Factorising a quadratic expression

1.	Factorising a quadratic in the form of $a x^{2}+$ $b x+c$	Multiply to 5 Factorise $x^{2}+5 x+6-$ Add to 6 2 and 3 add to 5 2 and 3 multiply to 6 $(x+2)(x+3)$ Check: $(x+2)(x+3)=x^{2}+5 x+6$	
2.	Difference of two squares	A special type of quadratic which only has two terms.	
		One term is subtracted from the other	
		$\begin{aligned} & x^{2}-25=x^{2}-5^{2} \\ & y^{2}-49=y^{2}-7^{2} \\ & a^{2}-16=a^{2}-4^{2} \end{aligned}$	$\begin{aligned} & =(x+5)(x-5) \\ & =(y+7)(y-7) \\ & =(a+4)(a-4) \end{aligned}$
3.	Factorising a quadratic in the form of $a x^{2}+$ $b x+c$ where $a>1$	By inspection $\begin{aligned} & 4 x^{2}+20 x+9 \\ & (4 x+9)(x+1) \\ & (4 x+3)(x+3) \\ & (2 x+9)(2 x+1) \\ & (2 x+3)(2 x+3) \end{aligned}$	Splitting the middle $\begin{gathered} 4 x^{2}+20 x+9 \\ 4 x^{2}+2 x+18 x+9 \\ 2 \boldsymbol{x}(2 x+1)+\mathbf{9}(2 x+1) \\ (2 x+1)(2 x+9) \end{gathered}$

Solving quadratic equations/functions

4.	By factorising	Take you factorised form and set each bracket equal to zero Solve each separate linear equation to find the solutions/roots	$\begin{gathered} x^{2}+4 x+3=0 \\ (x+3)(x+1)=0 \\ x+3=0 \quad x+1=0 \\ \text { So } \quad \text { So } \\ x=-3 \quad n=-1 \end{gathered}$
5.	The quadratic formula	A formula to find the solutions a quadratic equation in the form of $a x^{2}+b x+c$	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

6.	Completing th	quare	$x^{2}+b x+c$ can be writt the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c$		If a is greater than 1 this will need to be factored out first!
Simultaneous equations					
7.	Simultaneous equations	Two equations where there are two unknown which have the same value in each			
Solving simultaneous equations					
		Add or subtract one equation from another to eliminate a variable			
8.	Elimination	If the matching coeefieicents have the same sign then subtract the equations \checkmark Same \checkmark Subtract \checkmark Substitute			the matching coefficients have different ns then add the equations \checkmark Different \checkmark Add \checkmark Substitute
9.	Substitution	Rearrange so the subject of one equation is a single variable			
		Substitute this into the second equation			
10.	Graphically	The points of intersection of two graphs are the solutions to the simultaneous equations			

Inequalities

11.	Inequality	The relationship between two expressions that are not equal	
12.	$=$	Equal to	
13.	\#	Not equal to	
14.	<	Less than	$$
15.	>	Greater than	$x>5$
16.	\leq	Less than or equal to	$x \leq 5$
17.	\geq	Greater than or equal to	$x \geq 3$
18.	Inclusive	Gives a finites rnage of solutions	e.g. $3<x \leq 8$
19.	Exclusive	Gives an infinite range of solutions	e.g. $x>5 \quad-4 \leq x$
20.	Integer	A whole number that can be positive negative or zero	
21.	Solve	Inequalities are solved in the same way as solving equations	
		Only exception: if you multiply or divide by a negative number you must swap the sign e.g. less than to greater than	
22.	List integers solutions	Give the integers that satisfy the inequality	
		e.g. $x>6$ integer solutions are $6,7,8 . \ldots$.	
		e.g. $-5<x \leq 5$ integer solutions are $-4,-3,-2,-1,0,1,2,3,4,5$	
23.	Represent on a number line	An empty circle shows the value is not included	\square
		A shaded circle shows the value is included	
		An arrow shows that the solution continues to infinity	

24. | Inequalities |
| :---: |
| On graphs |

Probability - definitions				
1.	Probability	The extent to which an event is likely to occur	For equally likely outcomes the probability that an event will happen is$P=\frac{\text { number of successful outcomes }}{\text { total number of possible outcomes }}$	
		Written as a fraction, decimal or percentage		
2.	Theoretical probability	Calculated without doing an experiment		
3.	Experimental probability	Probabilities based on the data collected during an experiment	$\text { estimated probability }=\frac{\text { frequency of event }}{\text { total frequency }}$	
		Also known as estimated probability		
		The more trials you do the more reliable your set of results		
4.	P() notation	P () mean s the probability of the thing inside the brackets happening e.g. P (tails)		
5.	Experiment	A repeatable process that gives rise to a number of outcomes		
6.	Relative frequency	In an experiment, how often something happens as a proportion of the number of trials	$\underline{\text { Relative frequency }=\frac{\text { how often something happens }}{\text { all outcomes }}}$	
7.	Predictions	You can predict the number of outcomes you will get using relative frequency		
		Predicted number of outcomes $=$ probability \times number of trials		
8.	Event	A collection of one or more outcomes		
9.	Independent	When one event has no effect on another	Here $P(A$ and $B)=P(A) \times P(B)$	
10.	Dependent	When the outcome of one event, changes the probability of the next event		
11.	Exhaustive	Events are exhaustive if they cover all possible outcomes		
12.	Biased	Unfair		
13.	Unbiased	Fair		
14.	Sample space	The set of all possible outcomes		
15.	Sample space diagram	A diagram showing all possible outcomes from an experiment		
16.	Venn diagram	Can be used to represent events graphically		

12.	Units of length	Metric units of length are millimetres, centimetres, metres and kilometres		
		$10 \mathrm{~mm}=1 \mathrm{~cm}$	$100 \mathrm{~cm}=1 \mathrm{~m}$	$1000 \mathrm{~m}=1 \mathrm{~km}$
13.	Units of area	Metric units of length are millimetres ${ }^{2}$, centimetres ${ }^{2}$, metres 2 and kilometres 2		
		$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$		
14.	Units of volume	Metric units of length are millimetres ${ }^{3}$, centimetres ${ }^{3}$, metres ${ }^{3}$ and kilometres ${ }^{3}$		
		$1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3}$		
		$1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$		
15.	Units of capacity	Metric units of capacity are millilitres, centilitres and litres		
		$10 \mathrm{ml}=1 \mathrm{cl}$		$1000 \mathrm{~m} /=100 \mathrm{c}=1 /$
16.	Capacity and volume conversions	$1 \mathrm{~cm}^{3}=1 \mathrm{~m} /$		$1000 \mathrm{~cm}^{3}=1 /$

23.	Reverse percentage	Use when asked to find the priginal amount after a percentage increase or decrease.	
		$\begin{aligned} & \text { Original Value } \times \text { Multiplier }=\text { New Value } \\ & \text { Original Value }=\frac{\text { New Value }}{\text { Multiplier }} \end{aligned}$	
24.	Interest	A fee paid for borrowing money or money earnt through investing.	
25.	Simple interest	Interest that is calculated as a percentage of the original	$\begin{aligned} & \quad \text { I = Prt } \\ & \text { I - Interest } \\ & \text { P - Original amount } \\ & \text { r - interest rate } \\ & t \text { - time } \\ & \hline \end{aligned}$
26.	Compound interest	When interest is calculate on the original amount and any previous interest Or \quad Original \times Multiplier ${ }^{\text {time }}$	$\begin{aligned} & \qquad \boldsymbol{P}\left(\mathbf{1}+\frac{\boldsymbol{R}}{\mathbf{1 0 0}}\right)^{n} \\ & \mathrm{P} \text { - Original amount } \\ & \mathrm{R} \text { - Interest rate } \\ & \mathrm{n} \text { - the number of interest periods (e.g. yrs) } \end{aligned}$
27.	Tax	A financial charge placed on sales or savings by the government e.g. VAT	
28.	Loss	Income minus all expenses, resulting in a negative value	
29.	Profit	Income minus all expenses, resulting in a positive value	
30.	Depreciation	A reduction in the value of a product over time	
31.	Annual	Means yearly	
32.	Per annum	Means per year	
33.	Salary	A fixed regular payment, often paid monthly	

Pro	tion graphs		
34.	Direct proportion	Two quantities increase at the same rate Graph is a straight line that goes through the origin	$y \propto x$ $y=k x$ for a constant k
35.	Inverse/indirect proportion	One variable increases at a constant rate as the second variable decreases	$y \propto \frac{1}{x}$ $y=\frac{k}{x}$ for a constant k
36.	Constant of proportionality	Represented by k	
		Its value stays the same	

Similarity and Congruence in 2D and 3D

| 1. | Congruent | Exactly the same shape and size | |
| :---: | :--- | :--- | :--- | :--- |
| 2. | Similar | Two shapes where one is an enlargement of another | |
| | | Corresponding angles are equal | Corresponding sides are in the same ratio |
| 3. | Scale factor | The proportion by which the dimensions of an object will increase or decrease by | |
| 4. | Linear scale
 factor (LSF) | The scale factor/ratio of sides of two
 similar shapes | LSF $=\frac{\text { length from large shape }}{\text { length from small shape }}$ |
| 5. | Area scale
 factor (ASF) | The scale factor ratio of areas/surface
 areas of two similar shapes | ASF $=\frac{\text { Area of large shape }}{\text { lArea of small shape }}$ |
| 6. | Volume scale
 factor (VSF) | The scale factor/ratio of volumes of two
 similar shapes | $V S F=\frac{\text { volume of large shape }}{\text { volume of small shape }}$ |

Two triangles are congruent if...

7.	SSS	All 3 sides are equal	
8.	SAS	2 sides and the included angle are equal	
9.	ASA	2 angles and the corresponding side are equal	
10.	RHS	The right angle, hypotenuse and one other side are equal	

Similar shapes

11.	Lengths	$\frac{\overline{E F}}{\overline{B C}}=\frac{12}{6} \div \frac{6}{6}=\frac{2}{1}=2 \frac{\overline{B C}}{\overline{E F}}=\frac{6}{12}=$	The scale factor from small to big is 2.
12.	Areas		$\begin{aligned} \mathrm{LSF} & =9 \div 6 \\ & =1.5 \\ \mathrm{ASF} & =1.5^{2} \end{aligned}$ So area of bigger shapes is 6×1.5^{2}
13.	Volumes	Volume $=$? Volume $-2500 \mathrm{~cm}^{3}$	$\begin{aligned} \text { LSF } & =20 \div 8 \\ & =2.5 \\ U S F & =2.5^{2} \end{aligned}$ So volume of smaller shape is $2500 \div \mathbf{2 . 5}{ }^{2}$

Graph transformations

1.	$y=-f(x)$	Reflection in the x axis	y coordinates are multiplied by -1			
2.	$y=f(-x)$	Reflection in the y axis	x coordinates are divided by -1			
3.	$y=-f(-x)$	Reflection in the x axis and then in the y axis	Equivalent to rotation of $180 \circ$ about the origin			
coordinates are multiplied by -1 AND x						
coordinates are divided by -1				$	$	
:---						
5.						
6. $y=f(x+a)$						

Exact Trig values

8.	Exact Values	θ	0°	30°	45°	60°	90°
		$\operatorname{Sin} \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
		$\operatorname{Cos} \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
		$\operatorname{Tan} \Theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	
		These can be found using the triangles:					

Trigonometric graphs

9.

Sine graph

		Crosses the x-axis at $-180^{\circ}, 0^{\circ}, 180^{\circ}, 360^{\circ} \ldots$	
		Maximum of 1 and minimum of -1	-270
10.	Cosine graph	Repeats every 360	
		Crosses x-axis at -90 ${ }^{\circ} 90^{\circ}, 270^{\circ}, 450^{\circ}$...	
		Maximum of 1 and minimum of -1	
11.	Tangent graph	Repeats every $180{ }^{\circ}$	
		Crosses x-axis at -180 ${ }^{\circ} \mathbf{0}^{\circ}, 180{ }^{\circ}, 360^{\circ} \ldots$	
		Has no maximum or minimum value	
		Has vertical asymptotes at $x=-90^{\circ}, x=90^{\circ}$, $x=270^{\circ}$...	

Non - right angled trigonometry

12.	Cosine rule	Finding sides		Finding angles
		$\begin{aligned} & a^{2}=b^{2}+c^{2}-2 b c \\ & b^{2}=a^{2}+c^{2}-2 a c \\ & c^{2}=a^{2}+b^{2}-2 a b \end{aligned}$	s A	$\begin{aligned} & \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\ & \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\ & \cos C=\frac{a^{2}+b^{2}-c}{2 a b} \end{aligned}$
13.	Sine rule	Finding sides $\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$	Finding angles $\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}$	Ambiguous case Can sometimes produce two possible solutions for missing angles $\sin \theta=\sin (180-\theta)$

14.	Area of a triangle	$\begin{aligned} & \text { Area }=\frac{1}{2} a b \sin C \\ & \text { Area }=\frac{1}{2} b c \sin A \\ & \text { Area }=\frac{1}{2} a c \sin B \end{aligned}$	

Collecting data

| 1. | Population | The whole set of items that are of interest e.g. all the people in a school |
| :---: | :--- | :--- | :--- | :--- | (

Random sampling techniques

9.	Simple random sampling	Where every member of the sampling frame has an equal chance of being selected.	
		Advantages - Free of bias - Easy and cheap to implement for small populations and samples	Disadvantages - Not suitable when population size or sample size is large - A sampling frame is needed

10.	Systematic sampling	Where required elements are chosen at regular intervals from an ordered list	
		Advantages - Simple and quick to use - Suitable for large samples and populations	Disadvantages - A sampling frame is needed - It can introduce bias if the sampling frame is not random
11.	Stratified sampling	The population is divided into mutually exclusive strata (e.g. males and females) and a random sample is taken from each	
		Number sample in a stratum$=\frac{\text { number in stratum }}{\text { number in population }} \times \text { overall sample size }$	
		Advantages - Sample accurately reflects the population structure - Guarantees proportional representation of groups within a population	Disadvantages - Population must be clearly classified into distinct strata - Selection within each stratum suffers from the same disadvantages as simple random sampling
Non- random sampling techniques			
		A researcher selects a sample that reflects the characteristics of the whole population	
12.	Quota sampling	Advantages - Allows a small sample to be representative of the whole population - No sampling frame required - Quick, easy and inexpensive - Allows for easy comparison between different groups in a population	Disadvantages - Non random sampling can introduce bias - Population must be divided into groups which can be costly or inaccurate - Increasing scope of study increases number of groups, which adds time and expense - Non-responses are not recorded as such
13.	Opportunity sampling	Taking the sample from people who are available at the time the study is carried out and who fit the criteria you are looking for	
		Also known as 'convenience sampling'	
		Advantages - Easy to carry out - Inexpensive	Disadvantages - Unlikely to provide a representative sample - Highly dependent of the individual researcher

Types of data

14.	Quantitative data (or variables)	Data (or variables) associated with numerical observations e.g. shoe size
15.	Qualitative date (or variables)	Data (or variables) associated with non-numerical observations e.g. hair colour
16.	Continuous variable (data)	A variable that can take any value in a given range e.g. time
17.	Discrete variable (data)	A variable that can take only specific values in a given range e.g. number of girls in a family

Representing and interpreting data

18.	Class	Another name for the groups in a grouped frequency table
19.	Class boundaries	The maximum and minimum values that belong in each class
20.	Class width	The difference between the upper and lower class boundaries
21.	Midpoint	The average of the class boundaries
22.	Outlier	An extreme value that lies outside the overall pattern of the data
23.	Anomalies	Any outliers that should be removed from the data because it is an error and it would be misleading to keep it in

Types of graphs/charts

27.	Upper class boundary	The highest possible value in each class	
28.	Cumulative frequency graph	A graph with the data values on the x axis and the cumulative frequency on the y axis	
29.	Histogram	A chart where the area of each bar is proportional to the frequency of each class Area of each bar $=k \times$ frequency $(k=$ 1 is the easiest value to use when drawing a histogram)	
31.	Frequency density	The height of each bar on a histogram	If $\boldsymbol{k}=\mathbf{1}$ then: $\text { frequency density }=\frac{\text { frequency }}{\text { class width }}$
31.	Frequency polygon	Can be formed by joining the middle of each bar in a histogram	

Quadratics - definitions

2.	Roots	Solutions to a quadratic equation/function $a x^{2}+b x+c=0$	
		The x values where the graph crosses the x axis	
		A quadratic can have 0,1 or 2 roots	
3.	Quadratic graph	Curved shaped called a parabola	
		A positive x^{2} will give a ' u ' shape	
		A negative x^{2} will give a ' n ' shape	
4.	Turning points	The point where a curve turns in the opposite direction	

Using the discriminant

5.	Discriminant	The part of the quadratic formula under the square root	$b^{2}-4 a c$
6.	$b^{2}-4 a c>0$	Two distinct real roots	
7.	$b^{2}-4 a c=0$	One repeated real root	
8.	$b^{2}-4 a c<0$	No real roots	

Skletching quadratic graphs

9.

General shape	A positive x^{2} will give a ' U ' shape A negative x^{2} will give a ' n ' shape	
Find the roots	By factorising or using the formula	Equation must be equal to zero
Find the y intercept	Substitute $x=0$ zero into the equation	
Calculate the coordinates of the turning point	Complete the square to get in the form of $\mathbf{f (x) = a (x + p) ^ { 2 } + \boldsymbol { q }}$	Coordinates of turning point are then $\quad(-p, q)$

Solving quadratic inequalities

10.	Solve (by factorising or using quadratic formula) $a x^{2}+b x+c=0$	e. 9 $\begin{gathered} x^{2}-2 x+8=0 \\ (x+4)(x-2)=0 \\ x=-4 \text { or } x=2 \end{gathered}$
11.	Sketch the graph clearings showing the roots and parabola shape	
12.	Check whether your quadratic was greater than or less than zero then highlight parts of the graphs that satisfy this	$x^{2}-2 x+8>0$ Therefore $x<-4$ or $x>2$ is the solution

15.	Cyclic quadrilateral	A quadrilateral with all four vertices on the circumference of a circle	

Circle Theorems

16.	Angles at the centre	Angle at the centre is twice the angle at the circumference	
17.	Angles in the same segment	Angles at the circumference in the same segment are equal	
18.	Angles in a semicircle	Angle in a semi-circle is 90°	
19.	Cyclic quadrilateral	Opposite angles of a cyclic quadrilateral add to 180°	
20.	Tangent to a circle	Angle between a tangent and radius is 90° Two tangents from the same point to a circle are equal in length	

21.	Alternate segment	Angles in the alternate segment are equal	

Circle geometry

22.	Equation of a circle	With centre $(0,0)$ and radius, r $x^{2}+y^{2}=r^{2}$	With centre (a, b) and radius, r $(x-a)^{2}+(y-b)^{2}=r^{2}$
23.	Intersections between circles and lines	- No intersection - Once (where the line touches the circle - Twice (where the line crosses the circle)	
24.	Gradient of a radius to a circle	Gradient (m) of radius to a point (x, y) with an equation $x^{2}+y^{2}=r^{2}$ is $\frac{y}{x}$	
25.	Gradient of tangent to a circle	Gradient (m) of tangent to a point (x, y) is the negative reciprocal of the gradient of the radius at the same point	

Surds

1.	Surd	A number written exactly using square or cube roots	e.g. $\sqrt{ } 5$ is a surd but $\sqrt{25}$ is not because it has a value of 5
2.	Rationalise	Eliminate a surd	
3.	Multiply	$\sqrt{a} \times \sqrt{b}=\sqrt{a b}$ and $\sqrt{a} \times \sqrt{a}=a$	e.g. $\sqrt{2} \times \sqrt{3}=\sqrt{6}$ and $\sqrt{3} \times \sqrt{3}=3$
4.	Divide	$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$	e.g. $\frac{\sqrt{6}}{\sqrt{2}}=\sqrt{\frac{6}{2}}=\sqrt{3}$
5.	Add and subtract	$\sqrt{a}+\sqrt{b}$ cannot simplify	e.g. $\sqrt{3}+\sqrt{2}=\sqrt{3}+\sqrt{2}$
		But $\sqrt{a}+\sqrt{a}=2 \sqrt{a}$	e.g. $5 \sqrt{2}-2 \sqrt{2}=3 \sqrt{2}$
6.	Simplify	$\sqrt{50}=\sqrt{25 \times 2}=\sqrt{25} \times \sqrt{2}=5 \sqrt{2}$	e.g. $\sqrt{50}+\sqrt{18}=5 \sqrt{2}+3 \sqrt{2}=8 \sqrt{2}$
7.	Rationalise the denominator	Multiply numerator and denominator (use equivalent fractions) by whatever will result in the denominator simplifying to an integer.	$\text { e.g. } \frac{1}{\sqrt{7}}=\frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{7}{\sqrt{7}}$
			e.g. $\frac{1}{5+\sqrt{2}}=\frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}}=\frac{5-\sqrt{2}}{3}$

Algebraic Fractions

8.	Simplifying	Cancel common factors (factorising if needed)	$\frac{(x-3)(x+2)}{(x+2)(x+5)}=\frac{x-3}{x+5}$
9.	Adding and subtracting	Find a common denominator	$\frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{b c}{b d}=\frac{a d+b c}{b d}$
10.	Multiplying	Multiply as with normal fraction	$\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$
11.	Dividing	Divide as with normal fractions	$\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$

Changing the subject of a formula

Always use inverse operations to isolate the term you have been asked to make the subject

If the letter you want as the subject appears twice you will need to factorise
12.

Make u the subject:
$v=u+a t$
$(-a t)$
$v-a t=u$
So
$u=v-a t$

$$
\begin{gathered}
\text { Make } u \text { the subject: } \\
v^{2}=u^{2}+2 a s \\
(-2 a s) \\
v^{2}-2 a s=u^{2} \\
(\sqrt{ }) \\
\sqrt{v^{2}-2 a s}=u \\
\text { So } \\
u=\sqrt{v^{2}-2 a s}
\end{gathered}
$$

Make m the subject:
$I=m v-m u$
(Factorise)
$I=m(v-u)$
$(\div(\boldsymbol{v}-\boldsymbol{u}))$
$\frac{I}{v-u}=m$

So
$m=\frac{I}{v-u}$

Algebraic proof

13.	Proof	A logical argument fro a mathematical statement
14.	Counter example	Use an example that does not fit the statement to prove the statement is incorrect

Notation to use in proof

15.	n	Any number
16.	$\mathrm{n}+1$	Consecutive number
17.	2 n	Even number
18.	$2 \mathrm{n}+2$	Consecutive even number to 2 n
19.	$2 \mathrm{n}+1$	Odd number
20.	$2 \mathrm{n}+3$	Consecutive odd number to $2 \mathrm{n}+1$
21.	an	A multiple of a e.g. 3n represents a multiple of 3

Functions

22.	Function	A rule for working out values of y (output) given values of x (input)		
23.	$f(x)$	Function notation read as 'f of x ', where x is the input into the function		
24.	Composite functions	$f g(x)$	Evaluate $g(x)$ first then substitute this into $f(x)$	
25.		$g f(x)$	Evaluate $f(x)$ first then substitute this into $g(x)$	
26.	Inverse fuction	$f^{-1}(x)$	Reverses the effect of the original function	$\begin{gathered} f(x)=3 x+2 \\ f^{-1}(x)=\frac{x-2}{3} \end{gathered}$

