			Year 9 Mathematics Higher HT 1			
Definitions						
Integer	A whole numbers and the negative equivalents.					
Positive	Greater than zero.					
Negative	Less than zero.					
Decimal	A number with digits after the decimal point.					
Operations	Symbols describing how to combine numbers.					
	$x \rightarrow$ Multiply, $\quad \div \rightarrow$ Divide, $\quad+\rightarrow$ Add,			\rightarrow Subtract,		
Multiplications terms	Multiplicand: The number being multiplied. Multiplier: The number that we are multiplying by. Product: The result of the multiplication operation.					
Division terms	Dividend! The number being divided. Divisor: The number we are dividing by. Quotient: The result of the division operation.					\qquad
Inverse operations	The operation used to reverse the original operation.			+ and - are inverses		
				x and \div are inverses Square and square root are inverses		
				Cube and cube root are inverses		
Order of Operations	The order in which operations should be done.	$\begin{gathered} \text { B } \\ \text { I } \\ \text { DM } \\ \text { AS } \\ \hline \end{gathered}$		BracketsIndicesDivision \& MultiplicationAddition \& Subtraction		
\#	Not equal to.					
Inclusive	Includes the first and last numbers given.					
Index Form	A number written as a base to the power of something.					
Prefix	The first part of a word, sometimes separated from the rest of the word by a hyphen.					
Standard Form	A number written in the form: $A \times 10^{n}$, where A is between 1 and 10 .					
Scientific Notation	Another name for Standard Form.					
Surd	An method of writing non square or cube numbers as exact numbers in root form .		e.g. $\sqrt{4}$ is NOT a surd because $\sqrt{4}=2$ $\sqrt{7}$ IS a surd because it is between 2 and 3			
Fraction	Represents a proportion or part of a whole.					e.g. $\frac{4}{5}$
Numerator	The number or term on top of the fraction.					$\frac{\text { Numerator }}{\text { Denominator }}$
Denominator	The number or term on the bottom of the fraction.					
Rationalise the denominator	Eliminate a surd denominator in a fraction.					
1a. Calculations, checking and rounding (N2, N3, N5, N14, N15)						
i) subtract decimals	Use the column method making sure making sure the decimal points are vertically aligned				$\begin{aligned} 3.8-1.26 \end{aligned} \begin{array}{r} 3.810 \\ - \\ \hline 1.26 \\ \hline 2.54 \end{array}$	

ii)	Multiply decimals	Multiply the integers and correct place value	Calculate: $\mathbf{4 . 3 2 \times 2 0 . 8}$ Use: $432 \times 208=89856$ So: $4.32 \times 20.8=89.856$ $2 d p \quad 1 d p \quad 3 d p$
iii)	Divide decimals	Dividing a decimal by an integer: Use short division ensuring that a decimal point is placed vertically above the decimal point in the dividend.	$\begin{array}{r} 3.7 \\ 4 \longdiv { 1 4 . 8 } \end{array}$
		Division with a decimal remainder: add a decimal point and additional zero's after the dividend to allow you to continue the short division as above.	Calculate: $57 \div 8$ Use: $\begin{gathered} 07.125 \\ 8 \longdiv { 5 7 . 0 ^ { 2 } 0 ^ { 4 } 0 } \end{gathered}$
		Dividing by a decimal: Multiply dividend and divisor by $10,100,1000$ so that the divisor becomes an integer then complete short division as above. N.B. Do not place value after the calculation!	Calculate: $\mathbf{6 . 4 8 8 \div 0 . 8}$ $\times 10 \times 10$ Use: $64.88 \div 8=8.11$ So: $6.488 \div 0.8=\mathbf{8 . 1 1}$
iv)	Multiply any number between 0 and 1	Use the methods described above in: ii) Multiply decimals N.B. Value of the product will be smaller than the value of the multiplicand if the multiplier is between 0 and 1 and vice-versa.	And: $0.2 \times \mathbf{1 2}=\mathbf{6}$
	Divide any number between 0 and 1	Use the methods described above in: iii) Divide decimals N.B. Value of the quotient will be greater than the value of the dividend if the divisor is between 0 and 1 .	$12 \div 0.2=60$
v)	Use one calculation to find the answer to another	Given: $a \times b=c$ Then: $c \div b=a \text { and } c \div a=b$ Adjust place value if necessary.	$\text { If: } \begin{array}{r} \mathbf{1 9} \times \mathbf{2 4}=\mathbf{4 5 6} \\ 456 \div 24=19 \\ 456 \div 19=24 \\ 1.9 \times 24=45.6 \\ 456 \div 190=2.4 \\ 19 \times 240=4560 \\ \hline \end{array}$
vi)	Use the product rule for counting: multiple groups	There are \boldsymbol{n} different options available from group A and m different options available from group B. The number of possible combinations that can occur when choosing one option from Group A and one option from Group B is given by: $\boldsymbol{n} \times \boldsymbol{m}$	e.g. A restaurant serves 4 different starter and 5 different main courses. How many combinations of start and main course could you choose? $4 \times 5=30$
	Use the product rule for counting: one group with repeats	There are n possible options available from a single group and the same option can be selected multiple times. The number of possible combinations that can occur when choosing m options is given by: n^{m}	e.g. A combination lock has 3 wheels with the numbers 1 to 8 on each wheel. How many different combinations are possible? $8^{3}=512$
	Use the product rule for counting: one group without repeats	There are n possible options from a single group and each options can be selected once only. The number of possible outcomes that can occur when choosing m options is given by: $n \times(n-1) \times(n-2) \times \ldots \ldots . \times(n-m+1)$	e.g. 12 people run a marathon, how many combinations of gold, silver and bronze medal winners are there? $12 \times 11 \times 10=1320$

vii)	Round to a given number of decimal places	- Count the number of decimal places you need. - Look at the number to the right of that digit to decide if it rounds up or down. - 5 or more it rounds up, 4 or less it rounds down.		e.g. 36. 3486343 36.3\|486343 To 1 d.p. is 36.3 $36.34 \mid 86343$ To 2 d.p. is 36.35 $36.348 \mid 6343$ To 3 d.p. is 36.349
ii)	Round a large number to a given number of significant figures	- Count the number of digits you need from the left. - Look at the number to the right of that digit to decide if it rounds up or down. - 5 or more it rounds up, 4 or less it rounds down. - Replace remaining digits with zeros as place holders.		$\begin{aligned} & \text { e.g. } \mathbf{3 2 4 6 2 7 9 3 8} \\ & 3 \mid 24627938 \\ & \text { To } 1 \text { s.f. is } \\ & \mathbf{3 0 0 0 0 0 0 0 0} \\ & 32 \mid 4627938 \\ & \text { To } \mathbf{2} \text { s.f. is } \\ & \mathbf{3 2 0 0 0 0 0 0 0} \\ & 324 \mid 627938 \\ & \text { To } \mathbf{3} \text { s.f. is } \\ & \mathbf{3 2 5 0 0 0 0 0 0} \end{aligned}$
ix)	Round a small number to a given number of significant figures	- Zeros are not significant until after the first non-zero number. - Find the first non-zero and count the number of digits you need from there. - Look at the number to the right of that digit to decide if it should round up or down. - 5 or more it rounds up, 4 or less it rounds down.	down $\begin{gathered}9 \\ \left.\begin{array}{l}9 \\ 7 \\ 6 \\ 5\end{array} \right\rvert\, \text { up } \\ \begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\end{gathered}$	e.g. 0.0034792 To 1 s.f. is $\mathbf{0 . 0 0 3}$ $0.0034 \mid 792$ To 2 s.f. is $\mathbf{0 . 0 0 3 5}$ $0.00347 \mid 92$ To 3 s.f. is $\mathbf{0 . 0 0 3 4 8}$
x)	Estimating	- Round each number to 1 significant figure before doing any calculations. - It is acceptable to round one or more numbers in the calculation to a greater accuracy than 1 sig. fig. if this makes the calculation easier. - DO NOT round the answer!		e.g. Estimate: $\frac{3.91 \times 8789.8}{620.9 \times 0.492}$ $\begin{aligned} \frac{3.91 \times 8789.8}{620.9 \times 0.492} & \approx \frac{4 \times 9000}{600 \times 0.5} \\ & \approx \frac{3600}{300} \\ & \approx \mathbf{1 2 0} \end{aligned}$
1b. Indices, roots, reciprocals and hierarchy of operations (N2, N3, N6, N7, N14)				
$\begin{aligned} & X \\ & \text { i) } \end{aligned}$	Use index notation for positive powers of 10	- Count how many zero's there are after the 1 and write 10 to the power of this number. - Write a 1 followed by the same number of zero's as the power 10 is raised to.		e.g. $\mathbf{1 0}^{2}=100$
ii)	Use index notation for negative powers of 10	- Count how many zero's there are in front of the 1 and write 10 to the power of the negative of this number. - Use the positive of the power 10 is raised to and write a 1 with this number of zero's in front with a decimal point after the first.		e.g. 0.000 $0001=10^{-7}$

iii)	Recognise common powers	Recall that the positive power of a number tells us how many times to use that number in a multiplication.				$\begin{aligned} & 3 \times 3 \times 3 \times 3 \\ & 7 \times 7 \end{aligned}$
	Powers of 2	$2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{5}=32,2^{6}=\mathbf{6 4}, 2^{7}=128,2^{8}=\mathbf{2 5 6} .2^{9}=\mathbf{5 1 2}, 2^{10}=1024$				
	Powers of 3	$3^{1}=3,3^{2}=9,3^{3}=27,3^{4}=81,3^{5}=243$				
	Powers of 4	$4^{1}=4,4^{2}=16,4^{3}=64,4^{4}=256,4^{5}=1024$				
	Powers of 5	$5^{1}=5,5^{2}=25,5^{3}=125,5^{4}=625$				
iv)	Estimate roots of any given positive number	- Identify the square (or cube) numbers immediately above and below the number we are trying to find the square (or cube) root of. - The desired root must lie between the integer roots of the square numbers immediately above and below.			e.g. Between which two integers does $\sqrt{\mathbf{4 2}}$ lie? - Next square number is 49. - Previous square number is 36. - $\sqrt{\mathbf{3 6}}=6, \sqrt{49}=7$ - So: $\sqrt{42}$ lies between : $6 \text { \& } 7$	
v)	Find the value of calculations involving positive indices	Recall that a positive power of a number tells us how many times to use that number in a multiplication.			$\begin{aligned} & \text { e.g. } 3^{4}=3 \times 3 \times 3 \times 3 \\ & \text { e.g. } 7^{2}=7 \times 7 \end{aligned}$	
	Find the value of calculations involving negative indices	To calculate a negative power: - Calculate the equivalent positive power. - Then take the reciprocal.		$a^{-n}=\frac{1}{a^{n}}$		e.g. Calculate 4^{-3} - $4^{3}=64$ - $4^{-3}=\frac{1}{64}$
	Find the value of calculations involving fractional indices	The denominator of the fractional power gives the type of root to evaluate.		$a^{\frac{1}{n}}=\sqrt[n]{a}$		$\begin{aligned} & \text { e.g. } 64^{\frac{1}{2}}=\sqrt{64}= \\ & \text { e.g. } 125^{\frac{1}{3}}= \\ & \sqrt[3]{125}=5 \end{aligned}$
vi)	Use powers of 0 and 1	Anything to the power of $0=1$		$a^{0}=1$		e.g. $5^{0}=1$
		Anything to the power $1=$ itself		$a^{1}=a$		e.g. $5^{1}=5$
vii)	Use index laws to simplify or evaluate numerical expressions	Multiplication	- Add the powers	$a^{m} \times a^{n}=a^{m+n}$		$\begin{aligned} & \text { e.g. } 2^{2} \times 2^{3}= \\ & 2^{5}(=32) \end{aligned}$
		Division	- Subtract the powers	$a^{m} \div a^{n}=a^{m-n}$		$\begin{aligned} & \text { e.g. } 3^{9} \div 3^{4}= \\ & 3^{5}(=243) \end{aligned}$
		Brackets	- Multiply the powers	$\left(a^{m}\right)^{n}=a^{m n}$		e.g. $\left(7^{4}\right)^{3}=7^{12}$

1c. Factors, multiples and primes (N3, N4)

i)	Factors	A factor is a number that divides into another number	$\begin{aligned} & \text { e.g. factors of 6: } \\ & \qquad 1,2,3 \text { and } 6 \end{aligned}$	
ii)	Multiples	A multiple is a number from the times tables	e.g. multiples of 4:$4,8,12,16,20,$	
iii)	Prime number	A prime number is a number with exactly 2 factors		
		$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97$		
iv)	Product	The answer when two or more numbers are multiplied together.	e.g. Product of $3 \& 7$:$3 \times 7=\mathbf{2 1}$	
v)	Prime factor decomposition	Writing a number as a product of its prime factors	Either way, the result is:$2 \times 2 \times 3 \times 5 \text { or } 2^{2} \times 3 \times 5$	
vi)	Highest common factor (HCF)	The highest number that divides exactly into two or more numbers.		e.g. The HCF of 12 \& 8: 4
vii)	Lowest common multiple (LCM)	The smallest positive number that is a multiple of two or more numbers.		e.g. The LCM of 12 \& 8: 24

1d. Standard form (N9)

i)	Convert a small number to standard form	- Count the number of zero's in front of the first significant figure (including the one in front of the decimal point). - The power of ten is negative followed by this number.	$\begin{aligned} \text { e.g. } & 0.00000037 \\ =3.7 & \times 10^{-7} \end{aligned}$
ii)	Convert a large number into standard form	- Count the number of place value position there are after the first significant figure. - The power of ten is positive followed by this number.	$\begin{aligned} & \text { e.g. } 147100000000 \\ &= 1.47 \times 10^{11} \end{aligned}$
iii)	Converting to a small ordinary number	- Look at the digit after the negative in the power of 10 . - Write this may zero's in front of the first sig. fig. - Reposition the decimal place between the first and second zero.	$\begin{aligned} \text { e.g. } \quad 2.4 & \times 10^{-6} \\ = & 0.0000024 \end{aligned}$
iv)	Adding or subtracting numbers in standard form	- Convert the numbers to ordinary numbers. - Add. - Convert the sum to standard form.	$\begin{gathered} \text { e.g. }\left(\mathbf{2 . 3} \times \mathbf{1 0}^{4}\right)+\left(6.4 \times \mathbf{1 0}^{\mathbf{3}}\right) \\ =23000+6400 \\ =29400 \\ =2.94 \times \mathbf{1 0}^{4} \end{gathered}$

v)	Multiplying numbers in standard form	- Multiply the numbers between one and 10 at the front. - Use index law for multiplication for the powers of 10. - If necessary increase the power of ten by one to ensure the initial number is between 1 and 10.	$\text { e.g. } \begin{aligned} (\mathbf{4 . 5} & \left.\times \mathbf{1 0}^{\mathbf{3}}\right) \times\left(\mathbf{3} \times \mathbf{1 0}^{\mathbf{5}}\right) \\ & =13.5 \times 10^{3+5} \\ & =13.5 \times 10^{8} \\ & =\mathbf{1 . 3 5} \times \mathbf{1 0}^{\mathbf{9}} \end{aligned}$
vi)	Dividing numbers in standard form	- Divide the numbers between one and 10 at the front. - Use index law for division for the powers of 10. - If necessary decrease the power of ten by one to ensure the initial number is between 1 and 10.	$\text { e.g. } \begin{gathered} \left(\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{1 1}}\right) \div\left(5 \times 10^{13}\right) \\ =0.5 \times 10^{-2} \\ =5 \times 10^{-3} \end{gathered}$
1d. Surds (N8)			
i)	Multiply	$\sqrt{a} \times \sqrt{b}=\sqrt{a b}$ and $\sqrt{a} \times \sqrt{a}=a$	e.g. $\sqrt{2} \times \sqrt{3}=\sqrt{6}$ and $\sqrt{3} \times \sqrt{3}=3$
ii)	Divide	$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$	e.g. $\frac{\sqrt{6}}{\sqrt{2}}=\sqrt{\frac{6}{2}}=\sqrt{3}$
iii)	Add and subtract	$\sqrt{a}+\sqrt{b}$ cannot simplify	e.g. $\sqrt{3}+\sqrt{2}=\sqrt{3}+\sqrt{2}$
		But $\sqrt{a}+\sqrt{a}=2 \sqrt{a}$	e.g. $5 \sqrt{2}-2 \sqrt{2}=3 \sqrt{2}$
iv)	Simplify	$\sqrt{50}=\sqrt{25 \times 2}=\sqrt{25} \times \sqrt{2}=5 \sqrt{2}$	e.g. $\sqrt{50}+\sqrt{18}=5 \sqrt{2}+3 \sqrt{2}=8 \sqrt{2}$
v)	Rationalise the denominator	Multiply numerator and denominator (use equivalent fractions) by whatever will result in the denominator simplifying to an integer.	$\text { e.g. } \frac{1}{\sqrt{7}}=\frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{7}{\sqrt{7}}$
			e.g. $\frac{1}{5+\sqrt{2}}=\frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}}=\frac{5-\sqrt{2}}{3}$

Expanding double brackets

32. Everything in the first bracket must be multiplied by everything in the second
33.

Grid method	FOIL method			
$(x+4)(x+7)$	FIRST :	$(x+3)(x-4)$	gives	$x \times x=x^{2}$
$\times\|x\|+4$	JUTER:	$(x+3)(x-4)$	gives	$x \times(-4)=-4 x$
x x^{2} $4 x$ 7 7	INNER :	$(x+3)(x-4)$		$3 \times x=3 x$
+7 7×28	IN,			
$\begin{aligned} & =x^{2}+4 x+7 x+28 \\ & =x^{2}+11 x+28 \end{aligned}$	LAST :	$(x+3)(x-4)$		$3 \times(-4)=-12$

Factorising a quadratic expression

34.	Factorising a quadratic in the form of $a x^{2}+b x+c$	Multiply to 5 Factorise $x^{2}+5 x+6-$ Add to 6 2 and 3 add to 5 2 and 3 multiply to 6 $(x+2)(x+3)$ Check: $(x+2)(x+3)=x^{2}+5 x+6$
35.	Difference of two squares	A special type of quadratic which only has two terms.
		One term is subtracted from the other
		$\begin{aligned} & x^{2}-25=x^{2}-5^{2}=(x+5)(x-5) \\ & y^{2}-49=y^{2}-7^{2}=(y+7)(y-7) \\ & a^{2}-16=a^{2}-4^{2}=(a+4)(a-4) \end{aligned}$

Equations

36.

To solve equations we need to use inverse operations
37. What ever you do to one side of the equals sign you must do the same to the other

38.	One step	$\left.\left\|\begin{array}{cc} x+4 & =7 \\ (-4) & (-4) \\ x & =11 \end{array}\right\| \begin{array}{cc} x-5 & =12 \\ (+5) & (+5) \\ x & =17 \end{array} \right\rvert\,$		$\begin{aligned} & =18 \\ & (\div 3) \\ & =1 \end{aligned}\left\|\begin{array}{ccc} \frac{x}{4} & =6 \\ (\times 4) & (\times 4) \\ x & = & 24 \end{array}\right\|$
39.	Two step	Requires the use of two inverse operations		$\begin{gathered} 2 x-7=19 \\ 2 x=26 \\ x=13 \end{gathered}$
40.	With brackets	Expand the brackets first $\begin{gathered} 5(2 x+1)=35 \\ 10 x+5=35 \\ 10 x=30 \\ x=3 \end{gathered}$		OR if possible divide by the number outside of the bracket first $\begin{gathered} 4(2 x+4)=20 \\ 2 x+4=5 \\ 2 x=1 \\ x=\frac{1}{2} \end{gathered}$
41.	Unknowns on both sides	Start by eliminating the unknown from one the signs.		$\begin{gathered} 5 x+2=3 x-8 \\ 2 x+2=-8 \\ 2 x=-10 \\ x=-5 \end{gathered}$
42.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\begin{gathered} \frac{f}{5}+2=8 \\ \frac{f}{5}=6 \\ f=30 \end{gathered}$		If everything is part of the fraction then multiply by the denominator first. $\begin{gathered} \frac{f+2}{5}=8 \\ f+2=40 \\ f=38 \end{gathered}$

Changing the subject of a formula (rearranging)

Always use inverse operations to isolate the term you have been asked to make the subject
If the letter you want as the subject appears twice you will need to factorise

Make u the subject:
43.

$$
\begin{gathered}
v=u+a t \\
(-\boldsymbol{a t}) \\
v-a t=u \\
\quad \text { So } \\
u=v-a t
\end{gathered}
$$

Make u the subject:

$$
v^{2}=u^{2}+2 a s
$$

$$
(-2 a s)
$$

$$
v^{2}-2 a s=u^{2}
$$

$$
\sqrt{v^{2}-2 a s}=u
$$

$$
u=\sqrt{\text { So }} \begin{aligned}
& v^{2}-2 a s
\end{aligned}
$$

Make m the subject:

$$
\begin{gathered}
I=m v-m u \\
(\text { Factorise }) \\
I=m(v-u) \\
(\div(\boldsymbol{v}-\boldsymbol{u})) \\
\frac{I}{v-u}=m \\
\text { So } \\
m=\frac{I}{v-u}
\end{gathered}
$$

Iteration

44.	Iteration	The act of repeating a process to generate a sequence of outcomes or with the aim of of appraoching a desired result e.g. finding a solution to an equation
45.	Iterative sequence	The relationship between consecutive terms
46.	Roots	Solutions to an equation
47.	Change of sign	Two values with a root between them
Sequences		
48.	Sequence	An order pattern of numbers or diagrams
49.	Term	One of the numbers or diagrams in a sequence
50.	Term to term rule	The rule for moving from one term to the next in a sequence
51.	Formula	A rule written to describe a realtionship between twp quantities
52.	Arithmetic sequence	A sequence where the term to term rule is to addd or subtract the same amount each time
53.	Quadratic sequence	A sequence where the term to term rule is changing by the same amount each time
		The second difference is a constant amount.
54.	Geometric sequence	A sequence where the term to term rule is to multiply by the same amount each time
55.	Common ratio	The value a geometric sequence is multiplied by from one term to the next
		Denoted by the letter r
56.	Series	The sum of the terms in a sequence
57.	Position to term rule	The rule for finding any value of a sequence
58.	nth term rule for an arithmetic sequence	The rule to find any term in a sequence of numbers
		- Find the common difference between the terms - This becomes you coefficient of \mathbf{n} (this is the times table the sequenc is linked to) - The number you need to add or subtract to get to the second term becomes the second term in the nth term rule
59.	Nth term for a quadratic sequence	- Find the first difference - Find the second difference - Halve the second difference and multiply by n^{2} to gain a new sequence of $a n^{2}$ - Generate the first few term sof this seuence then subtract from the original sequence

Definitions

1.	Qualitative Data	Non-numerical data	i.e. Colour of car
2.	Quantitative Data	Numerical data	i.e. House number
3.	Discrete Data	Numerical data that CANNOT be shown in decimals	i.e. Number of children in a class
4.	Continuous Data	Numerical data that CAN be shown in decimals	i.e. The heights of children in a class
5.	Grouped Data	Numerical data given in intervals	i.e. Year group ranges: Year 7-9 Year 10-11 Year 12-13

Averages

6.	Measure of location	A single value that describes a position in a data set
7.	Measure of central tendency	A single value that describes the centre of the data
8.	Measure of spread	A measure of how spread out the data is
		Also known as 'measures or dispersion' or 'measures of variation'
		Two simple measures of spread are range and interquartile range (IQR)
9.	Mode (modal class)	The value that occurs most often
10.	Range	The difference between the largest and smallest values in the data set
11.	Median	The middle value when the data values are put in ascending order
12.	Mean	Found by adding all number sin the data set and dividing by the number of values in the set
		Can be calculate using the formula Where:\bar{x} is the mean Σx is the sum of the data values n n \bar{x} is the number of data values
		Mean from a frequency table $\bar{x}=\frac{\sum f x}{\sum f}$ Where $\Sigma f x$ is the sum of the products of data values and their frequencies and Σf is the sum of the frequencies

Advantages and disadvantages of averages
13.

Average	Advantages	Disadvantages
Mean	Every value makes a difference	Affected by extreme values
Median	Not affected by extreme values	May not change even if a data value changes
Mode	Easy to find; not affected by extreme values; can be used for non-numerical data	There may not be a mode

Averages from frequency tables

14.	Modal class	The class with the highest frequency				
15.	Median	If the total frequency is n, then the median lies in the class with the $\frac{n+1}{2}$ th value in it.				
16.	Mean from a frequency table $\begin{aligned} & \text { Times } \longrightarrow \\ & \text { Add } \downarrow \downarrow \\ & \text { Divide } \longleftarrow \end{aligned}$				dbags	$\text { Mean }=\frac{40}{16}=2.5$
17.	Estimated mean from a grouped frequency table	Class Interal 140 $\leq h<150$ 150 $\leq h<160$ 160 $\leq h<170$ 170 $\leq h<180$	Mid-point 145 155 165 175 Totals	Frequency 6 16 21 8 $\mathbf{5 1}$	$\begin{aligned} & \text { Mid-point } \times \text { Frequency y } \\ & 145 \times 6=870 \\ & 155 \times 16=2480 \\ & 165 \times 21=3465 \\ & 175 \times 8=1400 \\ & 8215 \end{aligned}$	$\begin{aligned} \text { Mean } & =8215 \div 51 \\ & =161.07843 \ldots \\ & =161.08(2 \mathrm{dp}) \end{aligned}$
18.	Estimate of range from grouped frequency table	The maxiumum possible value minus the smallest possible value.				
Averages from charts/graphs						

19.	Bar chart	A chart to display discrete data where the height of the bar shows the frequency. Worker absences	Mean: $23 \div 10=2.3$ Median: 2.5 Mode : 3 Range: 4-1 = 3
20.	Pictogram	A chart that uses pictures to represent quantities. Must include a key.	Mean: $95 \div 4=23.75$ Median: 22.5 Range: 30
21.	Stem and leaf diagram	 Key: $6 \mid 1=61$ hours A diagram that shows groups of data arranged by place value. 'Leaves' should be in order. Must have a key.	Mean: 385푸 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31
22.	Back to back stem and leaf	Compares two sets of results. Must have a key.	Set A Mean: 356 $\div 18=19.8$ Median: 20 Mode: 22 Range: 38-5 = 33 Set B Mean: 385 17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31

Representing data

23.	Two-Way Tables		Boys	Girls	TOTAL	Two-way tables are a way of sorting data with two categories.
		Pet	9	4	13	
		No Pet	2	5	7	
		TOTAL	11	9	20	

24.	Pictograms		Used to show frequencies Pictures and images used to represent frequency A key at the bottom helps you interpret the diagram
25.	Bar Charts		Frequency on the vertical axis, and categories along the horizontal axis. Used to compare frequencies
26.	Composite Bar Chart		Frequency on the vertical axis, and categories along the horizontal axis. Two shades used to show difference in proportion between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
27.	Comparative Bar Chart		Frequency on the vertical axis, and categories along the horizontal axis. Bars are next to each other and used to show difference in frequency between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
28.	Line Graph		A line graph is used to show a change or relationship between two variables. Once the points are plotted, they are joined with straight lines.

29.	Time-Series		A time-series graph plots frequencies (vertical) axis against time (horizontal). It is used to spot trends over time. Time could be: weeks, months, quarters (3 months), years			
30.	Stem \& Leaf Diagrams:		A stem and leaf diagram shows numbers in a table format. It can be a useful way to organise data to find the median, mode and range of a set of data. Only one digit is allowed to be a 'leaf' There should be a key to help you interpret the diagram			
		A pie chart is a chart represented by a circle. It shows the proportion of each group at a glance.				
31.	Pie Charts	People travelling in a vehicle 1 person 120 2 people 40 3 people 13 4 people 5 5 or more 2 Total 180	Frequency 120 40 13 5 2 2 180	$\frac{120}{180} \times 360^{\circ}$ $\frac{40}{180} \times 360^{\circ}$ $\frac{13}{180} \times 360^{\circ}$ $\frac{5}{180} \times 360^{\circ}$ $\frac{2}{180} \times 360^{\circ}$	(engle $\begin{gathered}\text { Angl } \\ \text { 2400 }\end{gathered}$	
Scatter Graphs						
32.	Outliers			Outliers don't follow the trend		

33.	Line of Best Fit		A sensible straight line that goes as centrally as possible through the points plotted. It should also follow the same steepness of the crosses.	
34.	Interpolate		Using a line of best our range For example: To est are sold with 3 mm - Find where 3 mm - Draw a line by then down.	to estimate data WITHIN ate how many umbrellas . of rainfall is on the graph. ng across from 3 mm and
35.	Extrapolate		Continuing a line of BEYOND our range interpolation) For example: To est are sold with 10 mm - Continue the line - Find where 10 m - Draw a line by then down.	st fit to estimate data not as reliable as ate how many umbrellas in. f best fit. of rainfall is on the graph. ing across from 10 mm and
36.	Positive Correlation		BOTH variables increase with each other	i.e. Ice creams sold us Temperature
37.	Negative Correlation		ONE variable increases as the other decreases	i.e. Coats sold us temperature

38.	No Correlation	NO relationship between variables i.e. IQ and House Number
39.	Causation	If one variable causes a change in the other. - i.e. an increase temperature WILL cause an increase ice cream sales - i.e. the number of bee stings WILL NOT cause an increase in ice cream sales (although both will increase in hot weather)

Fractions

		- The remainder becomes the numerator of the fraction part with the same denominator.	
17.	Convert mixed numbers to improper fractions	- Multiply the denominator by the whole number part. - Add the numerator to this. - Put the answer to this back over the denominator	$7 \frac{1}{6}=\frac{6 \times 7+1}{6}=\frac{43}{6}$
18.	Adding and subtracting mixed numbers	- Convert mixed numbers to impr - Transform both fractions so they - Add or subtract the numerators Convert back to mixed number	per fractions ave the same denominator applicable
19.	Multiplying mixed numbers	- Convert mixed numbers to impro - Multiply numerators and multip Convert back to mixed number	per fractions the denominators applicable
20.	Dividing mixed numbers	- Convert mixed numbers to impr - Flip the second fraction (find the - Change the divide sign to a multi - Multiply the fractions Convert back to mixed number	per fractions eciprocal) oly applicable
Percentages			
21.	Percentage	Means 'out of 100'	
22.	Multiplier	A decimal you multiply by to represent a percentage	
		To use a multiplier to find a percentage, divide your percentage by 100, then multiply the amount by this value.	
23.	Percentage increase	Calculate the percentage and add onto the original	
		Or use a multiplier	$\text { amount } \times \frac{100+\% \text { increase }}{100}$
24.	Percentage decrease	Calculate the percentage and subtract from the original	
		Or use a multiplier	$\text { amount } \times \frac{100-\% \text { increase }}{100}$
25.	Percentage change	$\frac{\text { Change }}{\text { Original }} \times 100$	
26.	Express one number as a percentage of another	$\frac{\text { Number } 1}{\text { Number } 2} \times 100$	
27.	Reverse percentage	Use when asked to find the priginal amount after a percentage increase or decrease.	

		$\begin{aligned} & \text { Original Value } x \text { Multiplier }=\text { New Value } \\ & \text { Original Value }=\frac{\text { New Value }}{\text { Multiplier }} \end{aligned}$	
28.	Interest	A fee paid for borrowing money or money earnt through investing.	
29.	Simple interest	Interest that is calculated as a percentage of the original	$\text { I = Prt }$ I - Interest P - Original amount r - interest rate t- time
30.	Compound interest	When interest is calculate on the original amount and any previous interest OR $\text { Original } \times \text { Multiplier }{ }^{\text {time }}$	$\begin{aligned} & \qquad P\left(\mathbf{1}+\frac{\boldsymbol{R}}{\mathbf{1 0 0}}\right)^{n} \\ & \mathrm{P} \text { - Original amount } \\ & \mathrm{R} \text { - Interest rate } \\ & \mathrm{n} \text { - the number of interest periods (e.g. yrs) } \end{aligned}$
31.	Tax	A financial charge placed on sales or savings by the government e.g. VAT	
32.	Loss	Income minus all expenses, resulting in a negative value	
33.	Profit	Income minus all expenses, resulting in a positive value	
34.	Depreciation	A reduction in the value of a product over time	
35.	Annual	Means yearly	
36.	Per annum	Means per year	
37.	Salary	A fixed regular payment, often paid monthly	
FDP Conversions			
38.	Percentage to decimal	Divide by 100	
39.	Decimal to percentage	Multiply by 100	
40.	Fraction to percentage	Find an equivalent fraction with 100 as the denominator	
41.	Percentage to fraction	Write as a fraction over 100 then simplify	
42.	Fraction to decimal	Carry out division or convert to a percentage first	

43.	Decimal to fraction			Use place value to find the denominator and simplify or convert to a percentage first						
Basics to memorise										
44.	Fraction	$\frac{1}{100}$	$\frac{1}{10}$	$\frac{1}{8}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$
	Decimal	0.01	0.1	0.125	0.2	0.25	$0 . \dot{3}$	0.5	$0 . \dot{6}$	0.75
	Percentage	1\%	10\%	12.5\%	20\%	25\%	33.3\%	50\%	66.7\%	75\%
Terminating and recurring decimals										
45.	Terminating decimal	Decimals that can be written exactly					e.g. 0.38			
46.	Recurring decimal	Decimals where one digit or groups of digits are repeated					$\begin{aligned} & \text { e.g. } 0 . \dot{7}=0.7777 . . . \\ & 0 . \dot{8} 5 \dot{3}=0.853853 . . \end{aligned}$			
47.	Converting a recurring decimal to a fraction		1. Let $\mathrm{x}=$ recurring decimal. 2. Let $\mathrm{n}=$ the number of recurring digits. 3. Multiply the recurring decimal by 10^{n}. 4. Subtract (1) from (3) to eliminate the recurring part. 5. Solve for x , expressing your answer as a fraction in its simplest form.							
			$\begin{aligned} & 0.7 \quad \text { (one recurring digit) } \\ x & =0.7777 \ldots \\ 10 x & =7.777 \ldots \\ 10 x-x & =7 \\ 9 x & =7 \\ x & =\frac{7}{9} \end{aligned}$				1.256 (two recurring digits)$\begin{aligned} x & =1.25656 \ldots \\ 100 x & =125.6565 \ldots \\ 100 x-x & =125.6565 \ldots-1.256565 \ldots \\ 99 x & =124.4 \\ x & =\frac{124.4}{99}=\frac{1244}{990}=\frac{622}{495} \end{aligned}$			
48.	Converting a fraction to recurring decimals		Carry out the neccesary division using a calcualtor or bus stop division				$\begin{gathered} \dot{7} \\ 7 \\ 7 \end{gathered}$	$\begin{aligned} & \text { means } 4+ \\ & 57 \\ & 57 \\ & .{ }^{4} 0^{5} 0^{1} \end{aligned}$	$\begin{aligned} & 4285 \\ & 0^{2} 0^{6} 0^{4} 0 \end{aligned}$	
Ratio and Proportion										
49.	Ratio		A relationship between two or more quantities							
50.	Unit ratio		Used to compare ratios, one of the parts is 1							
			The only time it is permissible to have a decimal in a ratio							

31.	Angles around a point add up to 360 ${ }^{\circ}$	
32.	Vertically opposite angles are equal	
33.	Angles in a triangle add to 180 ${ }^{\circ}$	$\cdots{ }^{\circ}$
		$a^{\circ}+b^{+}+c^{+}=180$
34.	Angles in a quadrilateral add up to 360°	
Angles on parallel lines		
35.	Alternate angles are equal	
36.	Corresponding angles are equal	
37.	Co-interior angles add up to 180°	
Angles in polygons		
38.	Interior and exterior angles add to give 180°	
39.	Sum of interior angles	For a ' n ' sided polygon Sum of interior angles $=180 \times(n-2)$
40.	Size of one interior angle	For a ' n ' sided polygon $\text { Interior angle }=\frac{180 \times(n-2)}{n}$
41.	Sum of exterior angles	For all polygons, sum of exterior angles $=360$ -
42.	Regular polygons	Exterior angle $=360 \div$ number of sides
		Number of sides $=360 \div$ exterior angle

Trigonometry - Right angled - SOH CAH TOA

49.	Trigonometry	The ratios between the sides and angles of triangles	
50.	Labelling the triangle	θ is the angle involved	
	H is the hypotenuse		

\sum_{i}^{5}

Graphs - definitions

Coordinate geometry

15.	Gradient	The steepness of a graph $\begin{aligned} \text { Gradient }= & \frac{\text { change in } y}{\text { change in } x} \\ & =\frac{\text { rise }}{\text { run }} \end{aligned}$	
16.	Gradient between two points	If $\mathrm{A}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ The gradient of line $A B=$ $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	
17.	Parallel lines	Have the same gradients	
18.	Perpendicular	Lines that are at right angles to one another	If a line has a gradient of m, the gradient of a line perpendicular to it will have a gradient of $-\frac{1}{m}$
		Lines that are perpendicular are the negative reciprocal of one another	
		If two lines are perpendicular, the product of their two gradients is $\mathbf{- 1}$	
19.	Mid-point	The coordinate half way between two point	If $\mathrm{A}=\left(x_{1}, y_{1}\right)$ and $\mathrm{B}=\left(x_{2}, y_{2}\right)$ the mid-point is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
20.	Distance between two points	Distance (d) between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $d=\sqrt{\left(x_{2}-x_{1}\right.}$) can be found using the formula $)^{2}+\left(y_{2}-y_{1}\right)^{2}$

Real life graphs

21.	Steady speed	Travelling the same distance each minute
22.	Velocity	Speed in a particular direction
23.	Rate of change	Shows how a variable changes over time
24.	Acceleration	How fast velocity changes; measured in $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{km} / \mathrm{s}^{2}$ etc

Distance - Time graphs

25.	Represent a journey	 A = steady speed, B = no movement, steady speed back to start
26.	Vertical axis represents the distance from the starting point	
27.	Horizontal axis represents the time taken	
28.	Straight lines mean constant speed	
29.	Horizontal lines mean no movement	
30..	Gradient = speed	
31.	$\text { Average speed }==\frac{\text { total distance }}{\text { total time }}$	

Velocity - Time graphs

32.	Represents the speed at given times	A = steady acceleration, $B=$ constant speed, $\mathrm{C}=$ steady deceleration back to a stop
33.	Straight lines mean constant acceleration or deceleration	
34.	Horizontal change means no change in velocity e.g. constant speed	
35.	Positive gradient-= acceleration	
36.	Negative gradient = deceleration	
37.	Distance travelled = area under the graph	

Quadratic, cubic and other graphs

38.	Quadratic expression	An expression where the highest index is 2	e.g. $2 x^{2}+2 x+2$
39.	Roots	Solutions to a quadratic equation/function $a x^{2}+b x+c=0$	
		The x values where the graph crosses the x axis	
		A quadratic can have 0,1 or 2 roots	
40.	Quadratic graph	Curved shaped called a parabola	
		A positive x^{2} will give a ' u ' shape	
		A negative x^{2} will give a ' n ' shape	

41.	Turning points	The point where a curve turns in the opposite direction	
		Can be called a minimum or maxim	
42.	Cubic	General form of $a x^{3}+b x^{2}+c x+d=0$ Can have 1, 2 or 3 roots	
43.	Asymptote	A line a graph will get very close to but will not touch	
44.	Reciprocal	General form of $y=\frac{k}{x}$ where k is a number Has two asymptotes	
45.	Circle	With centre $(0,0)$ and radius, r $x^{2}+y^{2}=r^{2}$	$. x^{2}+y^{2}=16(r=\sqrt{16}=4)$

2D and 3D shapes: definitions

1.	Dimension	The size of something in a particular direction e.g. height, depth, length, width	
2.	2D shape	A shape that has length/height and a width but no depth	
3.	3D shape	A shape that depth as well as length/height and width	
4.	Polygon	A 2D shape with straight lines only	
5.	Regular polygon	A polygon where:	
		All sides are the same length All angles are the same size	
6.	Compound shape	A shape made up of two or more simple shapes	
7.	Rectilinear shape	A shape where all of its sides meet at right angles	
8.	Perimeter	The distance around the outside of a 2D shape	
9.	Area	The space inside a 2D shape	
10.	Surface area	The total area of all the faces of a 3D shape	
11.	Volume	The space inside a 3D shape	
12.	Capacity	The amount of fluid a 3D object can hold	
13.	S.I. Units	Standard units of measurement used by scientists across the world	
14.	Metric units	Standard units of measurement that vary by powers of 10	
15.	Imperial units	Older units of measurement, some of which are still common e.g. miles, gallons	
16.	Cross section	The shape we get when cutting straight through a 3D shape	
17.	Prism	A 3D shape that has a constant cross section through its length	
18.	Pyramid	A 3D shape with a polygon as its base and triangular sides that meet at the top	
19.	Cylinder	A prism with two circular ends connected by a curved surface	\cdots

		$1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3} \quad$	
32.	Units of capacity	Metric units of capacity are millilitres, centilitres and litres	
			$1000 \mathrm{~m} /=100 \mathrm{cl}=1 /$
33.	Capacity and volume conversions	$1 \mathrm{~cm}^{3}=1 \mathrm{ml}$	$1000 \mathrm{~cm}^{3}=1 /$
2D Shapes			
34.	Square	Area $=l \times w$ or l^{2} as length and width are equal	x
35.		Perimeter $=l+l+l+l$ or $4 l$	
36.	Rectangle	Area $=l \times w$	
37.		Perimeter $=l+l+w+w$ or $2 l+2 w$	
38.	Parallelogram	Area $=b \times h$	
39.	Triangle	$\text { Area }=\frac{b \times h}{2} \text { or } \frac{1}{2} \times b \times h$	
40.	Trapezium	$\text { Area }=\frac{a+b}{2} \times h \text { or } \frac{1}{2}(a+b) \times h$	
41.	Compound shape	To find the area, split up into simple shapes, find each area and add together. To find the perimeter, find any missing sides than add all the sides together.	

Circles

42.	Diameter	A straight line from edge to edge passing through the centre	
		Double the size of the radius	
43.	Radius	A straight line from the centre to the edge	
		Half the size of the diameter	
44.	Radii	The plural of radius	
45.	Circumference	Distance around the outside of the circle	
46.	Arc	Part of the circumference	
47.	Chord	A line within a circle where each end touches the edge	
48.	Sector	The region created by two radii and an arc	
49.	Segment	The region created by a chord and an arc	
50.	Tangent	A line outside the circle which only touches the circumference at one point	
51.	Semi -circle	Half a full circle	

Area and circumference of circles formulae

52.

$\mathrm{Pi}(\pi)$

Constant ratio linking the circumference and diameter of a circle 3.14159265...

53.	Circumference of a circle	$C=\pi d$	Alternatively, using relationship between r and d $C=2 \pi r$
54.	Arc length	$\frac{x}{360} \times \pi d$	Where x is the angle at the centre
55.	Perimeter of a sector	$\left(\frac{x}{360} \times \pi d\right)+2 r$	This represents the arc length plus the two radii
56.	Area of a circle	$A=\pi r^{2}$	
57.	Area of a sector	$\frac{x}{360} \times \pi r^{2}$	

3D shapes: volume

		$\begin{aligned} & \text { Total surface area } \\ & \qquad=\pi r^{2}+\pi r l \end{aligned}$	
66.	Volume of a sphere	$V=\frac{4}{3} \times \pi r^{3}$	
67.	Surface area of a sphere	Total surface area $=4 \pi r^{2}$	
68.	Volume of a frustum	Find the volume of the whole cones and subtract the volume of the smaller cone to get the volume of the frustum	

Accuracy and Bounds

69.	Integer	A whole number and the negative equivalents.		
70.	Rounding	Changing a number to a simpler, easy to use value		
71.	Round to a given number of decimal places	- Count the number of decimal places you need. - Look at the number to the right of that digit to decide if it rounds up or down. - 5 or more it rounds up, 4 or less it rounds down.	down $\begin{array}{r}9 \\ 9 \\ 7 \\ 6 \\ 5 \\ \hline\end{array} \begin{gathered}4 \\ 3 \\ 3 \\ 1\end{gathered}$	e.g. 36. 3486343 36.3\|486343 To 1 d.p. is 36.3 $36.34 \mid 86343$ To 2 d.p. is $\mathbf{3 6 . ~} 35$ 36.348\|6343 To 3 d.p. is 36.349
72	Round a large number to a given number of significant figures	- Count the number of digits you need from the left. - Look at the number to the right of that digit to decide if it rounds up or down. - 5 or more it rounds up, 4 or less it rounds down. - Replace remaining digits with zeros as place holders.		e.g. $\mathbf{3 2 4} \mathbf{6 2 7 9 3 8}$ $3 \mid 24627938$ To 1 s.f. is $\mathbf{3 0 0 0 0 0 0 0 0}$ $32 \mid 4627938$ To 2 s.f. is $\mathbf{3 2 0 0 0 0 0 0 0}$ $324 \mid 627938$ To 3 s.f. is $\mathbf{3 2 5 0 0 0 0 0 0}$
73.	Round a small number to a given number of significant figures	- Zeros are not significant until after the first non-zero number. - Find the first non-zero and count the number of digits you need from there. - Look at the number to the right of that digit to decide if it should round up or down. - 5 or more it rounds up, 4 or less it rounds down.		$\begin{aligned} & \text { e.g. } \mathbf{0 . 0 0 3 4 7 9 2} \\ & 0.003 \mid 4792 \end{aligned}$ To 1 s.f. is $\mathbf{0 . 0 0 3}$ $0.0034 \mid 792$ To $\mathbf{2}$ s.f. is $\mathbf{0 . 0 0 3 5}$ $0.00347 \mid 92$ To $\mathbf{3}$ s.f. is $\mathbf{0 . 0 0 3 4 8}$
74.	Estimating	- Round each number to 1 significant figure before doing any calculations. - It is acceptable to round one or more numbers in the calculation to a greater accuracy than 1 sig. fig. if this makes the calculation easier. - DO NOT round the answer!		e.g. Estimate: $\frac{3.91 \times 8789.8}{620.9 \times 0.492}$ $\begin{aligned} \frac{3.91 \times 8789.8}{620.9 \times 0.492} & \approx \frac{4 \times 9000}{600 \times 0.5} \\ & \approx \frac{3600}{300} \\ & \approx \mathbf{1 2 0} \end{aligned}$
75.	Truncation	Approximating a number by ignoring all decimal points after a certain point without rounding		e.g. 5.6 would be 5 when truncated
76.	Error interval	Measurements measured to the nearest unit may be up to half a unit smaller or larger than the rounded value		e.g. If 5.6 is rounded correct to the nearest 1dp then the interval is $5.55 \leq x<5.65$
77.	Upper bound	The upper bound is half a unit greater than the rounded number		e.g. the upper bound of 5.6 when measured to the nearest 1dp is 5.65
78.	Lower Bound	The lower bound is half a unit less than the rounded number		e.g. the lower bound of 5.6 when measured to the nearest 1dp is 5.55

79.	The accuracy when both the upper and lower bound are rounded by the same amount and give the same value		
	Appropriate accuracy	e.g. If UB $=12.3512$ and LB $=12.3475$ To 1dp: UB $=12.4$ and LB- 12.3 To 2dp: UB $=12.35$ and LB -12.35 To 3dp: UB $=12.351$ and LB $=12.348$	Here the appropriate accuracy is 2 dp

				Year 9 Mathematics Higher HT 6	
Transformations - definitions					
1.	Transformation	Changing a 2D shape in some way.			
		Rotation	Reflection	Translation	Enlargement
2.	Object	The name given to a shape before a transformation has occurred.			
3.	Image	The name given to a shape after a transformation has occurred			
4.	Rotation	A circular movement about a fixed point			
5.	Centre of rotation	The fixed point that the shape has been rotated about			
		Written as a coordinate (x, y)			
6.	Direction	Clockwise or anticlockwise			
7.	Reflection	An image as it would be seen in a mirror			
8.	Line of reflection	The "mirror line" used to perform reflections.			
		Written using algebraic notation e.g. $y=3, x=-2, y=x$ or x / y axis			
9.	Translation	The movement of a shape without rotating or flipping it			
10.	Column vector	Notation used	t translations	$\left(\frac{x}{y}\right)$	
		x is the horizont	ent		
		y is the vertical			
11.	Resultant vector	The vector that moves the shape to its final position after more than one translation			
12.	Enlargement	A change in size of a shape (can be bigger or smaller)			
13.	Scale factor	The proportions by which the dimensions of an object will increase/decrease by			
		If fractional then the image will be smaller than the object			
14.	Negative scale factor	The image will be on the opposite side of the centre of enlargement			
15.	Centre of enlargement	A fixed point to enlarge an object from			
		Written as a coordinate (x, y)			
16.	Single transformation	Where the object is only transformed once			
17.	Combination	Where the object is transformed multiple times			
18.	Origin	The point (0,0); where the x and y axis intersect			
19.	Similar	Same shape but different sizes			

		e.g. similar shapes are enlargements of one another	
20.	Congruent	Shapes that are the same shape and size	
21.	Invariant	A property that does not change after a transformation	
22.	Invariant point	A point that does not change after a transformation	
23.	Describe	Use key words to accurately state what has happened to an object to make the resulting image	
Transformations			
	Rotation	To carry out you need to: 1. Draw object on tracing paper 2. Place pencil on 'centre of rotation' and carry out the motion 3. Draw your image on the grid	To describe you need to write: a) "rotation" b) angle of rotation c) direction of rotation d) centre of rotation
	Reflection	To carry out you need to: 1. If required draw the 'line of reflection' 2. Count squares from object to line and repeat the other side of the line for all corners of the object 3. Join points up to create the image	To describe you need to write: a) "reflection" b) the equation of the line of reflection
	Translation	To carry out you need to: 1. Use vector notation to work out the horizontal and vertical movement 2. Count squares to carry out movement on all corners of the object 3. Join up points to create the image	To describe you need to write: a) "translation" b) the column vector
	Enlargement	To carry out you need to: 1. If required cross the coordinate that is the centre of enlargement 2. For each corner count from the line of reflection to the object 3. Multiply this movement by the required scale factor 4. Draw new corners from the centre of enlargement with new	To describe you need to write: a) "enlargement" b) the scale factor c) the centre of enlargement

		horizontal and vertical movement 5. Join up points to create image	

2D shapes and 3D solids - definitions

1.	Face	A flat surface of a 3D shape
2.	Edge	A line segment where two faces meet
3.	Vertex	A point where two or more edges meet
4.	Vertices	The plural of vertex
5.	Dimension	The size of something in a particular directions e.g. length, width, height, diameter, depth
6.	Plane	A flat 2D surface
7.	Plane of symmetry	When a solid can be cut exactly in half and a part on one side of the plane is an exact reflection of the part on the other side of the plane
8.	Prism	A 3D shape with a uniform cross section
9.	Pyramid	A 3D shape with a polygon as a base and triangular sides that meet at the top
10.	Arc	A section from the circumference (outside) of a circle
11.	Sector	A region of a circle bound by two radii and an arc
12.	Congruent	Exactly the same shape and size e.g. identical
13.	Regular	A shape where all the sides and angles are the same
Plans		

Plans and elevations

20.	Sketch	An approximate drawing of an object	
21.	Scale	A ratio that shows the relationship between a length on a drawing/map and the actual length	
Constructions and loci			
22.	Construct	Draw accurately using a ruler and a pair of compasses.	
	Construction	Lines or arcs drawn as part of working out	
		They must not be rubbed out as they show the working	
24.	Equidistant	The same distance from each other or in relation to other things	
25.	Bisect	Cut in half	
26.	Perpendicular	At a 90 degree angle (right angle)	
27.	Perpendicular bisector	A line that cuts another in half at a right angle	
28.	Angle bisector	A line that cuts an angle exactly in half	
29.	Locus	The set of all points that fulfil a certain rule	
		Often drawn as a continuous path	
30.	Loci	The plural of locus	
31.	Region	An area bounded by a loci	
Loci			
32.	Circle	Locus of points that are a fixed distance from a fixed point	
33.	Parallel line	Locus of points a fixed distance from a fixed line	
34.	Perpendicular bisector	The line that cuts another in half at a right angle	i-m

