed reading						
12.	Random sample	Every member of t	the population has an	equal chance of being	selected.			
13.	Inequality signs	< less than	> greater than	≤ less than or equal to	2 greater than or equal to			
14.	Frequency	How often someth	ing occurs					
15.	Estimate	Find a value close	to the correct answer i	if you were to calculate	e accurately			
16.	Interval	What is between to	wo values of points	e.g. all the numbers	between 0 and 10			
17.	Midpoint	The middle or half way point of an interval e.g. the midpoint of all the umbers between 0 and 10 is 5						
Measu	res of central te	ndency and sprea	ıd					
18.	Central tendency	A calculated central value of a set of numbers Mean, median and mode are measures of central tendency						
19.	Spread	Describes how similar or varied a set of values are measures of spread Range and interquartile range are measures of spread						
20.	Mean	Add up all the mo	unts then divide by ho	w many there are.				
21.	Median	Put values in order and locate the middle value						

22.	Mode	The value that occurs most often i.e. has the highest frequency.					
23.	Range	The biggest value minus the smaller value					
24.	Outlier	An extreme date	a value th	nat doesr	n't fit v	vith the ove	rall trend or pattern
Advan	ntages and disac	dvantages of av	verages				
	Average	Advantages	Advantages			Disadvantages	
	Mean	Every value is in	cluded			Affected by	extreme values
26.	Median	Not affected by	extreme ·	values		May not ch	ange if a data value changes
	Mode	_	Easy to find; not affected by extreme values; can be used with non-			There may	not be a mode
Avera	ges from freque	ncy tables					
27.	Modal class	The class with th	e highest	frequenc	су		
28.	Median	If the total frequency is n , then the median lies in the class with the $\frac{n+1}{2}$ th value in it.					
29.	Mean from a frequency table Times Add Divide		of make-up No of Items Free x	1 x 7 2 x 2 3 x 1 4 x 4 5 x 2	=7 =4 =3 =16		Mean = $\frac{40}{16}$ = 2.5
30.	Estimated mean from a grouped frequency table Times Add Divide	Class Interval $140 \le h < 150$ $150 \le h < 160$ $160 \le h < 170$ $170 \le h < 180$	Mid-point 145 155 165 175 Totals	Frequency 6 16 21 8 51	145 155 165	int × Frequency i × 6 = 870 i × 16 = 2480 i × 21 = 3465 i × 8 = 1400 8215	Mean = 8215 ÷ 51 =161.07843 = 161.08 (2dp)
31.	Estimate of range from grouped frequency table	The maxiumum	possible v	value mii	nus the	e smallest po	ossible value.

		A chart to display discrete data where the height of the bar shows the frequency.	
32.	Bar chart	Worker absences Suppose of the supp	Mean: 23 ÷ 10 = 2.3 Median: 2.5 Mode : 3 Range: 4-1 = 3
33.	Pictogram	A chart that uses pictures to represent quantities. Must include a key. Apples Sold Jan Feb Mar Apr Apr 5 5 7 Apples	Mean: 95÷4 = 23.75 Median: 22.5 Range: 30
34.	Stem and leaf diagram	STEM LEAF 0 7 1 0 5 5 5 7 9 2 0 2 2 6 7 3 0 2 4 6 8 Key: 6 1 = 61 hours A diagram that shows groups of data arranged by place value. 'Leaves' should be in order. Must have a key.	Mean: 385÷17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31
35.	Back to back stem and leaf	Compares two sets of results. Must have a key. A B EAF STEM LEAF	Set A Mean: 356÷18 = 19.8 Median: 20 Mode: 22 Range: 38-5 = 33 Set B Mean: 385÷17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31

2D aı	nd 3D shapes: de	finitions					
1.	Dimension	The size of something in a particular direction e.g. height, depth, length, width					
2.	2D shape	A shape that has length/height and a width but no depth					
3.	3D shape	A shape that depth as well as length/height and	width				
4.	Polygon	A 2D shape with straight lines only					
_		A polygon where:					
5.	Regular polygon	All sides are the same length All angles are the same size					
6.	Compound shape	A shape made up of two or more simple shapes					
7.	Rectilinear shape	A shape where all of its sides meet at right angles					
8.	Perimeter	The distance around the outside of a 2D shape					
9.	Area	The space inside a 2D shape					
10.	Surface area	The total area of all the faces of a 3D shape					
11.	Volume	The space inside a 3D shape					
12.	Capacity	The amount of fluid a 3D object can hold	The amount of fluid a 3D object can hold				
13.	S.I. Units	Standard units of measurement used by scientists	across the world				
14.	Metric units	Standard units of measurement that vary by pov	vers of 10				
15.	Imperial units	Older units of measurement, some of which are st	ill common e.g. miles, gallons				
16.	Cross section	The shape we get when cutting straight through o	a 3D shape				
17.	Prism	A 3D shape that has a constant cross section through its length	Tringdar Prims Rectangular Frims Cube Pertugual Prims Hassman Prims				
18.	Pyramid	A 3D shape with a polygon as its base and triangular sides that meet at the top	rectangular pyramid hexagonal pyramid decagonal pyramid				

19.	Cylinder	A prism with two ci curved surface	rcular (d by a		h		
20.	Sphere	A 3D shape where of the same distance f		ice are		8 m		
21.	Spherical	Means in the shape	of a sp	here				
22.	Cone	A 2D shape that ha point by a curved s		ed to a	E			
23.	Face	A flat surface of a 3	D shap	oe (can be cur	ved)	edge	vertex	
24.	Edge	A line segment where two faces meet						
25.	Vertex	A point where two or more edges meet						
26.	Vertices	Plural of vertex						
Measu	res							
27.	Units of time	Standard units of ti	me are	e seconds, minu	utes, hours,	days, yec	ars	
21.	Sints of time	60 seconds = 1 minute 60 minutes = 1 hou		nutes = 1 hour	24 hours = 1 day		365 days = 1 year	
28.	Units of mass	Metric units of mass	are m	illigrams, gran	ns, kilograr	ns and to	nnes	
26.	Units of mass	1000mg = 1g		1000g	ı = 1kg	10)00kg = 1 tonne	
20	Hatta of leavest.	Metric units of length	th are i	millimetres, ce	ntimetres, ı	metres an	d kilometres	
29.	Units of length	10mm = 1cm 100cm = 1m 1000m = 1k				1000m = 1km		
		Metric units of length are millimetres², centimetres², metres² and kilometres²						
30.	Units of area	1cm ² = 100mm ²			10	m display="block" 1 cm →	10 mm	
		. 2 2				cm Area = 10 mm × 10 mm = 100 mm ²		
31.	Units of volume	Metric units of ler	gth ar	e millimetres³,	centimetre	s³, metre	s³ and kilometres³	

		1cm ³ = 1000mm ³ 1m ³ = 100000cm ³		10 mm					
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Metric units of capacity are millilitres, centilitres and litres								
32.	Units of capacity	10 <i>ml</i> = 1 <i>cl</i>		1000 <i>ml</i> = 100 <i>cl</i> = 1/					
33.	Capacity and volume conversions	1cm ³ = 1 <i>ml</i>		1000cm ³ = 1/					
2D Shap	oes								
34.	- Square	Area = $l \times w$ or l^2 as length and wi	dth are equ	ual x					
35.		Perimeter = $l + l + l + l$ or	r 4 <i>l</i>	x					
36.	_ Rectangle	Area = $l \times w$	w						
37.		Perimeter = $l + l + w + w$ or	1						
38.	Parallelogram	Area = $b \times h$	height						
39.	Triangle	Area = $\frac{b \times h}{2}$ or $\frac{1}{2} \times b \times b$	h	height					
40.	Trapezium	Area = $\frac{a+b}{2} \times h$ or $\frac{1}{2} (a+b)$) × h	<u>←</u> a → h - - b →					
41.	Compound shape	To find the area, split up into simple sho area and add together. To find the perimeter, find any missing all the sides together.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
3D shapes: volume									

42.	Prism	Volume = area of cross section × length	A
43.	Cuboid	Volume = $area\ of\ cross\ section\ imes\ length$ Volume = $length\ imes\ width\ imes\ height$	h
44.	Triangular prism	Volume = $area$ of $cross$ $section \times length$ Volume = $\frac{1}{2} \times base \times height \times length$	h h