

D (: :::							
Definiti	ons						
Integer		A whole numbers and the negat	<u>ive equivalen</u>	ıts.			
Positive		Greater than zero.					
Negative	9	Less than zero.					
Decimal		A number with digits after the d					
Operatio	ons	Symbols describing how to combine numbers. $\times \to \text{Multiply}, \div \to \text{Divide}, + \to \text{Add}, - \to \text{Subtract},$					
	A Multiply, Divide, 1 Add, 7		, Justiac				
Multiplic	ations terms	Multiplicand: The number being Multiplier: The number that we a Product: The result of the multip	are multiplyir	- •	2	$\begin{array}{c} \begin{array}{c} \text{multiplicand} \\ \times 3 = 6 \\ \\ \text{lier} \end{array}$	
Division t	terms	Dividend: The number being a Divisor: The number we are di Quotient: The result of the div operation.	ividing by.	Divid ↓ 40 Diviso	÷ 8 = 5	$\begin{array}{c c} & & 6 \leftarrow \text{ quotient} \\ \hline 4 \ \hline) \ 24 \leftarrow \text{ dividend} \\ \\ \text{nt} & \\ \\ \text{divisor} \end{array}$	
					+ and - are in	iverses	
Inuorso	perations	The operation used to reverse the original operation.		$ imes$ and \div are inverses			
iliveise o	perations			Square and square root are inverses			
					Cube and cub	e root are inverses	
Order of	Operations		В			Brackets	
		The order in which operations			Indices		
		should be done.	DM			n & Multiplication	
		AS		Addition	on & Subtraction		
	≠	Not equal to.					
Inclusive		Includes the first and last numbe	rs given.		_		
Index Fo	rm	A number written as a base to the something.	ne power of		Base 2	7 Power Index	
Prefix		The first part of a word, sometimes separated from the rest of the word by a hyphen.					
Standard	d Form	A number written in the form: $A \times 10^n$, where A is between 1 and 10.					
Scientific	Notation	Another name for Standard For					
Surd		An method of writing non square numbers as exact numbers in roc		_	_	For surd because $\sqrt{4} = 2$ it is between 2 and 3	
Fraction		Represents a proportion or part of a whole.		e.g. $\frac{4}{5}$			
Numerator		The number or term on top of the fraction.			Numerator		
Denominator		The number or term on the bottom		ction.		<u>Denominator</u>	
Rationalise the		Denominator Denominator					
denominator		Eliminate a surd denominator in a fraction.					
		ring and rounding (N2, N3, I	N5, N14, N1	5)			
i)	Add & subtract decimals	Use the column method making sure making sure the decimal points are vertically aligned 3.8 - 1.26		3.80			

::\	M. delica la c		Cala lata 4 22 x 20 0
ii)	Multiply decimals	Multiply the integers and correct place value	Calculate: 4.32×20.8 Use: $432 \times 208 = 89856$ So: $4.32 \times 20.8 = 89.856$ 2 dp 1 dp 3dp
iii)	Divide decimals	<u>Dividing a decimal by an integer</u> : Use short division ensuring that a decimal point is placed vertically above the decimal point in the dividend.	3.7 4 14.8
		<u>Division with a decimal remainder</u> : add a decimal point and additional zero's after the dividend to allow you to continue the short division as above.	Calculate: $57 \div 8$ Use: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		<u>Dividing by a decimal:</u> Multiply dividend and divisor by 10, 100, 1000 so that the divisor becomes an integer then complete short division as above. <u>N.B. Do not place value after the calculation!</u>	Calculate: 6.488 \div 0.8 \times 10 \times 10 Use: $64.88 \div 8 = 8.11$ So: $6.488 \div 0.8 = 8.11$
iv)	Multiply any number between 0 and 1	Use the methods described above in: ii) Multiply decimals N.B. Value of the product will be smaller than the value of the multiplicand if the multiplier is between 0 and 1 and vice-versa.	And: $12 \times 0.2 = 6$ 0.2 × $12 = 6$
	Divide any number between 0 and 1	Use the methods described above in: iii) Divide decimals N.B. Value of the quotient will be greater than the value of the dividend if the divisor is between 0 and 1.	$12 \div 0.2 = 60$
v)	Use one calculation to find the answer to another	Given: $a \times b = c$ Then: $c \div b = a$ and $c \div a = b$ Adjust place value if necessary.	If: $19 \times 24 = 456$ $456 \div 24 = 19$ $456 \div 19 = 24$ $1.9 \times 24 = 45.6$ $456 \div 190 = 2.4$ $19 \times 240 = 4560$
∪i)	Use the product rule for counting: multiple groups	There are n different options available from group A and m different options available from group B. The number of possible combinations that can occur when choosing one option from Group A <u>and</u> one option from Group B is given by: $n \times m$	e.g. A restaurant serves 4 different starter and 5 different main courses. How many combinations of start and main course could you choose? $4\times5=30$
	Use the product rule for counting: one group with repeats	There are n possible options available from a single group and the same option can be selected multiple times. The number of possible combinations that can occur when choosing m options is given by: n^m	e.g. A combination lock has 3 wheels with the numbers 1 to 8 on each wheel. How many different combinations are possible? $8^3 = 512$
	Use the product rule for counting: one group without repeats	There are n possible options from a single group and each options can be selected once only. The number of possible outcomes that can occur when choosing m options is given by: $n\times (n-1)\times (n-2)\times\times (n-m+1)$	e.g. 12 people run a marathon, how many combinations of gold, silver and bronze medal winners are there? $12 \times 11 \times 10 = 1320$

	T			
vii)	Round to a given number of decimal places	 Count the number of decimal places you need. Look at the number to the right of that digit to decide if it rounds up or down. 5 or more it rounds up, 4 or less it rounds down. 	9 8 7 6 5 4 3 4 3	e.g. 36.3486343 36.3 486343 To 1 d.p. is 36.3 36.34 86343 To 2 d.p. is 36.35 36.348 6343
		uowii.	Ψ'	To 3 d.p. is 36.349
ii)	Round a large number to a given number of significant figures	 Count the number of digits you need from the left. Look at the number to the right of that digit to decide if it rounds up or down. 5 or more it rounds up, 4 or less it rounds down. Replace remaining digits with zeros as place holders. 	9 87 65 down 32	e.g. 324 627 938 3 24627938
ix)	Round a small number to a given number of significant figures	 Zeros are not significant until after the first non-zero number. Find the first non-zero and count the number of digits you need from there. Look at the number to the right of that digit to decide if it should round up or down. 5 or more it rounds up, 4 or less it rounds down. 	987765 down 221	e.g. 0.0034792 0.003 4792 To 1 s.f. is 0.003 0.0034 792 To 2 s.f. is 0.0035 0.00347 92 To 3 s.f. is 0.00348
x)	Estimating	 Round each number to 1 significant figure before doing any calculations. It is acceptable to round one or more numbers in the calculation to a greater accuracy than 1 sig. fig. if this makes the calculation easier. DO NOT round the answer! 		e.g. Estimate: 3.91×8789.8 620.9×0.492 $\frac{3.91 \times 8789.8}{620.9 \times 0.492} \approx \frac{4 \times 9000}{600 \times 0.5}$ $\approx \frac{3600}{300}$ ≈ 120
1b. Indi	ices, roots, recip	rocals and hierarchy of operations (N2	, N3, N6, N7,	N14)
X i)	Use index notation for positive powers of 10	 Count how many zero's there are after the 1 and write 10 to the power of this number. Write a 1 followed by the same number of zero's as the power 10 is raised to. 		e.g. $10\ 000\ 000 = 10^7$ e.g. $10^2 = 100$
ii)	Use index notation for negative powers of 10	 Count how many zero's there are in front of write 10 to the power of the negative of this Use the positive of the power 10 is raised to with this number of zero's in front with a deafter the first. 	e.g. $0.0000001 = 10^{-7}$ e.g. $10^{-2} = 0.01$	

iii)	Recognise common powers Powers of 2 Powers of 3 Powers of 4 Powers of 5	Recall that the positive power of a number tells us now			e.g. $7^2 = 256.2$ $6 = 243$ $6 = 1024$	$2^9 = 512, 2^{10} = 1024$
iv)	Estimate roots of any given positive number	 Identify the square (or cube) numbers immediately above and below the number we are trying to find the square (or cube) root of. The desired root must lie between the integer roots of the 			integers • Next s • Previous 36.	ween which two does $\sqrt{42}$ lie? Equare number is 49. Sous square number is $\sqrt{36} = 6$, $\sqrt{49} = 7$ $\sqrt{42}$ lies between: $\sqrt{48} = 6$
v)	Find the value of calculations involving positive indices	Recall that a positive power of a number tells us how many times to use that number in a multiplication.		e.g. 3 ⁴ = e.g. 7 ² =		
	Find the value of calculations involving negative indices	To calculate a nCalculate the power.Then take the	equivalent positive	$a^{-n} = \frac{1}{a^n}$	ī	e.g. Calculate 4^{-3} . • $4^3 = 64$ • $4^{-3} = \frac{1}{64}$
	Find the value of calculations involving fractional indices		The denominator of the fractional power gives the type of root to $a^{\frac{1}{n}} = \sqrt[n]{}$		ī	e.g. $64^{\frac{1}{2}} = \sqrt{64} = 8$ e.g. $125^{\frac{1}{3}} = \frac{\sqrt[3]{125}}{5} = 5$
vi)	Use powers of 0 and 1	Anything to the	power of $0 = 1$	$a^0 = 1$		e.g. $5^0 = 1$
		Anything to the power $1 = itself$		$a^1 = a$		e.g. $5^1 = 5$
vii)	Use index laws to simplify or evaluate	Multiplication	Add the powers	$a^m \times a^n = a^m$.+n	e.g. $2^2 \times 2^3 =$ $2^5 (= 32)$
	numerical expressions	Division	Subtract the powers	$a^m \div a^n = a^m$	a-n	e.g. $3^9 \div 3^4 = 3^5 (= 243)$
		Brackets	Multiply the powers	$(a^m)^n = a^{mn}$	n	e.g. $(7^4)^3 = 7^{12}$

1c. Fac	tors, multiples o	and primes (N3, N4)			
i)	Factors	A factor is a number that divides into another number	e.g. factors o	of 6: 1, 2, 3 and 6	
ii)	Multiples	A multiple is a number from the times tables	e.g. multiple	s of 4: , 8, 12, 16, 20,	
iii)	Prime number	A prime number is a number with exactly 2 factor	\$		
		2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,	61, 67, 71, 73, 7	79, 83, 89, 97	
iv)	Product	The answer when two or more numbers are multiplied together.	e.g. Product	of 3 & 7: $3 \times 7 = 21$	
v)	Prime factor decomposition	Writing a number as a <i>product of its prime</i> factors	60 6 2 3 2 Either way, the re 2 x 2 x 3 x 5	60 10 2 30 4 5 5 5 60 2 15 60 5 60 60 60 60 60 60 60 60 60 60	
vi)	Highest common factor (HCF)	The highest number that divides exactly into two or more numbers.		e.g. The HCF of 12 & 8:	
vii)	Lowest common multiple (LCM)	The smallest positive number that is a multiple of two or more numbers.		e.g. The LCM of 12 & 8: 24	
	ındard form (N	9)			
i)	Convert a small number to standard form	 Count the number of zero's in front of the first significant figure (including the one in front of the decimal point). The power of ten is negative followed by this number. 	e.g. 0.00	$000037 = 3.7 \times 10^{-7}$	
ii)	Convert a large number into standard form	 Count the number of place value position there are after the first significant figure. The power of ten is positive followed by this number. 		$00\ 000\ 000$ $= 1.47 \times 10^{11}$	
iii)	Converting to a small ordinary number	 Look at the digit after the negative in the power of 10. Write this may zero's in front of the first sig. fig. Reposition the decimal place between the first and second zero. 	e.g. 2.4	$\times 10^{-6}$ = 0.0000024	
iv)	Adding or subtracting numbers in standard form	 Convert the numbers to ordinary numbers. Add. Convert the sum to standard form. 	=	$\times 10^{4}) + (6.4 \times 10^{3})$ $23000 + 6400$ $= 29400$ $= 2.94 \times 10^{4}$	

v)	Multiplying numbers in standard form	 Multiply the numbers between one and 10 at the front. Use index law for multiplication for the powers of 10. If necessary increase the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(4.5 \times 10^3) \times (3 \times 10^5)$ = $13.5 \times 10^{3+5}$ = 13.5×10^8 = 1.35×10^9
vi)	Dividing numbers in standard form	 Divide the numbers between one and 10 at the front. Use index law for division for the powers of 10. If necessary decrease the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(2.5 \times 10^{11}) \div (5 \times 10^{13})$ = 0.5×10^{-2} = 5×10^{-3}
1d. Sur	rds (N8)		
i)	Multiply	$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ and $\sqrt{a} \times \sqrt{a} = a$	e.g. $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ and $\sqrt{3} \times \sqrt{3} = 3$
ii)	Divide	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	e.g. $\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}$
iii)	Add and	$\sqrt{a} + \sqrt{b}$ cannot simplify	e.g. $\sqrt{3} + \sqrt{2} = \sqrt{3} + \sqrt{2}$
"")	subtract	But $\sqrt{a} + \sqrt{a} = 2\sqrt{a}$	e.g. $5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$
iv)	Simplify	$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$	e.g. $\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$
v)	Rationalise the denominator	Multiply numerator and denominator (use equivalent fractions) by whatever will result in the denominator simplifying to an integer.	e.g. $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{7}{\sqrt{7}}$ e.g. $\frac{1}{5+\sqrt{2}} = \frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}} = \frac{5-\sqrt{2}}{3}$

Mack	ora, the basics		111 2		
Defini	ora: the basics				
		T			
1.	Variable	A letter representing a varying or ur	A letter representing a varying or unknown quantity.		
2.	Coefficient	A number which multiplies a variab	A number which multiplies a variable e.g. 4 is the coefficient in 4a		
		One part of an expression/equation/	formula e.g. 4c		
3.	Term	Can involve multiplying and dividing and variables	g coefficients W		
		Separated from other terms by addi subtraction	tion and 5		
4.	Like terms	Terms that have the same variable but have different coefficients	e.g. c + 4c are like terms $c^2 \text{ and } c^3 \text{ are not like terms}$		
		A fixed value.	Coefficient Variable		
5.	Constant	A number on its own or sometimes a letter such as a, b or c to represent a fixed number.	Operator Constants		
		One or a group of terms.			
6.	Expression	Can include variables, constants, operators and grouping symbols.	e.g. 3y -3		
		No 'equals' sign	3y²+y³		
7.	Equation	Contains an 'equals' sign, = Has at least one variable	e.g. 3y - 3 = 12		
8.	Formula	A special type of equation that show variables	vs the relationship between a set of		
9.	Formulae	Plural of 'formula'			
10.	Identity	An equation that is true no matter what values are chosen, ≡	e.g. $3y \equiv 2y - y$ for any value of y.		
11.	Subject	The variable on its own on one side of	of the equals sign.		
12.	Substitute	Replace a variable with a number.	$a = 3, b = 2 \text{ and } c = 5.$ Find: $1. 2a = 2 \times 3 = 6$ $2. 3a - 2b = 3 \times 3 - 2 \times 2 = 5$ $3. 7b^2 - 5 = 7 \times 2^2 - 5 = 23$		
13.	Simplify	Minimising the size of an expression	1		

14.	Factorise	Splitting an expression into	a product	of factors		
15.	Expand	Removing brackets by using multiplication				
16.	Solve	Find the value of an unkn	own			
Algebr	aic Notation	1				
17.	Adding like terms	Add the coefficients		<i>b</i> -	+2b=3b	
18.	Subtracting like terms	Subtract the coefficients		5 <i>b</i>	-4b = b	
19.	Multiplying like terms	If the base is the same, adopowers	d the	b	$\times b = b^2$	
20.	Dividing terms	If the base is the same, sub powers	tract the	b^5	$\div b^2 = b^3$	
21.	Adding different terms	Cannot combine if the term different.		b +	2c = b + 2c	
22.	Subtracting different terms	Cannot combine if the term different.	ms are	3 <i>c</i> –	-4 = 3c - 4	
23.	Multiplying different terms	Combine with no 'x' sign		$d \times e = de$		
24.	Multiplying different terms with coefficients	Combine with no 'x' sign, the coefficients	Combine with no 'x' sign, multiply the coefficients		$2d \times 3e = d6e$	
25.	Dividing different terms	Write as fractions with no '÷' sign		3 <i>d</i>	$\div e = \frac{3d}{e}$	
26.	Dividing different terms with coefficients	Write as fractions with no simplify the coefficients who possible.		14 <i>d</i>	$\div 7e = \frac{2d}{e}$	
xpan	nding (single brackets)					
27.		e the bracket, by the term o	n the outsic	de.		
28.	3(a + 4) =	3a+12	$\frac{2x}{4x^2}$	-3 $-6x$	$4x^2-6x$	
acto	rising (single brackets)	,				
	Find the highest contermsThis goes outside th		2x +	+ 4y	2(x + 2y)	
29.	 Divide each term b new terms inside th 	u the factor to get the		- 10xy	5xy(x - 2)	
	ssions					

Can be represented by a straight

An expression where the highest

No indices above 1

index is 2

30.

31.

Linear

Quadratic

e.g. 2x + 2

e.g. $2x^2 + 2x + 2$

Expanding double brackets

32. Everything in the first bracket must be multiplied by everything in the second

	(Grid	method
Cx	1+4)(x	+7)
×	x	+4	
X	χ^2	4x	
+7	Be	28	
<u> </u>	-		+7x+28 x+28
= 5	C-T	(1)	2426

FOIL method FIRST: (x+3)(x-4) gives $x \times x = x^2$ DUTER: (x+3)(x-4) gives $x \times (-4) = -4x$ INNER: (x+3)(x-4) gives $3 \times x = 3x$ LAST: (x+3)(x-4) gives $3 \times (-4) = -12$

Factorising a quadratic expression

		Multiply to 5		
		Factorise $x^2 + 5x + 6 \leftarrow Add$ to 6		
	Factorising a	2 and 3 add to 5		
34.	quadratic in the form of $ax^2 + bx + c$	2 and 3 multiply to 6		
		(x+2)(x+3)		
		Check: $(x+2)(x+3) = x^2 + 5x + 6$		
		A special type of quadratic which only has two terms.		
	Difference of two	One term is subtracted from the other		
35.	squares	$x^2 - 25 = x^2 - 5^2 = (x + 5)(x - 5)$		
		$y^2 - 49 = y^2 - 7^2 = (y + 7)(y - 7)$		
		$a^2 - 16 = a^2 - 4^2 = (a + 4)(a - 4)$		

Equations

33.

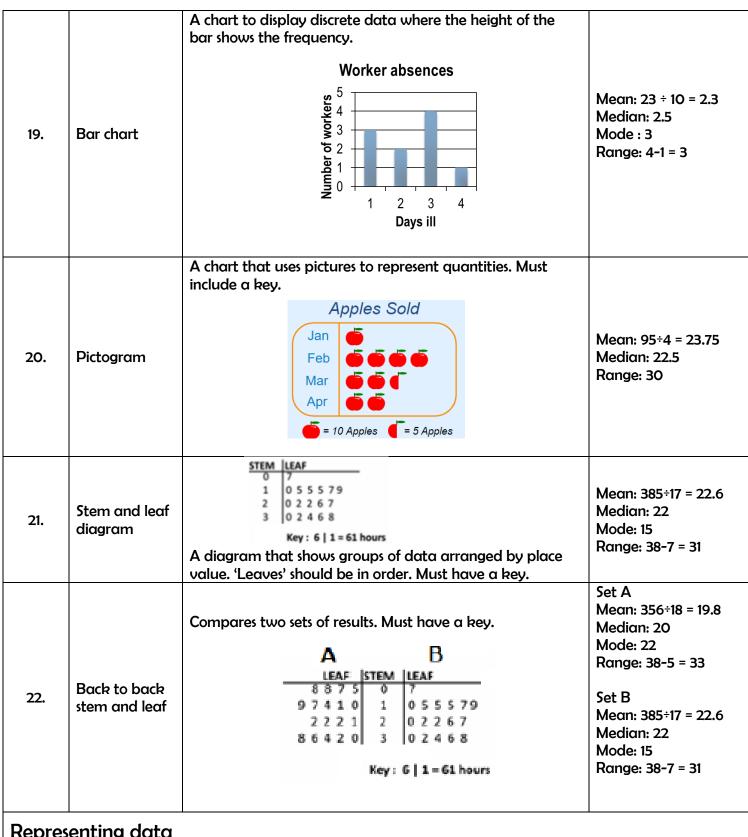
- 36. To solve equations we need to use inverse operations
- 37. What ever you do to one side of the equals sign you must do the same to the other

	T			
38.	One step		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
39.	Two step	Requires the use of two inverse operations	2x - 7 = 19 $2x = 26$ $x = 13$	
40.	With brackets	Expand the brackets first $5(2x + 1) = 35$ $10x + 5 = 35$ $10x = 30$ $x = 3$	OR if possible divide by the number outside of the bracket first $4(2x + 4) = 20$ $2x + 4 = 5$ $2x = 1$ $x = \frac{1}{2}$	
41.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.	5x + 2 = 3x - 8 $2x + 2 = -8$ $2x = -10$ $x = -5$	
42.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\frac{f}{5}+2=8$ $\frac{f}{5}=6$ $f=30$	If everything is part of the fraction then multiply by the denominator first. $\frac{f+2}{5}=8$ $f+2=40$ $f=38$	
Changing the subject of a formula (rearranging)				

Always use inverse operations to isolate the term you have been asked to make the subject

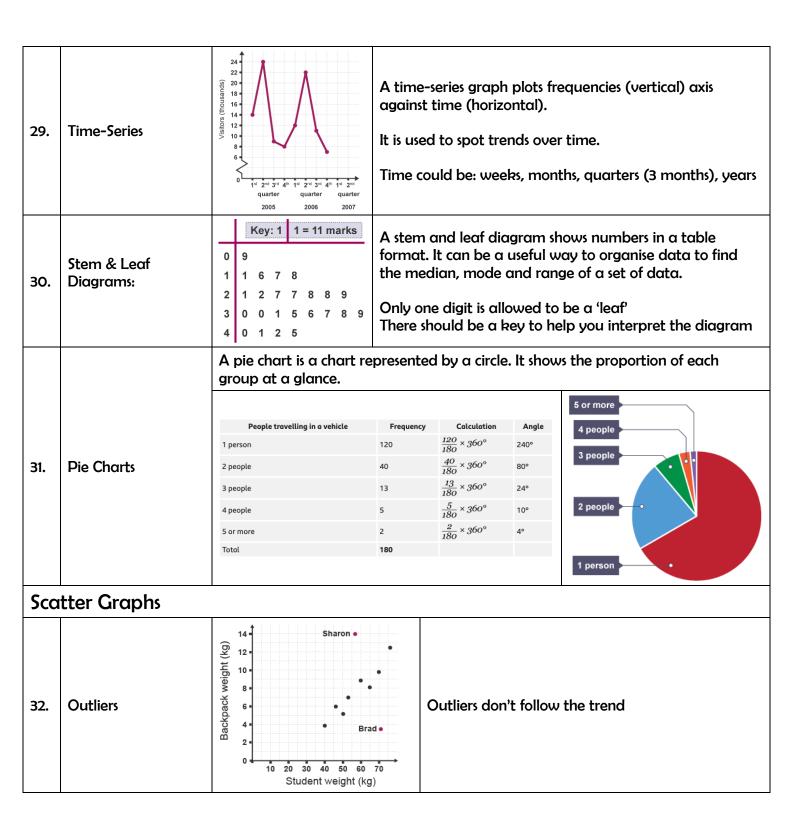
If the letter you want as the subject appears twice you will need to factorise

43.	Make u the subject: v = u + at $(-at)$ $v - at = u$ So	Make u the subject: $v^{2} = u^{2} + 2as$ $(-2as)$ $v^{2} - 2as = u^{2}$ $(\sqrt{})$ $\sqrt{v^{2} - 2as} = u$	Make m the subject: $I = mv - mu$ $(Factorise)$ $I = m(v - u)$ $(÷ (v - u))$ $\frac{I}{v - u} = m$
	u = v - at	$u = \sqrt{v^2 - 2as}$	$m = \frac{I}{v - u}$


Iterati	on							
44.	Iteration	The act of repeating a process to generate a sequence of outcomes or with the aim of of appraoching a desired result e.g. finding a solution to an equation						
45.	Iterative sequence	The relationship between consecutive terms						
46.	Roots	Solutions to an equation						
47.	Change of sign	Two values with a root between them						
Seque	nces							
48.	Sequence	An order pattern of numbers or diagrams						
49.	Term	One of the numbers or diagrams in a sequence						
50.	Term to term rule	The rule for moving from one term to the next in a sequence						
51.	Formula	A rule written to describe a realtionship between twp quantities						
52.	Arithmetic sequence	A sequence where the term to term rule is to addd or subtract the same amount each time						
53.	Quadratic	A sequence where the term to term rule is changing by the same amount each time						
55.	sequence	The second difference is a constant amount.						
54.	Geometric sequence	A sequence where the term to term rule is to multiply by the same amount each time						
FF	Common	The value a geometric sequence is multiplied by from one term to the next						
55.	ratio	Denoted by the letter <i>r</i>						
56.	Series	The sum of the terms in a sequence						
57.	Position to term rule	The rule for finding any value of a sequence						
		The rule to find any term in a sequence of numbers						
58.	nth term rule for an arithmetic sequence	 Find the common difference between the terms This becomes you coefficient of n (this is the times table the sequenc is linked to) The number you need to add or subtract to get to the second term becomes the second term in the nth term rule 						
		6, 10, 14, 18, 22 The sequence increases by 4, so the nth term starts with 4n 6, 10, 14, 18, 22 Fach term is 2 bigger than the 4 times table So the nth term is 4n + 2						
59.	Nth term for a quadratic sequence	 Find the first difference Find the second difference Halve the second difference and multiply by n² to gain a new sequence of an² Generate the first few term sof this seuence then subtract from the original sequence 						

			• Find the nth term of the remianing sequence $bn+c$ • The entire nth term is then an^2+bn+c						
60.	nth term for a geometric sequence	•							
61.	Finite	Has a f	inal point						
62.	Infinite	Carries	on forever						
63.	Ascending	Increase	95						
64.	Descending	Decrea	Decreases						
65.	Linear function	An aruthmatic coguanca that can be represented but a straight line graph							
Special	Sequences								
66.	Square numbers		1, 4, 9, 16, 25, 36, 49, 64, 81, 100	1 4 9 16					
67.	Cube numbers		1, 8, 27, 64, 125	1 8 27 64 125					
68.	Triangular numbers		1, 3, 6, 10, 15, 21, 28	1 3 6 10					
	F1		A sequence where each term is the sur	n of the two previous terms					
69.	Fibonacci sequ	ence	e.g. 1, 1, 2, 3, 5, 8, 13, 21						

Defin	itions						
1.	Qualitative Data	Non-numerical data	i.e. Colour of car				
2.	Quantitative Data	Numerical data	i.e. House number				
3.	Discrete Data	Numerical data that <u>CANNOT</u> be shown in decimals	i.e. Number of children in a class				
4.	Continuous Data	Numerical data that <u>CAN</u> be shown in decimals	i.e. The heights of children in a class				
5.	Grouped Data	Numerical data given in intervals	i.e. Year group ranges: Year 7-9 Year 10-11 Year 12-13				
Averd	ages		·				
6.	Measure of location	A single value that describes a position in a	data set				
7.	Measure of central tendency	A single value that describes the centre of th	ne data				
		A measure of how spread out the data is					
8.	Measure of spread	Also known as 'measures or dispersion' or 'measures of variation'					
		Two simple measures of spread are range and interquartile range (IQR)					
9.	Mode (modal class)	The value that occurs most often					
10.	Range	The difference between the largest and sma	llest values in the data set				
11.	Median	The middle value when the data values are	put in ascending order				
		Found by adding all number sin the data se in the set	t and dividing by the number of values				
	Mean	Can be calculate using the formula $\bar{x} = \frac{\Sigma x}{n}$ Mean from a frequency table	Where: \bar{x} is the mean Σx is the sum of the data values n is the number of data values				
12.	Wedi	$\bar{x} = \frac{\Sigma}{2}$	$\frac{\Sigma f x}{\Sigma f}$				
		Where $\Sigma f x$ is the sum of the products of dail is the sum of the frequencies	-				


	Average	Ad	dvantages			Disadvantages		
	Mean	Every value mak			Af	fected k	by extreme values	
13.	Median	Not affected by	extreme	values		ay not d anges	hange even if a data value	
	Mode	Easy to find; not values; can be us data				ere ma	y not be a mode	
vera	ges from freque	ncy tables						
14.	Modal class	The class with the	e highest	frequen	:y			
15.	Median	If the total frequency is n , then the median lies in the class with the $\frac{n+1}{2}$ th value						
	Mean from a frequency table		o of Items From 1	1 x 7	× =7			
16.	Times Add Divide		2 2 3 1 4 4 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3x 1 4x 4 5x 2	=3 =16		Mean = $\frac{40}{16}$ = 2.5	
17.	Estimated mean from a grouped frequency table Times Add Divide	Class Interval $140 \le h < 150$ $150 \le h < 160$ $160 \le h < 170$ $170 \le h < 180$	Mid-point 145 155 165 175 Totals	6 16 21 8 51	Mid-point × 145 × 6 155 × 16 165 × 21 175 × 8	= 870 = 2480 = 3465	Mean = 8215 ÷ 51 =161.07843 = 161.08 (2dp)	
18.	Estimate of range from grouped frequency table	The maxiumum	possible v	value mii	nus the sm	allest p	ossible value.	

Representing data

			Boys	Girls	TOTAL	Tours outside the same of outside of
22	Two-Way	Pet	9	4	13	Two-way tables are a way of
23.	Tables	No Pet	2	5	7	sorting data with two
		TOTAL	11	9	20	categories.

24.	Pictograms	Movie genre Frequency Horror Action Romance Comedy Other = 4 people = 2 people = 1 person	Used to show frequencies Pictures and images used to represent frequency A key at the bottom helps you interpret the diagram
25.	Bar Charts	15 10 10 10 10 10 10 10 10 10 10 10 10 10	Frequency on the vertical axis, and categories along the horizontal axis. Used to compare frequencies
26.	Composite Bar Chart	Number of pets Boys State St	Frequency on the vertical axis, and categories along the horizontal axis. Two shades used to show difference in proportion between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
27.	Comparative Bar Chart	Solution Rainfall 40 40 40 30 Cm 20 Jan Feb Mar Apr May Month Dual Bar Chart	Frequency on the vertical axis, and categories along the horizontal axis. Bars are next to each other and used to show difference in frequency between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
28.	Line Graph	22 22 22 22 22 22 22 22 22 22 22 22 22	A line graph is used to show a change or relationship between two variables. Once the points are plotted, they are joined with straight lines.

33.	Line of Best Fit	50	A sensible straight line that goes as centrally as possible through the points plotted. It should also follow the same steepness of the crosses.			
34.	Interpolate	50	our range For example: To estimate sold with 3mm rai Find where 3 mm	to estimate data WITHIN nate how many umbrellas in. of rainfall is on the graph. ing across from 3 mm and		
35.	Extrapolate	80 75 70 65 60 90 55 90 90 45 10 40 30 25 20 15 10 12 33 45 67 89 10 10 10 10 10 10 10 10 10 10	Continuing a line of best fit to estimate data BEYOND our range (not as reliable as interpolation) For example: To estimate how many umbrellas are sold with 10mm rain. Continue the line of best fit. Find where 10mm of rainfall is on the graph Draw a line by going across from 10mm and then down.			
36.	Positive Correlation	102 98 94 98 98 98 98 98 98 98 98 86 X X X X X X X X X X X X X	BOTH variables increase with each other	i.e. Ice creams sold vs Temperature		
37.	Negative Correlation	plos signo of the state of the	ONE variable increases as the other decreases	i.e. Coats sold vs temperature		

38.	No Correlation	x x x x x x X X X X X X X X X X X X X X	NO relationship between variables	i.e. IQ and House Number
39.	Causation	 i.e. an increase temperature i.e. the number of bee sting (although both will increase 	re <u>WILL</u> cause an incre gs <u>WILL NOT</u> cause an	

Fra	ctions		
1.	Fraction	Part of a whole	
2.	Numerator	The number on the top of the fraction	numerator
3.	Denominator	The number on the bottom of the frac	denominator
4.	Equivalent fractions	Fractions that have the same value be look different.	$\frac{1}{2} \frac{2}{4} \frac{3}{6} \frac{4}{8}$
5.	Improper fraction	A fraction where the numerator is largethan the denominator.	ger e.g. $\frac{4}{3}$
6.	Mixed number	A number made from integer and fra parts.	e.g. $2\frac{2}{3}$
7.	Unit fraction	A fraction that has a numerator of 1	
	Do sino o o ol	The reciprocal of a number is 1 e.divided by the number.	g. the reciprocal of 3 is $\frac{1}{3}$
8.	Reciprocal	Dividing by a number is the same e.e.	g. \times by $\frac{1}{3}$ is the same as \div by 3
Fra	ctions - processes		
9.	Simplifying fractions	Divide the numerator and denominat by the HCF.	$\frac{24}{30} = \frac{4}{5}$
10.	Finding equivalent fractions	Multiply the numerator and denominator by the same number	$\frac{4 \times 2 = 8}{8 \times 2 = 16}$
11.	Comparing fractions	Write them with a common denomina	ator
12.	Fraction of an amount	Amount divided by the denominator then multiplied by the numerator	e.g. $\frac{5}{7}$ of 42 42 ÷ 7 x 5 = 30
13.	Multiply fractions	Multiply the numerators and multiply the denominators	$\frac{6}{7} \times \frac{4}{5} = \frac{6 \times 4}{7 \times 5} = \frac{24}{35}$
14.	Divide fractions	 Flip the second fraction (find the reciprocal). Change the divide to multiply. Multiply the fractions. 	$\frac{4}{3} \div \frac{5}{4} = \frac{4}{3} \times \frac{6}{3} = \frac{4 \times 6}{3 \times 6} = \frac{24}{3 \times 6}$
15.	Add or subtract fractions	Write as fractions with a common denominator.Add or subtract the numerator	$\frac{2}{8} + \frac{1}{6} = \frac{6}{24} + \frac{4}{24} = \frac{10}{24} = \frac{5}{12}$
16.	Convert improper fractions to mixed numbers	 Divide the numerator by the denominator The answer gives the whole number part. 	$\frac{43}{6} = 7\frac{1}{6}$

		The remainder becomes the					
		numerator of the fraction part with the same denominator.					
17.	Convert mixed numbers to improper fractions	 Multiply the denominator by the whole number part. Add the numerator to this. Put the answer to this back ove the denominator 	$7\frac{1}{6} = \frac{6 \times 7 + 1}{6} = \frac{43}{6}$				
18.	Adding and subtracting mixed numbers	 Convert mixed numbers to improper fractions Transform both fractions so they have the same denominat Add or subtract the numerators Convert back to mixed number if applicable 					
19.	Multiplying mixed numbers	 Convert mixed numbers to improper fractions Multiply numerators and multiply the denominators Convert back to mixed number if applicable 					
20.	Dividing mixed numbers	 Convert mixed numbers to improper fractions Flip the second fraction (find the reciprocal) Change the divide sign to a multiply Multiply the fractions Convert back to mixed number if applicable 					
Per	centages						
21.	Percentage	Means 'out of 100'					
22	Multiplier	A decimal you multiply by to represent	A decimal you multiply by to represent a percentage				
22.	Multiplier	To use a multiplier to find a percentage then multiply the amount by this value					
		Calculate the percentage and add onto	the original				
23.	Percentage increase	Or use a multiplier	$amount \times \frac{100 + \% increase}{100}$				
		Calculate the percentage and subtract	from the original				
24.	Percentage decrease	Or use a multiplier	$amount \times \frac{100 - \% increase}{100}$				
25.	Percentage change	$\frac{Change}{Original} \times 100$					
26.	Express one number as a percentage of another	Number :	- × 100				
27.	Reverse percentage	Use when asked to find the priginal am decrease.	ount after a percentage increase or				

		Original Value x Multiplier = New Value Original Value = <u>New Value</u> Multiplier					
28.	Interest	A fee paid for borrowing money or money earnt through investing.					
29.	Simple interest	Interest that is calculated as a percentage of the original	I = Prt I – Interest P – Original amount r – interest rate t - time				
30.	Compound interest	When interest is calculate on the original amount and any previous interest OR Original × Multiplier*	$P\left(1 + \frac{R}{100}\right)^{n}$ P – Original amount R – Interest rate n – the number of interest periods (e.g. yrs)				
31.	Тах	A financial charge placed on sales or	savings by the government e.g. VAT				
32.	Loss	Income minus all expenses, resulting in a negative value					
33.	Profit	Income minus all expenses, resulting i	n a positive value				
34.	Depreciation	A reduction in the value of a product	: over time				
35.	Annual	Means yearly					
36.	Per annum	Means per year					
37.	Salary	A fixed regular payment, often paid	monthly				
FDI	O Conversions						
38.	Percentage to decimal	Divide by 100					
39.	Decimal to percentage	Multiply by 100					
40.	Fraction to percentage	Find an equivalent fraction with 100	as the denominator				
41.	Percentage to fraction	Write as a fraction over 100 then sim	plify				
42.	Fraction to decimal	Carry out division or convert to a per	centage first				

43.	Decimal to fra	ction			place valu centage fir		he dei	nomii	nator and	simplify o	r convert to	α
Bas	ics to memo	rise										
	Constinu	1	-	1	1	1	1	-	1	1	2	3
	Fraction	10	00	$\overline{10}$	8	<u>-</u> 5	$\overline{4}$	-	3	$\overline{2}$	3	$\overline{4}$
44.	Decimal	0.0)1	0.1	0.125	0.2	0.2	25	0. 3	0.5	0. 6	0.75
	Percentage	1%	6	10%	12.5%	20%	25	%	33. 3%	50%	66. 7%	75 %
Ter	minating an	d re	cur	ring de	cimals			1				
45.	Terminating decimal	Dec	imo	als that c	an be wr	itten exa	ctly	e.g.	. 0.38			
46.	Recurring				one digi	t or grou	ps	e.g.	. 0. 7 = o .	7777		
	decimal	of d	ligit	s are rep	eatea			0.8	353 = 0.8	53853		
			4.	 3. Multiply the recurring decimal by 10ⁿ. 4. Subtract (1) from (3) to eliminate the recurring part. 5. Solve for x, expressing your answer as a fraction in its simplest form. 								igits)
4=	Converting a			0.7 (one recurring digit)					1.256 (two recurring digits)			
47.	recurring decimal to a fraction			x = 0.7777 10x = 7.777					x = 1.25656 100x = 125.6565			
				10x - x =							51.2565	65
				9x :	= 7				99 <i>x</i>	=124.4		
				$x = \frac{7}{9}$					$x = \frac{124.4}{99} = \frac{1244}{990} = \frac{622}{495}$			
	Convention							e.g.	4 7	means 4 ÷ 7	155	
48.	Converting a fraction to	Carry out the neccesary division using o					ing a	,				_
	recurring decimals		calc	ualtor or I	ous stop div	vision		0.57142857				_
									/ 4	4. 0 0 0	³ 0 ² 0 ⁶ 0 ⁴ 0 ⁵ 0	U
Rat	io and Prop	orti	on									
49	. Ratio		Δ	relations	hip betwee	en two or r	nore c	quant	tities			
50	. Unit ratio		U	Ised to co	mpare ratio	os, one of t	he pa	rts is	1			
30	. Julie ratio	Unit ratio		The only time it is permissible to have a decimal in a ratio								

51.	Equivalent	Ratios that have the same simplified form are said to be equivalent			
52.	Scale	A ratio that represents the relationship between a length on a drawing or a map and the actual length			
53.	Proportion	Compares a part with a whole			
54.	Direct proportion	Two quantities increase at the same rate	$y \propto x$ $y = kx$ for a constant k		
		Graph is a straight line that goes through the origin	ie x		
55.	Inverse/indirect proportion	One variable increases at a constant rate as the second variable decreases	$y \propto \frac{1}{x}$ $y = \frac{k}{x}$ for a constant k		
56.	Proportional	A change in one is always accompanied by	a change in the other		
57.	Constant of proportionality	Represented by <i>k</i> Its value stays the same			
58.	Share	Splitting into parts as defined by a ratio			
59.	Unitary method	Finding the value of 1 item then using this to item Use to work out which products give the be) -		
Work	ing with ratio	OS			
60.	Simplifying ratio	Divide all parts by the highest common factor All parts in the simplified version must be integers	e.g. 12:4 simplifies to 3:1 (divided by HCF of 4)		
61.	Divide in a given ratio	Divide an amount so the ratio of the final values simplifies to the given ratio	share £20 in the ratio 3:2 £20 £4 £4 £4 £4 £4		

scienceAcade	emy —		ПІ 4	
Shap	es and angles - d	efinitions		
1.	Angle	A measure of turn, measured in degree	es °	
2.	Protractor	Instrument used to measure the size of an angle		
3.	Acute angle	An angle less than 90°		
4.	Right angle	A 90° angle		
5.	Obtuse angle	An angle more than 90° but less than	18O°	
6.	Reflex angle	An angle more than 180°		
7.	Parallel lines	Lines that are equal distance apart the	at will never meet even when extended	
8.	Perpendicular lines	Lines that intersect at a right angle		
9.	Polygon	A 2D shape with straight lines only		
		A polygon where:		
10.	Regular polygon	All sides are the same length All angles are the same size		
11.	Interior angles (I)	An angle inside a polygon	Exterior angle	
12.	Exterior angles (E)	An angle outside a polygon	For any polygon: I + E = 180°	
13.	Congruent	Shapes that are the same shapes and s	size, they are identical.	
14.	Similar	Shapes that are the same shape but a	re different sizes	
15.	Bisect	Cut in half		
16.	Tessellate	Fit together without leaving gaps		
17.	Symmetry	A shape has symmetry if a central line is drawn to show both sides are exactly the same.		
		We call these lines of symmetry		
18.	Rotational symmetry	A shape has rotational symmetry when it looks the same after some rotation of less than a full turn	Original shape 90 degrees Original = 180 degrees 270 degrees Original = 360 degrees	
			Order of rotational symmetry of 2	

Quadri	Quadrilaterals (4 sided shapes)					
19.	Square		4 equal sides 4 equal angles 2 pairs of parallel sides Diagonals cross at right angles	4 lines symmetry Rotational symmetry order 4		
20.	Rectangle		2 pairs of equal sides 4 right angles 3 pairs of parallel sides	2 lines of symmetry Rotational symmetry order 2		
21.	Rhombus		4 equal sides 2 pairs of equal angles 2 pairs of parallel sides Diagonals cross at right angles	2 lines of symmetry Rotational symmetry order 2		
22.	Parallelogram		2 pairs of equal sides 2 pairs of equal angles 2 pairs of parallel sides	O lines of symmetry Rotational symmetry order 2		
23.	Kite		2 pairs of equal sides 1 pair of equal angles 2 pairs of parallel sides Diagonals cross at right angles	1 line of symmetry Rotational symmetry order 1		
24.	Trapezium		One pair of parallel lines	S		
25.	Isosceles trapezium		1 pair of parallel sides 1 pair of equal sides 2 pairs of equal angles	1 line of symmetry Rotational symmetry order 1		
Triangl	es (3 sided shapes)		,			
26.	Equilateral		3 equal sides 3 equal angles	3 lines of symmetry Rotational symmetry order 3		
27.	Isosceles		2 equal sides 2 equal angles	1 line of symmetry Rotational symmetry order 1		
28.	Scalene		No equal sides No equal angles			
29.	Right-angled		1 right angle Can be scalene or isosceles			
Basic (angle rules					
30.	Angles on a straight li	ne add to 180°				

31.	Angles around a point add up to 360°	
32.	Vertically opposite angles are equal	x° y° x°
33.	Angles in a triangle add to 180°	a' + b' + c' = 180
34.	Angles in a quadrilateral add up to 360°	A A + B + C + D = 360
Angle	on parallel lines	
35.	Alternate angles are equal	o d
36.	Corresponding angles are equal	$\stackrel{\times}{\longleftrightarrow} \stackrel{\vee}{\longleftrightarrow} \stackrel{\vee}$
37.	Co-interior angles add up to 180°	
Angle	in polygons	
38.	Interior and exterior angles add to give 180°	For any polygon: $I + E = 180^{\circ}$
39.	Sum of interior angles	For a 'n' sided polygon Sum of interior angles = 180 x (n-2)
40.	Size of one interior angle	For a 'n' sided polygon Interior angle = $\frac{180 x (n-2)}{n}$
41.	Sum of exterior angles	For all polygons, sum of exterior angles = 360°
42.	Regular polygons	Exterior angle = 360 ÷ number of sides Number of sides = 360 ÷ exterior angle

			Inte	rior angle	= 180 — exterior angle
Pytho	agoras' Theore	em			
43.	Hungtonus	The longest side of a right-ang	The longest side of a right-angled triangle		
43.	Hypotenuse	It is always opposite the right o	angle		a
44.	Right- angled triangle	A triangle that contains a right	t angle		
		$a^2 + b^2 =$	$= c^2$		a
45.	Pythagoras' Theorem	Where c is the hyp	the hypotenuse		b
		Where a and b are the to	wo shorter sid	des	$a^2 + b^2 = c^2$
46.	To find the hypotenuse (c)	$3^{2}+4^{2}=C^{2}$ $9+10=C^{2}$ $36=C$ 5		• Ad	uare Id uare root
47.	To find a short side (a/b)	$a^{2} = 7^{2} - 289 - 225$ $a = \sqrt{225}$ $a = \sqrt{225}$	8 ² 64	• Su	uare btract uare root
48.	Pythagoras' in	$a^2 + b^2 + c^2 =$	d^2		
-10.	3D	$d^2 - b^2 - c^2 =$	$= a^2$		
			_		

Trigonometry - Right angled - SOH CAH TOA

49.	Trigonometry	The ratios between the sides and angles of triangles	
50. Labelling the triangle	heta is the angle involved		
	H is the hypotenuse		

		O is the opp	oosite		<u></u>		1	0
		A is the adjacent			adjacent (A)	opposite (O)	H H	A
51.	Sine	SOH			Sin θ	H	$Sin \theta = \theta = Sir$	$ \frac{Opp}{Hyp} $ $ \eta^{-1} \frac{Opp}{Hyp} $
52.	Cosine	САН				Cos θ =	Δdi	
53.	Tangent	TOA			O Tan θ	A	Tan θ =	Onn
		Θ	0°	30°	45°	60°	90°]
		Sin Θ	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
		Cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{\overline{2}}{\sqrt{2}}$	$\frac{1}{2}$	0	
54.	Exact Values	Tan Θ	0	$ \begin{array}{c c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ \hline \frac{\sqrt{3}}{3} \end{array} $	1	$\sqrt{3}$		
		These can	be foun	•	e triangle	s:	_	
55.	Angle of elevation	e	Ang	le of depre	ession		d	7

Graph	s - definitions				
1.	Axis	A reference line on a graph	A reference line on a graph		
2.	Axes	Plural of axis			
3.	Quadrant	A quarter of a graph separated by a axes			
	Canadianta	Used to show a position on a coordinate plane, $(x,$	<i>y</i>)		
4.	Coordinate	First coordinate is the horizontal position, (x axis) a position (y axis)	nd the second is the vertical		
5.	Origin	The point (0,0) on a set of axes			
6.	Plot	Mark a position or positions on a graph	Mark a position or positions on a graph		
7.	y intercept	The y value where a graph crosses the y axis where x=0			
8.	x intercept	The x value where a graph crosses the x axis where y=0			
9.	Parallel	Lines that are equal distance apart that if extended will never meet			
10.	"y=" graph	Constant y coordinate	x = 4		
10.		Will be parallel to the x axis	y=2		
	<i>"</i>	Constant x coordinate	3 ×		
11.	"x=" graph	Will be parallel to the y axis	x=-1 _		
12.	Linear function	An arithmetic sequence that can be represented by	y a straight line graph		
13.	Linear equation	An equation that produces a straight line graph			
14.	Equation of a line	y = mx + c $m = gradient$ $c = y intercept$ When	ax + by + c = 0 re a, b and c are integers		

Coord	inate geometry				
		The steepness of a graph	rise x		
15.	Gradient	$Gradient = \frac{change in y}{change in x}$ $= \frac{rise}{run}$	This has a This has a positive negative gradient gradient		
		If $A = (x_1, y_1)$ and $B = (x_2, y_2)$	B (v. v.)		
16.	Gradient between two points	The gradient of line AB = $\frac{y_2-y_1}{x_2-x_1}$	(x_1, y_1)		
17.	Parallel lines	Have the same gradients			
		Lines that are at right angles to one another			
18.	Perpendicular	Lines that are perpendicular are the negative reciprocal of one another	If a line has a gradient of m , the gradient of a line perpendicular to it will have a gradient of $-\frac{1}{m}$		
		If two lines are perpendicular, the product of their two gradients is -1			
19.	Mid-point	The coordinate half way between two point	If A = (x_1, y_1) and B = (x_2, y_2) the mid-point is $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$		
20.	Distance between two points	Distance (d) between (x_1,y_1) and (x_2,y_1) $d=\sqrt{(x_2-x_1)^2}$			
Real li	ife graphs				
21.	Steady speed	Travelling the same distance each minu	te		
22.	Velocity	Speed in a particular direction			
23.	Rate of change	Shows how a variable changes over time			
24.	Acceleration	How fast velocity changes; measured in	m/s² or km/s² etc		

Distar	nce - Time g	raphs			
25.	Represent a jo	ourney			
26.	Vertical axis re	epresents the distance from the starting point	3 / B		
27.	Horizontal ax	is represents the time taken	Distance C		
28.	Straight lines mean constant speed		Time A = steady speed,		
29.	Horizontal lin	es mean no movement	B = no movement,		
30	Gradient = spe	eed	C = steady speed back to start		
31.		Average speed = $=\frac{total\ distance}{total\ time}$			
Veloci	ity – Time g	raphs			
32.	Represents the	e speed at given times	.≧ B		
33.	Straight lines	mean constant acceleration or deceleration	Velocity		
34.	Horizontal change means no change in velocity e.g. constant speed		A = steady acceleration,		
35.	Positive gradient-= acceleration		B = constant speed,		
36.	Negative grad	dient = deceleration	C = steady deceleration back to a stop		
37.	Distance trave	elled = area under the graph			
Quad	ratic, cubic o	and other graphs			
38.	Quadratic expression	An expression where the highest index is 2	e.g. $2x^2 + 2x + 2$		
		Solutions to a quadratic equation/function $ax^2 + bx + c = 0$	4/2		
39.	Roots	The x values where the graph crosses the x as	xis 2 1 2 3 4		
		A quadratic can have 0, 1 or 2 roots	4		
		Curved shaped called a parabola	$y = x^2$ $y \uparrow$ $y \uparrow$		
40.	Quadratic graph	A positive x² will give a '∪' shape	$y = -x^2$		

A negative x^2 will give a ' \cap ' shape

41. Turning points	Turning	The point where a curve turns in the opposite direction	
	points	Can be called a minimum or maximum	Maximum Minimum
42.	Cubic	General form of $ax^3 + bx^2 + cx + d = 0$	y y 243 (3,27)
		Can have 1, 2 or 3 roots	Graph of $f(x) = 2x^3 - 3x^2 + 5$. $b^2 - 3ac = 9$ Graph of $f(x) = -8(x - 3)^3 + 27$. $b^3 - 3ac = 0$
43.	Asymptote	A line a graph will get very close to but wil	l not touch
44.	Reciprocal	General form of $y = \frac{k}{x}$ where k is a number	$y = \frac{k}{x}$ (positive) $y = \frac{-k}{x}$ (negative)
		Has two asymptotes	
			$x^2 + y^2 = 16 (r = \sqrt{16} = 4)$
45.	Circle	With centre $(0,0)$ and radius, r $x^2 + y^2 = r^2$	2 -2 0 2

2D an	2D and 3D shapes: definitions				
1.	Dimension	The size of something in a particular direction e.g. height, depth, length	, width		
2.	2D shape	A shape that has length/height and a width but no depth	A shape that has length/height and a width but no depth		
3.	3D shape	A shape that depth as well as length/height and width			
4.	Polygon	A 2D shape with straight lines only			
		A polygon where:			
5.	Regular polygon	All sides are the same length All angles are the same size			
6.	Compound shape	A shape made up of two or more simple shapes			
7.	Rectilinear shape	A shape where all of its sides meet at right angles	L.		
8.	Perimeter	The distance around the outside of a 2D shape			
9.	Area	The space inside a 2D shape			
10.	Surface area	The total area of all the faces of a 3D shape			
11.	Volume	The space inside a 3D shape			
12.	Capacity	The amount of fluid a 3D object can hold			
13.	S.I. Units	Standard units of measurement used by scientists across the world			
14.	Metric units	Standard units of measurement that vary by powers of 10			
15.	Imperial units	Older units of measurement, some of which are still common e.g. miles,	gallons		
16.	Cross section	The shape we get when cutting straight through a 3D shape			
17.	Prism	A 3D shape that has a constant cross section through its length	and the second s		
18.	Pyramid	A 3D shape with a polygon as its base and triangular sides that meet at the top	decagonal pyramid		
19.	Cylinder	A prism with two circular ends connected by a curved surface			

							8 m	
20.	Sphere	A 3D shape where all points on the surface are the same distance from the centre						
21.	Spherical	Means in the shape of a sphere						
22.	Cone	A 2D shape that has a circular base joined to a point by a curved side			ed to a	E		
23.	Face	A flat surface of a 3E) shap	ved) e	dge	vertex		
24.	Edge	A line segment where two faces meet						
25.	Vertex	A point where two or more edges meet						
26.	Vertices	Plural of vertex						
Measures								
27.	Units of time	Standard units of time are seconds, minutes, hours, days, years						
		60 seconds = 1 minute 60 minutes = 1 hour 24 hou		24 hours =	= 1 day	365 days = 1 year		
	Units of mass	Metric units of mass are milligrams, grams, kilograms and tonnes						
28.		1000mg = 1g		1000g = 1kg		1000kg = 1 tonne		
29.	Units of length	Metric units of length are millimetres, centimetres, metres and kilometres						
		10mm = 1cm		100cm = 1m			1000m = 1km	
30.	Units of area	Metric units of length are millimetres², centimetres², metres² and kilometres²						
		1cm ² = 100mm ²						
		1m ²	= 100	Area	Area = 1 cm × 1 cm			
	Units of volume	Metric units of length are millimetres³, centimetres³, metres³ and kilometres³						
31.		1cm ³	= 100	0mm³				

	T		г						
		1m ³ = 100000cm ³		10mm 10mm 10mm 10mm 10mm 10mm 10mm 10mm					
22	Units of capacity	Metric units of capacity are millilitres, centilitres and litres							
32.		10 <i>ml</i> = 1 <i>cl</i>	m/= 100 <i>c</i> /= 1/						
33.	Capacity and volume conversions	1cm³ = 1 <i>ml</i>	00cm ³ = 1/						
2D Shapes									
34.	Savena	Area = $l \times w$ or l^2 as length and wi	x						
35.	Square	Perimeter = $l + l + l + l$ o	<u>x</u>						
36.	Rectangle	Area = $l \times w$	l w						
37.	-	Perimeter = $l + l + w + w$ or							
38.	Parallelogram	Area = $b \times h$	height						
39.	Triangle	Area = $\frac{b \times h}{2}$ or $\frac{1}{2} \times b \times h$		height					
40.	Trapezium	Area = $\frac{a+b}{2} \times h$ or $\frac{1}{2} (a+b) \times h$		<u>+ a → b</u>					
41.	Compound shape	To find the area, split up into simple shapes, find each area and add together. To find the perimeter, find any missing sides than add all the sides together.		1 8 cm $A_1 = LB$ $A_2 = LB$ $A_2 = 11 \times 9$ $A_3 = 10 \times 9$ $A_4 =$					

Circles			
42.	Diameter	A straight line from edge to edge passing through the centre	
		Double the size of the radius	
43.	Radius	A straight line from the centre to the edge	
		Half the size of the diameter	
44.	Radii	The plural of radius	
45.	Circumference	Distance around the outside of the circle	
46.	Arc	Part of the circumference	
47.	Chord	A line within a circle where each end touches the edge	
48.	Sector	The region created by two radii and an arc	
49.	Segment	The region created by a chord and an arc	
50.	Tangent	A line outside the circle which only touches the circumference at one point	
51.	Semi -circle	Half a full circle	
Area and circumference of circles formulae			
FO	Di (m)	Constant ratio linking the circumference and diameter of a circle	
52.	Pi (π)	3.14159265	

53.	Circumference of a circle	$C = \pi d$	Alternatively, using relationship between r and d $\mathcal{C}=2\pi r$
54.	Arc length	$\frac{x}{360} \times \pi d$	Where x is the angle at the centre
55.	Perimeter of a sector	$\left(\frac{x}{360} \times \pi d\right) + 2r$	This represents the arc length plus the two radii
56.	Area of a circle	$A = \pi$	πr^2
57.	Area of a sector	$\frac{x}{360} \times$	πr^2
3D sho	apes: volume		
58.	Prism	Volume = area of cross section × len	agth
59.	Cuboid	Volume = $area\ of\ cross\ section\ imes\ length\ imes\ width\ imes\ heigh$	
60.	Triangular prism	Volume = $area$ of cross section \times length volume = $\frac{1}{2} \times base \times height \times length$	
61.	Volume of a cylinder	$V = \pi r^2 h$	
62.	Surface area of a cylinder	Total surface area $= 2\pi r^2 + \pi dh$	
63.	Volume of a pyramid	$V = rac{1}{3} imes area of base $	height area of base
64.	Volume of a cone	$V = \frac{1}{3} \times \pi r^2 h$	
65.	Surface area of a cone	Curved surface area = πrl	

		Total surface area $= \pi r^2 + \pi r l$	h
66.	Volume of a sphere	$V = \frac{4}{3} \times \pi r^3$	
67.	Surface area of a sphere	Total surface area = $4\pi r^2$	
68.	Volume of a frustum	Find the volume of the whole cones and subtract the volume of the smaller cone to get the volume of the frustum	$V = \frac{1}{3} \pi r^2 h$

Accuracy and Bounds					
69.	Integer	A whole number and the negative equivalen	A whole number and the negative equivalents.		
70.	Rounding	Changing a number to a simpler, easy to use	value		
71.	Round to a given number of decimal places	 Count the number of decimal places you need. Look at the number to the right of that digit to decide if it rounds up or down. 5 or more it rounds up, 4 or less it rounds down. 	e.g. 36. 3486343 36.3 486343 To 1 d.p. is 36. 3 36.34 86343 To 2 d.p. is 36. 35 36.348 6343 To 3 d.p. is 36. 349		
72	Round a large number to a given number of significant figures	 Count the number of digits you need from the left. Look at the number to the right of that digit to decide if it rounds up or down. 5 or more it rounds up, 4 or less it rounds down. Replace remaining digits with zeros as place holders. 	e.g. 324 627 938		
73.	Round a small number to a given number of significant figures	 Zeros are not significant until after the first non-zero number. Find the first non-zero and count the number of digits you need from there. Look at the number to the right of that digit to decide if it should round up or down. 5 or more it rounds up, 4 or less it rounds down. 	e.g. 0.0034792 0.003 4792 To 1 s.f. is 0.003 0.0034 792 To 2 s.f. is 0.0035 0.00347 92 To 3 s.f. is 0.00348		
74.	Estimating	 Round each number to 1 significant figure before doing any calculations. It is acceptable to round one or more numbers in the calculation to a greater accuracy than 1 sig. fig. if this makes the calculation easier. DO NOT round the answer! 	e.g. Estimate: $ \frac{3.91 \times 8789.8}{620.9 \times 0.492} $ $ \frac{3.91 \times 8789.8}{620.9 \times 0.492} \approx \frac{4 \times 9000}{600 \times 0.5} $ $ \approx \frac{3600}{300} $ $ \approx 120$		
75.	Truncation	Approximating a number by ignoring all decimal points after a certain point without rounding	e.g. 5.6 would be 5 when truncated		
76.	Error interval	Measurements measured to the nearest unit may up to half a unit smaller or larger than the round value	to the nearest 1dp then the interval is $5.55 \le x < 5.65$		
77.	Upper bound	The upper bound is half a unit greater than the rounded number	e.g. the upper bound of 5.6 when measured to the nearest 1dp is 5.65		
78.	Lower Bound	The lower bound is half a unit less than the round number	e.g. the lower bound of 5.6 when measured to the nearest 1dp is 5.55		

		The accuracy when both the upper and lower bound are rounded by the same amount and give the same value		
79.	Appropriate accuracy	e.g. If UB = 12.3512 and LB = 12.3475		
	,	To 1dp: UB = 12.4 and LB- 12.3 To 2dp: UB = 12.35 and LB - 12.35 To 3dp: UB = 12.351 and LB =12.348	Here the appropriate accuracy is 2 dp	

Year 9 Mathematics Higher HT 6

Trans	formations - d	efinitions			
4	T	Changing a 2D shape in some way.			
1.	Transformation	Rotation	Reflection	Translation	Enlargement
2.	Object	The name given to a	shape before a transfo	ormation has occurre	ed.
3.	lmage	The name given to a	shape after a transfor	mation has occurred	I
4.	Rotation	A circular movemen	t about a fixed point		
-	Centre of	The fixed point that	the shape has been rot	ated about	
5.	rotation	Written as a coordin	ate (x,y)		
6.	Direction	Clockwise or anticloc	kwise		
7.	Reflection	An image as it would	d be seen in a mirror		
	Line of	The "mirror line" use	d to perform reflections	·	
8.	reflection	Written using algebr	aic notation e.g. $y = 3$,	x = -2, $y = x$ or x	/y axis
9.	Translation	The movement of a	The movement of a shape without rotating or flipping it		
	Column vector	Notation used to rep	resent translations	1	<u>γ</u> \
10.		x is the horizontal me	ovement	$\frac{1}{2}$ $\left(\frac{x}{-}\right)$	
		y is the vertical move	ement		y/
11.	Resultant vector	The vector that mov	es the shape to its final	position after more	than one translation
12.	Enlargement	A change in size of a	shape (can be bigger o	or smaller)	
12	Scale factor	The proportions by v	which the dimensions of	an object will increc	ase/decrease by
13.	Scale lactor	If fractional then the image will be smaller than the object			
14.	Negative scale factor	The image will be on the opposite side of the centre of enlargement			
15	Centre of	A fixed point to enla	rge an object from		
15.	enlargement	Written as a coordin	ate (x,y)		
16.	Single transformation	Where the object is only transformed once			
17.	Combination	Where the object is transformed multiple times			
18.	Origin	The point (0,0); where the x and y axis intersect			
19.	Similar	Same shape but different sizes			

		e.g. similar shapes are enlargements of one another		
20.	Congruent	Shapes that are the same shape and size		
21.	Invariant	A property that does not change after a transformation		
22.	Invariant point	A point that does not change after a tra	nsformation	
23.	Describe	Use key words to accurately state what I resulting image	has happened to an object to make the	
Transfo	ormations	Torontally integer		
	Rotation	To carry out you need to: 1. Draw object on tracing paper 2. Place pencil on 'centre of rotation' and carry out the motion 3. Draw your image on the grid	To describe you need to write: a) "rotation" b) angle of rotation c) direction of rotation d) centre of rotation	
	Reflection	 If required draw the 'line of reflection' Count squares from object to line and repeat the other side of the line for all corners of the object Join points up to create the image 	To describe you need to write: a) "reflection" b) the equation of the line of reflection	
	Translation	 Use vector notation to work out the horizontal and vertical movement Count squares to carry out movement on all corners of the object Join up points to create the image 	To describe you need to write: a) "translation" b) the column vector	
	Enlargement	1. If required cross the coordinate that is the centre of enlargement 2. For each corner count from the line of reflection to the object 3. Multiply this movement by the required scale factor 4. Draw new corners from the centre of enlargement with new	To describe you need to write: a) "enlargement" b) the scale factor c) the centre of enlargement	

-		
	horizontal and vertical	
	movement	
	5. Join up points to create image	

2D shapes and 3D solids - definitions				
1.	Face	A flat surface of a 3D shape		
2.	Edge	A line segment where two faces meet		
3.	Vertex	A point where two or more edges meet		
4.	Vertices	The plural of vertex		
5.	Dimension	The size of something in a particular directions e.g. length, depth	width, height, diameter,	
6.	Plane	A flat 2D surface		
7.	Plane of symmetry	When a solid can be cut exactly in half and a part on one exact reflection of the part on the other side of the plane	side of the plane is an	
8.	Prism	A 3D shape with a uniform cross section		
9.	Pyramid	A 3D shape with a polygon as a base and triangular sides	that meet at the top	
10.	Arc	A section from the circumference (outside) of a circle		
11.	Sector	A region of a circle bound by two radii and an arc		
12.	Congruent	Exactly the same shape and size e.g. identical		
13.	13. Regular A shape where all the sides and angles are the same			
Plans	and elevatio	ns		
14.	Plan	The view from above a solid	V Plan Plan	
15.	Front elevation	The view from the front of a solid	Front Side Side	
16.	Side elevation	The view from a side of the solid		
17.	Clockwise	Following the direction of a clock		
18.	Anticlockwise	Following the opposite direction of a clock		
19.	Compass directions	Terminology needed to accurately describe a location or directions	North Northwest Northeast East Southwest Southwest	

20.	Sketch	An approximate drawing of an object		
20.	JKELLII			
21.	Scale	A ratio that shows the relationship between a length actual length	on a arawing/map and the	
Const	ructions and	loci		
22.	Construct	Draw accurately using a ruler and a pair of compasse	25.	
23.	Construction	Lines or arcs drawn as part of working out		
23.	lines	They must not be rubbed out as they show the work	ing	
24.	Equidistant	The same distance from each other or in relation to o	ther things	
25.	Bisect	Cut in half		
26.	Perpendicular	At a 90 degree angle (right angle)		
27.	Perpendicular bisector	A line that cuts another in half at a right angle		
28.	Angle bisector	A line that cuts an angle exactly in half		
20	Locus	The set of all points that fulfil a certain rule		
29.	Locus	Often drawn as a continuous path		
30.	Loci	The plural of locus		
31.	Region	An area bounded by a loci		
Loci				
32.	Circle	Locus of points that are a fixed distance from a fixed point	2 0 A 0 2	
33.	Parallel line	Locus of points a fixed distance from a fixed line		
34.	Perpendicular bisector	The line that cuts another in half at a right angle	P	

35.	Angle bisector	The locus of points equidistant between two fixed points.	A B	
Consti	ructions			
36.	Angle bisector			
		The state of the s		
37.	Perpendicular bisector			
38.	Constructing 60∘ angles	Step 2 Initial Line angle of 60° creat		
Constructing triangles				
You can draw an accurate triangle when you are given:				
39.	ASA	an angle, side, angle		

40.	SAS	a side, angle, side	
41.	SSS	all three sides	**
42.	RHS	that it has a right angle, the hypotenuse and another side	
Bearir	ngs		
		The direction of a line in relation to the North-South line	075° N Clockwise
43.	Bearing	It is always measured clockwise	310°
		Always measured from the North line	
		Always written using 3 digits	310° Clockwise