

Currel						
Grap	ns - definitions					
1.	Axis	A reference line on a graph				
2.	Axes	Plural of axis				
3.	Quadrant	A quarter of a graph separated by a c	ixes			
		Used to show a position on a coordinat	te plane, (x, y	<i>י</i>)		
4.	Coordinate	First coordinate is the horizontal position (y axis)	on, (x axis) an	d the second is the vertical		
5.	Origin	The point (0,0) on a set of axes				
6.	Plot	Mark a position or positions on a grapl	n			
7.	y intercept	The y value where a graph crosses the	y axis	where x=0		
8.	x intercept	The x value where a graph crosses the	x axis	where y=0		
9.	Parallel	Lines that are equal distance apart the	at if extended	l will never meet		
10	"u=" araph	Constant y coordinate	y = -x	* x = 4 v = x		
10.	y- graph	Will be parallel to the x axis	y=2			
	<i>u</i> » 1	Constant x coordinate	y = -3			
11.	"x=" graph	Will be parallel to the y axis		x=-1		
12.	Linear function	An arithmetic sequence that can be re	presented by	a straight line graph		
13.	Linear equation	An equation that produces a straight I	ine graph			
14.	y = mx = c	The general equation of a straight line	<i>m</i> = gradier	nt and <i>c</i> = y intercept		
Linear	graphs					
		The steepness of a graph		y ↑ ∠ Yrun		
15.	Gradient	$Gradient = \frac{change in y}{change in x} \\ = \frac{rise}{run}$	Thi po gr	is has a This has a sitive negative adient gradient		

16.	Gradient between two points The gradient of line AB = $\frac{y_2 - y_1}{x_2 - x_1}$		$\begin{array}{c} B \\ (x_2, y_2) \\ (x_1, y_1) \end{array}$	
17.	Parallel lines	Have the same gradients		
18.	Mid-point The coordinate half way between two point		If A = (x_1, y_1) and B = (x_2, y_2) the mid-point is $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$	
Real life	e graphs	· · · · · · · · · · · · · · · · · · ·		
19.	Steady speed	Travelling the same distance each minu	ute	
20.	Velocity	Speed in a particular direction		
21.	Rate of change	Shows how a variable changes over tim	ne	
22.	Acceleration	How fast velocity changes; measured in	n m/s² or km/s² etc	
Distanc	e - Time graphs			
23.	Represent a journey			
24.	Vertical axis represe	nts the distance from the starting point		
25.	Horizontal axis repre	esents the time taken	Dista	
26.	Straight lines mean	constant speed	A = steady speed,	
27.	Horizontal lines mea	in no movement	B = no movement,	
28.	Gradient = speed		C = steady speed back to start	
29.	Avero	ige speed = = $\frac{total \ distance}{total \ time}$		
Velocity – Time graphs				
30.	Represents the speed	d at given times	A B	
31.	Straight lines mean	constant acceleration or deceleration	A Metoc	
32.	Horizontal change n constant speed	neans no change in velocity e.g.	A = steady acceleration,	
33.	Positive gradient-= a	acceleration	B = constant speed,	
34.	Negative gradient =	deceleration	a stop	
35.	Distance travelled =	area under the graph		

Transf	ormations - d	lefinitions			
	Transformertiers	Changing a 2D shap	e in some way.		
1.	Iransformation	Rotation	Reflection	Translation	Enlargement
2.	Object	The name given to a	a shape before a transfo	ormation has occurre	ed.
3.	Image	The name given to a	shape after a transform	mation has occurred	1
4.	Rotation	A circular movement	t about a fixed point		
-	Centre of	The fixed point that	the shape has been rot	ated about	
5.	rotation	Written as a coordine	ate (x, y)		
6.	Direction	Clockwise or anticloc	kwise		
7.	Reflection	An image as it would	d be seen in a mirror		
0	Line of	The "mirror line" use	d to perform reflections	5.	
8.	reflection	Written using algebr	aic notation e.g. $y = 3$,	x = -2, y = x or x	/y axis
9.	Translation	The movement of a shape without rotating or flipping it			
		Notation used to represent translations (χ)			
10.	Column vector	x is the horizontal movement			
		y is the vertical move	ement		y/
11.	Resultant vector	The vector that moves the shape to its final position after more than one translation			
12.	Enlargement	A change in size of a	shape (can be bigger a	or smaller)	
13	Scalo factor	The proportions by w	The proportions by which the dimensions of an object will increase/decrease by		
15.		If fractional then the	image will be smaller t	than the object	
14	Centre of	A fixed point to enla	rge an object from		
14.	enlargement	Written as a coordine	ate (x, y)		
15.	Single transformation	Where the object is c	only transformed once		
16.	Combination	Where the object is t	ransformed multiple tir	mes	
17	Origin	The point (0,0); whe	ere the x and y axis inter	rsect	
10	Cincilar	Same shape but diffe	erent sizes		
18.	Similar	e.g. similar shapes ar	e enlargements of one	another	
19.	Congruent	Shapes that are the	same shape and size		
20.	Describe	Use key words to accurately state what has happened to an object to make the resulting image			

Transformations				
21.	Rotation	 To carry out you need to: 1. Draw object on tracing paper 2. Place pencil on 'centre of rotation' and carry out the motion 3. Draw your image on the grid 	To describe you need to write: a) "rotation" b) angle of rotation c) direction of rotation d) centre of rotation	
22.	Reflection	 To carry out you need to: If required draw the 'line of reflection' Count squares from object to line and repeat the other side of the line for all corners of the object Join points up to create the image 	To describe you need to write: a) "reflection" b) the equation of the line of reflection	
23.	Translation	 To carry out you need to: 1. Use vector notation to work out the horizontal and vertical movement 2. Count squares to carry out movement on all corners of the object 3. Join up points to create the image 	To describe you need to write: a) "translation" b) the column vector	
24.	Enlargement	 To carry out you need to: If required cross the coordinate that is the centre of enlargement For each corner count from the line of reflection to the object Multiply this movement by the required scale factor Draw new corners from the centre of enlargement with new horizontal and vertical movement Join up points to create image 	To describe you need to write: a) "enlargement" b) the scale factor c) the centre of enlargement	

Ratio	Ratio and Proportion - definitions				
1.	Ratio	A relationship between two or more quantities	5		
2.	Unit ratio	Used to compare ratios, one of the parts is 1			
		The only time it is permissible to have a decime	al in a ratio		
3.	Equivalent	Ratios that have the same simplified form are	said to be equivalent		
4.	Scale	A ratio that represents the relationship betwee and the actual length	n a length on a drawing or a map		
5.	Proportion	Compares a part with a whole			
6	Direct	Two quantities increase at the same rate	$y \propto x$ y = kx for a constant k		
0.	proportion	Graph is a straight line that goes through the origin	x		
7.	Inverse/indirect proportion	One variable increases at a constant rate as the second variable decreases	$y \propto \frac{1}{x}$ $y = \frac{k}{x} \text{ for a constant } k$ $y = \frac{k}{x}$ $y = \frac{k}{x}$		
8.	Proportional	A change in one is always accompanied by a c	hange in the other		
0	Constant of	Represented by <i>k</i>			
9. proportionality Its value stays the same					
10.	Share	Splitting into parts as defined by a ratio			
11.	Unitary method	Finding the value of 1 item then using this to finitem	nd the value of any number of that		

		Use to work out which products give the best value for money			
Work	ing with ratio	DS			
12.	Simplifying ratio	Divide all parts by the highest common factor All parts in the simplified version must be integers	e.g. 12:4 simplifies to 3:1 (divided by HCF of 4)		
13.	Divide in a given ratio	Divide an amount so the ratio of the final values simplifies to the given ratio	share £20 in the ratio 3:2 £20 £4 £4 £4 £4 £4		

Pythagoras' Theorem				
1	Hunotonuro	The longest side of a right-angled triangle	e c b	
1.	riypotenuse	It is always opposite the right angle	a	
2.	Right- angled triangle	A triangle that contains a right angle		
		$a^2 + b^2 = c^2$	a	
З.	Pythagoras' Theorem	Where c is the hypotenuse		
		Where a and b are the two shorter sides $a^2 + b^2 =$		
4.	To find the hypotenuse (c)	$3^{2} + 4^{2} = C^{2}$ $9 + 10 = C^{2}$ $35 = C^{2}$ $\sqrt{35} = C$ 5	 Square Add Square root 	
5.	To find a short side (a/b)	$a^{2} = 17^{2} - 8^{2}$ $= 289 - 64$ $= 225$ $a = \sqrt{225}$ $= 15$	 Square Subtract Square root 	
Pythagoras' in $a^2 + b^2 + c^2 =$		$a^2 + b^2 + c^2 = d^2$	c a c	
6.	3D	$d^2 - b^2 - c^2 = a^2$		

Trigonometry - Right angled – SOH CAH TOA										
7.	Trigonometry	The ratios be	The ratios between the sides and angles of triangles							
		θ is	the angle	invol	lved				$\sum c$)
	Labelling the	Н	is the hypo	tenu	se		adjacent	hypotent (H)	ise	74
8.	triangle	(O is the opp	oosite	:		$(A) \qquad \qquad H $			
		I	A is the adj	acent				(<i>O</i>)		v
9.	Sine		SOH			C Sin θ	Н	$Sin \theta =$ $\theta = Sin$	$\frac{Opp}{Hyp}$ $\frac{-1}{P} \frac{Opp}{Hyp}$	
10.	Cosine	САН			$\begin{array}{c c} A \\ \hline Cos \theta \\ \hline H \\ \hline \theta = Cos^{-1} \end{array}$		$\frac{Adj}{Hyp}$ $-1 \frac{Adj}{Hyp}$			
11.	Tangent	ΤΟΑ					Tan θ =	$= \frac{Opp}{Adj}$		
							<u> </u>	<u>A \</u>	$\theta = Tar$	$n^{-1} \frac{\partial pp}{Adj}$
			θ	0	0	30°	45°	60°	90°	
			Sin O	C)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
			Cos O	1	L	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
12.	Exact Values		Tan O	C)	$\frac{\sqrt{3}}{3}$	1	√3		
			These can) be f	ounc	Using the second secon	triangles	s: $1 \frac{\sqrt{2}}{45^{\circ}}$	<u>`</u>	
13.	Angle of elevation	Ze			Angl	e of depr	ession	2	d	

Probo	Probability - definitions					
1.	Probability	The extent to which an event is likely to occur Written as a fraction, decimal or percentage	For equally likely outcomes the probability that an event will happen is $P = \frac{number \ of \ successful \ outcomes}{total \ number \ of \ possible \ outcomes}$			
2.	Theoretical probability	Calculated without doing an experiment	ulated without doing an experiment			
		Probabilities based on the data collected during an experiment				
3.	Experimental probability	Also known as estimated probability	$estimated \ probability = \frac{frequency \ of \ event}{total \ frequency}$			
		The more trials you do the more reliable your set of results				
4.	P() notation	P() mean s the probability of the thing inside	e the brackets happening e.g. P(tails)			
5.	Experiment	A repeatable process that gives rise to a num	nber of outcomes			
6.	Relative frequency	In an experiment, how often something happens as a proportion of the number of trials				
	- - - - - - - - - -	You can predict the number of outcomes you will get using relative frequency				
7.	Predictions	Predicted number of outcomes = probability x number of trials				
8.	Event	A collection of one or more outcomes				
9.	Independent	When one event has no effect on another	Here P(A and B) = P(A) x P(B)			
10.	Dependent	When the outcome of one event, changes the	e probability of the next event			
11.	Exhaustive	Events are exhaustive if they cover all possibl	le outcomes			
12.	Biased	Unfair				
13.	Unbiased	Fair				
14.	Sample space	The set of all possible outcomes				
15.	Sample space diagram	A diagram showing all possible outcomes from an experiment $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
16.	Venn diagram	Can be used to represent events graphically				

		Frequencies or probabili regions	A 0.4 0.3 0.2 0.1			
17.	A ∩ B	A intersection B All elements in A and B		A		
18.	A ∪ B	A union B All the elements in A OR B OR both		A		
19.	Α'	Complement of A Not in A		A		
	Marchara III.	Events that have no out				
20.	exclusive	Here P(A or B) = P(A) + P(B)		P(A or B) = P(A) + P(B)		
21.	Tree diagram	Used to show the outcor events happening in suc	nes of two (or more) cession	5 P Base 3 Red 3 Red 3 Red 3 Red 8 Red		
22.	AND rule	Multiply the probabilities				
23.	OR rule	Add the probabilities				
	Conditional	The probability of a dep	oendent event			
24.	probability	The probability of a seco first outcome	ond outcome depends on wl	nat has already happened in the		

Multip	olicative reas	oning – definitions and formulae	
1.	Proportion	Compares a part with a whole	
2.	Proportional	A change in one is always accompanied by a change	in another
3.	Ratio	A relationship between two or more quantities	
4.	Compound measure	Combine measures of two different quantities	
		The mass of a substance contained in a certain volume	
5.	Density	Usually measured in g/cm ³ or kg/m ³	M ÷T÷
		$density = \frac{mass}{volume}$	∕ D ×́ V ∖
6.	Velocity	Speed in a given direction	Usually measured in m/s
7.	Acceleration	The rate of change of velocity	Usually measured in m/s ²
		The distance travelled in an amount of time	\land
8.	Speed	Usually measured in m/s, mph or km/h	
		$speed = rac{distance}{time}$	∕ T × S ∖
		The force applied over an area	
9.	Pressure	$pressure = \frac{force}{area}$	P A
		Usually measured in N/m ²	
Perce	ntages		
10.	Percentage	Means 'out of 100'	
44	Multiplian	A decimal you multiply by to represent a percentage	
11. Multiplier To use a multiplier to find a percentage, divident of the second			percentage by 100, then

	Percentage	Calculate the percentage and add onto the original			
12.	increase	Or use a multiplier	$amount \times \frac{100 + \% \text{ increase}}{100}$		
		Calculate the percentage and subtract from	m the original		
13.	Percentage decrease	Or use a multiplier	$amount \times \frac{100 - \% \text{ increase}}{100}$		
14.	Percentage change	Change Origine	$\frac{e}{ul} \times 100$		
15.	Express one number as a percentage of another	$\frac{Number 1}{Number 2} \times 100$			
		Use when asked to find the priginal amou	nt after a percentage increase or decrease.		
	Reverse	Original Value x Multiplie	r = New Value		
16.	percentage	Original Value = New Value			
		Multiplier			
17.	Interest	A fee paid for borrowing money or money earnt through investing.			
18.	Simple interest	Interest that is calculated as a percentage of the original	I = Prt I – Interest P – Original amount r – interest rate t - time		
	Compound	When interest is calculate on the original amount and any previous interest	$P\left(1+\frac{R}{100}\right)^n$		
19.	interest	Or $Original \times Multiplier^{time}$	R – Interest rate n – the number of interest periods (e.g. yrs)		
20.	Тах	A financial charge placed on sales or savings by the government e.g. VAT			
21.	Loss	Income minus all expenses, resulting in a negative value			
22.	Profit	Income minus all expenses, resulting in a positive value			
23.	Depreciation	A reduction in the value of a product over time			

24.	Annual	Means yearly
25.	Per annum	Means per year
26.	Salary	A fixed regular payment, often paid monthly

2D shapes and 3D solids - definitions					
1.	Face	A flat surface of a 3D shape			
2.	Edge	A line segment where two faces meet			
3.	Vertex	A point where two or more edges meet			
4.	Vertices	The plural of vertex			
5.	Dimension	The size of something in a particular directions e.g. length, depth	width, height, diameter,		
6.	Plane	A flat 2D surface			
7.	Plane of symmetry	When a solid can be cut exactly in half and a part on one exact reflection of the part on the other side of the plane	When a solid can be cut exactly in half and a part on one side of the plane is an exact reflection of the part on the other side of the plane		
8.	Prism	A 3D shape with a uniform cross section			
9.	Pyramid	A 3D shape with a polygon as a base and triangular sides	that meet at the top		
10.	Arc	A section from the circumference (outside) of a circle			
11.	Sector	A region of a circle bound by two radii and an arc			
12.	Congruent	Exactly the same shape and size e.g. identical			
13.	Regular	A shape where all the sides and angles are the same			
Plans	and elevatio	ns			
14.	Plan	The view from above a solid	Plan Plan		
15.	Front elevation	The view from the front of a solid	Front Side		
16.	Side elevation	The view from a side of the solid			
17.	Clockwise	Following the direction of a clock			
18.	Anticlockwise	Following the opposite direction of a clock			

19.	Compass directions	Terminology needed to accurately describe a location of directions	Or West Southwest South	
20.	Sketch	An approximate drawing of an object		
21.	Scale	A ratio that shows the relationship between a length o actual length	n a drawing/map and the	
Constr	ructions and	loci		
22.	Construct	Draw accurately using a ruler and a pair of compasses		
22	Construction	Lines or arcs drawn as part of working out		
25.	lines	They must not be rubbed out as they show the working		
24.	Equidistant	The same distance from each other or in relation to oth	ner things	
25.	Bisect	Cut in half		
26.	Perpendicular	At a 90 degree angle (right angle)		
27.	Perpendicular bisector	A line that cuts another in half at a right angle		
28.	Angle bisector	A line that cuts an angle exactly in half		
20	Locus	The set of all points that fulfil a certain rule		
27.		Often drawn as a continuous path		
30.	Loci	The plural of locus		
31.	Region	An area bounded by a loci		
Loci				
32.	Circle	Locus of points that are a fixed distance from a fixed point		
33.	Parallel line	Locus of points a fixed distance from a fixed line		

34.	Perpendicular bisector	The line that cuts another in half at a right angle	P
35.	Angle bisector	The locus of points equidistant between two fixed points.	A B C C C C C C C C C C C C C C C C C C
Const	ructions		
36.	Angle bisector		
37.	Perpendicular bisector		
38.	Constructing 60° angles	Step 1 Step 1 Step 1 Step 1 Step 1 Step 2 Step 2 St	Line of reated

Constructing triangles				
You co	an draw an d	accurate triangle when you are given:		
39.	ASA	an angle, side, angle		
40.	SAS	a side, angle, side		
41.	SSS	all three sides	*	
42.	RHS	that it has a right angle, the hypotenuse and another side		
Bearir	ngs			
		The direction of a line in relation to the North-South line	075°	
43.	Bearing	It is always measured clockwise	310°	
		Always measured from the North line		
		Always written using 3 digits	310° Clockwise	

Quadratics - definitions				
1.	Expression	One or a group of terms		
2.	Quadratic expression	An expression where the high	nest index is 2	e.g. $2x^2 + 2x + 2$
з	Function	A relation of expression involving one or more variables		
5.	Also a rule for working out values of y given values for x			
		Solutions to a quadratic equ $ax^2 + bx + bx$	ation/function c = 0	4
4.	Roots	The x values where the grap	h crosses the x axis	2 1 1 2 3 4
		A quadratic can have 0, 1 or	2 roots	4
		Curved shaped called a parc	abola	$y \uparrow y \uparrow y$
5.	Quadratic graph	A positive x^2 will give a 'U' shape		
	-	A negative x² will give a '∩' shape		$y = -x^{2}$
6. Tu	Turning pointr	The point where a curve turn direction	ns in the opposite	$\square \square \square$
		Can be called a minimum or	⁻ maximum	Maximum Minimum
Expar	nding double	brackets		
7.	Everything in th	ne first bracket must be multip	blied by everything in t	he second
		Grid method		FOIL method
	Cx+4)(x+7)	FIRST : $(x+3)($	$(x-4)$ gives $x \times x = x^2$
8.	X x +4 .		DUTER : $(x+3)($	$(x-4)$ gives $x \times (-4) = -4x$
	x x* +7 72e	4 <u>x</u> - 28	INNER : $(x+3)$	$(x-4)$ gives $3 \times x = 3x$
	$= x^2$	$+ \frac{1+x+7x+28}{1+11x+28}$	LAST : $(x+3)$	$(x-4)$ gives $3 \times (-4) = -12$
Facto	rising a quad	lratic expression	1	

		Multiply to 5		
		Factorise $x^2 + 5x + 6 \leftarrow \text{Add t}$	to 6	
9.	Factorising a quadratic in the form of $ax^2 + bx + c$	2 and 3 add to 5 2 and 3 multiply to 6		
		(x+2)(x+3)		
		Check: $(x + 2)(x + 3) = x^2 +$	5x + 6	
	Difference of two squares	A special type of quadratic which only has two terms.		
		One term is subtracted from the other		
10.		$x^2 - 25 = x^2 - 5^2 = (x^2 - 5^2)$	x + 5)(x - 5)	
		$y^2 - 49 = y^2 - 7^2 = (y + 7)(y - 7)$		
		$a^2 - 16 = a^2 - 4^2 = (a^2 - 4^2) = (a^2 $	a + 4)(a - 4)	
Solving	quadratic equations/func	tions		
11.	By factorising	Take you factorised form and set each bracket equal to zero	$x^{2} + 4x + 3 = 0$ (x + 3)(x + 1) = 0	
		Solve each separate linear equation to find the solutions/roots	x + 3 = 0 $x + 1 = 0So So x = -3 x = -1$	

Circles - definitions and formulae				
1.	Diameter	A straight line from edge to edge passing through the centre		
		Double the size of the radius)	
2	Radius	A straight line from the centre to the edge		
2.		Half the size of the diameter		
3.	Radii	The plural of radius		
4.	Circumference	Distance around the outside of the circle		
5.	Arc	Part of the circumference		
6.	Chord	A line within a circle where each end touches the edge		
7.	Sector	The region created by two radii and an arc		
8.	Segment	The region created by a chord and an arc		
9.	Tangent	A line outside the circle which only touches the circumference at one point		
10.	Semi -circle	Half a full circle		
Area and circumference of circles formulae				
11.	Ρi (π)	Constant ratio linking the circumference and diameter of a circle		
		3.14159265		

12.	Circumference of a circle	$C = \pi d$	Alternatively, using relationship between r and d $C = 2\pi r$
13.	Arc length	$\frac{x}{360} \times \pi d$	Where x is the angle at the centre
14.	Perimeter of a sector	$\left(\frac{x}{360} \times \pi d\right) + 2r$	This represents the arc length plus the two radii
15.	Area of a circle	$A = \pi r^2$	
16.	Area of a sector	$\frac{x}{360} \times \pi r^2$	
Cylind	lers, pyramid	s, cones and spheres	
17.	Volume of a cylinder	$V = \pi r^2 h$	
18.	Surface area of a cylinder	Total surface area = $2\pi r^2 + \pi dh$	
19.	Volume of a pyramid	$V = \frac{1}{3} \times area \ of \ base \times perpendicular \ height$	area of base
20.	Volume of a cone	$V = \frac{1}{3} \times \pi r^2 h$	
21.	Surface area of a cone	Curved surface area = πrl	h
		Total surface area = $\pi r^2 + \pi r l$	
22.	Volume of a sphere	$V = \frac{4}{3} \times \pi r^3$	
23.	Surface area of a sphere	Total surface area = $4\pi r^2$	\bigcirc