

| Factorising a quadratic expression |                                                 |                                                                                     |                                                                                        |  |  |  |
|------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
|                                    |                                                 | Multiply to 5                                                                       |                                                                                        |  |  |  |
|                                    |                                                 | Factorise $x^2 + 5x + 6 \leftarrow \text{Add t}$                                    | o 6                                                                                    |  |  |  |
| 1.                                 | Factorising a quadratic in the form of $ax^2$ + | 2 and 3 add to 5                                                                    |                                                                                        |  |  |  |
|                                    | bx + c                                          | (x + 2)(x + 2)                                                                      |                                                                                        |  |  |  |
|                                    |                                                 | (x + 2)(x + 3)                                                                      | Tru L C                                                                                |  |  |  |
|                                    |                                                 | Check: $(x + 2)(x + 3) = x^2 + 5x + 6$                                              |                                                                                        |  |  |  |
|                                    |                                                 | A special type of quadratic which only                                              | has two terms.                                                                         |  |  |  |
|                                    | Difference of two                               | One term is subtracted from the other                                               |                                                                                        |  |  |  |
| 2.                                 | squares                                         | $x^2 - 25 = x^2 - 5^2$                                                              | = (x + 5)(x - 5)                                                                       |  |  |  |
|                                    |                                                 | $y^2 - 49 = y^2 - 7^2$                                                              | = (y + 7)(y - 7)                                                                       |  |  |  |
|                                    |                                                 | $a^2 - 16 = a^2 - 4^2$                                                              | = (a + 4)(a - 4)                                                                       |  |  |  |
|                                    |                                                 | By inspection                                                                       |                                                                                        |  |  |  |
|                                    | Factorising a quadratic                         | $4x^2 + 20x + 9$                                                                    | Splitting the middle                                                                   |  |  |  |
|                                    |                                                 | (4x+9)(x+1)                                                                         | $4x^{2} + 20x + 9$ $4x^{2} + 2x + 18x + 9$ $2x(2x + 1) + 9(2x + 1)$ $(2x + 1)(2x + 9)$ |  |  |  |
| 3.                                 | in the form of $ax^2 + bx + c$ where $a > 1$    | (4x + 3)(x + 3)                                                                     |                                                                                        |  |  |  |
|                                    | bx + c where $a > 1$                            | (2x+9)(2x+1)                                                                        |                                                                                        |  |  |  |
|                                    |                                                 | (2x + 3)(2x + 3)                                                                    |                                                                                        |  |  |  |
| Soluina                            | auadratic equations/func                        | tions                                                                               | I                                                                                      |  |  |  |
| Joiving                            |                                                 |                                                                                     | 2                                                                                      |  |  |  |
| Α                                  | Pu factoricina                                  | Take you factorised form and set each bracket equal to zero                         | $x^{2} + 4x + 3 = 0$<br>(x + 3)(x + 1) = 0                                             |  |  |  |
| 4.                                 | By factorising                                  | Solve each separate linear equation to find the solutions/roots                     | x + 3 = 0 $x + 1 = 0So So x = -3 x = -1$                                               |  |  |  |
| 5.                                 | The quadratic formula                           | A formula to find the solutions a quadratic equation in the form of $ax^2 + bx + c$ | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                                               |  |  |  |

| 6.                             | Completing the square     |                                                | quare $\begin{cases} x^2 + bx + c \text{ can be written in} \\ \text{the form} \\ \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c \end{cases}$                    |          | If a is greater than 1 this will need to be factored out first!                                                      |  |
|--------------------------------|---------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------|--|
| Simul                          | taneous eque              | ations                                         |                                                                                                                                                                                   |          |                                                                                                                      |  |
| 7.                             | Simultaneous<br>equations | Two eq                                         | uations where there are two unkno                                                                                                                                                 | wn whi   | ch have the same value in each                                                                                       |  |
| Solving simultaneous equations |                           |                                                |                                                                                                                                                                                   |          |                                                                                                                      |  |
| 8.                             | Elimination               | Add or<br>If the m<br>same sig<br>$\checkmark$ | Add or subtract one equation from anothe<br>If the matching coeefieicents have the<br>same sign then subtract the equations<br>✓ Same<br>✓ Subtract<br>✓ Subtract<br>✓ Substitute |          | ninate a variable<br>natching coefficients have different<br>nen add the equations<br>Different<br>Add<br>Substitute |  |
| 9.                             | Substitution              | Rearran                                        | nge so the subject of one equation is                                                                                                                                             | a single | e variable                                                                                                           |  |
| 10.                            | Graphically               | The poi<br>are the<br>equatio                  | nts of intersection of two graphs<br>solutions to the simultaneous                                                                                                                |          | y = 2x  y = x + 1                                                                                                    |  |

| Ineque | alities                          |                                                                                                                      |                                                      |  |  |  |
|--------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| 11.    | Inequality                       | The relationship between two expressions that are not equal                                                          |                                                      |  |  |  |
| 12.    | =                                | Equal to                                                                                                             |                                                      |  |  |  |
| 13.    | <i>‡</i>                         | Not equal to                                                                                                         |                                                      |  |  |  |
| 14.    | <                                | Less than $x < -1$                                                                                                   |                                                      |  |  |  |
| 15.    | >                                | Greater than                                                                                                         | x > 5                                                |  |  |  |
| 16.    | ٢                                | Less than or equal to                                                                                                | x≤5<br>-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4             |  |  |  |
| 17.    | 2                                | Greater than or equal to                                                                                             | x ≥ 3<br>-1 0 1 2 3 4 5 6 7 8 9 10 1                 |  |  |  |
| 18.    | Inclusive                        | Gives a finites mage of solutions                                                                                    | <b>e.g.</b> $3 < x \le 8$                            |  |  |  |
| 19.    | Exclusive                        | Gives an infinite range of solutions                                                                                 | <b>e.g.</b> $x > 5 -4 \le x$                         |  |  |  |
| 20.    | Integer                          | A whole number that can be positive negative or zero                                                                 |                                                      |  |  |  |
|        | Solve                            | Inequalities are solved in the same way as solving equations                                                         |                                                      |  |  |  |
| 21.    |                                  | Only exception: if you multiply or divide by a negative number you must swap the sign e.g. less than to greater than |                                                      |  |  |  |
|        |                                  | Give the integers that satisfy the inequality                                                                        |                                                      |  |  |  |
| 22.    | List integers solutions          | e.g. x > 6 integer solutions are 6, 7, 8                                                                             |                                                      |  |  |  |
|        |                                  | e.g. $-5 < x \le 5$ integer solutions are $-4$ , $-3$ , $-2$ , $-1$ , 0,                                             | 1, 2, 3, 4, 5                                        |  |  |  |
|        |                                  | An empty circle shows the value is not included                                                                      | 0                                                    |  |  |  |
| 23.    | Represent on<br>a number<br>line | A shaded circle shows the value is included                                                                          |                                                      |  |  |  |
|        |                                  | An arrow shows that the solution continues to infinity                                                               | $\overset{\bigcirc \longrightarrow}{\longleftarrow}$ |  |  |  |
| L      | 1                                | 1                                                                                                                    |                                                      |  |  |  |



| Probo | Probability - definitions  |                                                                                               |                                                                                                                                                                      |  |  |  |
|-------|----------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.    | Probability                | The extent to which an event is likely to<br>occur<br>Written as a fraction, decimal or       | For equally likely outcomes the probability that an event will happen is $P = \frac{number \ of \ successful \ outcomes}{total \ number \ of \ possible \ outcomes}$ |  |  |  |
| 2.    | Theoretical<br>probability | Calculated without doing an experiment                                                        |                                                                                                                                                                      |  |  |  |
|       |                            | Probabilities based on the data collected during an experiment                                |                                                                                                                                                                      |  |  |  |
| 3.    | Experimental probability   | Also known as estimated probability                                                           | $estimated \ probability = \frac{frequency \ of \ event}{total \ frequency}$                                                                                         |  |  |  |
|       |                            | The more trials you do the more reliable your set of results                                  |                                                                                                                                                                      |  |  |  |
| 4.    | P() notation               | P( ) mean s the probability of the thing insid                                                | e the brackets happening e.g. P(tails)                                                                                                                               |  |  |  |
| 5.    | Experiment                 | A repeatable process that gives rise to a num                                                 | iber of outcomes                                                                                                                                                     |  |  |  |
| 6.    | Relative<br>frequency      | In an experiment, how often something<br>happens as a proportion of the number of<br>trials   | Relative frequency = $\frac{how \ often \ something \ happens}{all \ outcomes}$                                                                                      |  |  |  |
|       |                            | You can predict the number of outcomes you will get using relative frequency                  |                                                                                                                                                                      |  |  |  |
| 7.    | Predictions                | Predicted number of outcomes = probability x number of trials                                 |                                                                                                                                                                      |  |  |  |
| 8.    | Event                      | A collection of one or more outcomes                                                          |                                                                                                                                                                      |  |  |  |
| 9.    | Independent                | When one event has no effect on another                                                       | Here P( A and B) = P(A) x P(B)                                                                                                                                       |  |  |  |
| 10.   | Dependent                  | When the outcome of one event, changes the                                                    | e probability of the next event                                                                                                                                      |  |  |  |
| 11.   | Exhaustive                 | Events are exhaustive if they cover all possib                                                | le outcomes                                                                                                                                                          |  |  |  |
| 12.   | Biased                     | Unfair                                                                                        |                                                                                                                                                                      |  |  |  |
| 13.   | Unbiased                   | Fair                                                                                          |                                                                                                                                                                      |  |  |  |
| 14.   | Sample space               | The set of all possible outcomes                                                              |                                                                                                                                                                      |  |  |  |
| 15.   | Sample space<br>diagram    | A diagram showing all possible outcomes from an experiment<br>6 7 8 9 10 11<br>7 8 9 10 11 12 |                                                                                                                                                                      |  |  |  |
| 16.   | Venn diagram               | Can be used to represent events graphically                                                   |                                                                                                                                                                      |  |  |  |

|            |                     | Frequencies or probabili<br>regions                                                           | A<br>0.4 0.3 0.2<br>0.1         |                           |  |  |
|------------|---------------------|-----------------------------------------------------------------------------------------------|---------------------------------|---------------------------|--|--|
| 17.        | <b>A</b> ∩ <b>B</b> | A intersection B All elements in A and B                                                      |                                 | A                         |  |  |
| 18.        | A ∪ B               | A union B All the elements in A OR B OR both                                                  |                                 | A                         |  |  |
| 19.        | Α'                  | Complement of A Not in A                                                                      |                                 | A                         |  |  |
| a Mutually |                     | Events that have no out                                                                       |                                 |                           |  |  |
| 20.        | exclusive           | Here P(A or B) = P(A) +                                                                       | P(B)                            | P(A  or  B) = P(A) + P(B) |  |  |
| 21.        | Tree diagram        | Used to show the outcor<br>events happening in suc                                            | nes of two (or more)<br>cession | 5 P Base 3 Red            |  |  |
| 22.        | AND rule            | Multiply the probabilities                                                                    |                                 |                           |  |  |
| 23.        | OR rule             | Add the probabilities                                                                         |                                 |                           |  |  |
|            | Conditional         | The probability of a dependent event                                                          |                                 |                           |  |  |
| 24.        | probability         | The probability of a second outcome depends on what has already happened in the first outcome |                                 |                           |  |  |



## Year 10 Mathematics Higher HT 2

| Multip | licative reas       | onin        | g – definitions a                                   | nd fo    | ormulae        |                               |                   |                             |
|--------|---------------------|-------------|-----------------------------------------------------|----------|----------------|-------------------------------|-------------------|-----------------------------|
| 1.     | Proportion          | Corr        | pares a part with a v                               | whole    |                |                               |                   |                             |
| 2.     | Proportional        | A ch        | ange in one is always                               | accor    | npanied by a o | change in an                  | other             |                             |
| 3.     | Ratio               | A re        | lationship between tw                               | vo or r  | nore quantitie | 95                            |                   |                             |
| 4.     | Compound<br>measure | Corr        | bine measures of two                                | o differ | ent quantities |                               |                   |                             |
|        |                     | The<br>volu | mass of a substance contained in a certain<br>me    |          |                | ı                             | $\land$           |                             |
| 5.     | Density             | Usuc        | ally measured in g/cm                               | n³ or kợ | g/m³           |                               | ŀ                 | ∕ <b>M</b><br>÷⊺÷∖          |
|        |                     |             | $density = \frac{mass}{volume}$                     |          |                |                               | <u> </u>          | D×V                         |
| 6.     | Velocity            | Spee        | ed in a given directior                             | า        |                | Usu                           | ually m           | easured in m/s              |
| 7.     | Acceleration        | The         | The rate of change of velocity                      |          |                |                               |                   | easured in m/s <sup>2</sup> |
|        | Speed               | The         | he distance travelled in an amount of time          |          |                |                               |                   | $\wedge$                    |
| 8.     |                     | Usuc        | Usually measured in m/s, mph or km/h                |          |                |                               |                   | <b>D</b>                    |
|        |                     |             | $speed = rac{distance}{time}$                      |          |                |                               | <b>∕ T ×́ S</b> ∖ |                             |
|        |                     | The         | force applied over an area                          |          |                |                               |                   | $\wedge$                    |
|        |                     |             | force                                               |          |                |                               |                   | / F \                       |
| 9.     | Pressure            |             | $pressure = \frac{1}{area}$                         |          |                |                               | $\left[ \right]$  | ΡΑ                          |
|        |                     | Usuc        | ally measured in N/m <sup>2</sup>                   |          |                |                               |                   |                             |
| 10     | Units of time       |             | Standard units of time are seconds, minutes, hours, |          |                |                               | ays, yec          | ars                         |
| 10.    |                     |             | 60 seconds = 1 minute 60 minutes = 1 hour 24 hou    |          | 24 hours = 1   | urs = 1 day 365 days = 1 year |                   |                             |
| 11     | Units of most       |             | Metric units of mass are milligrams, grams, kilogra |          |                | ns, kilograms                 | and to            | nnes                        |
| 11.    | Units of mass       |             | 1000mg = 1g 1000g = 1kg                             |          | = 1kg          | 1000kg = 1 tonne              |                   |                             |

| 12     | l luite of loughly                                     |              | Metric units of length are millimetres, centimetres, metres and kilometres                                 |                                                                  |                                               |                                                                                                                                           |  |  |
|--------|--------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 12.    | 10mm = 1cm 100cm = 1m 10                               |              |                                                                                                            |                                                                  | 1000m = 1km                                   |                                                                                                                                           |  |  |
|        |                                                        |              | Metric units of length are r                                                                               | millimetres <sup>2</sup> ,                                       | centimetres <sup>2</sup> , n                  | netres <sup>2</sup> and kilometres <sup>2</sup>                                                                                           |  |  |
| 13.    | Units of area                                          |              | 1cm <sup>2</sup> = 100mm <sup>2</sup>                                                                      |                                                                  | 1 cm                                          | 10 mm                                                                                                                                     |  |  |
|        |                                                        |              | 1m <sup>2</sup> = 1000cm <sup>2</sup>                                                                      |                                                                  |                                               | $= 1 \text{ cm} \times 1 \text{ cm} \qquad \text{Area} = 10 \text{ mm} \times 10 \text{ mm}$ $= 1 \text{ cm}^2 \qquad = 100 \text{ mm}^2$ |  |  |
|        |                                                        |              | Metric units of length are                                                                                 | e millimetre                                                     | s <sup>3</sup> , centimetres <sup>3</sup> ,   | metres <sup>3</sup> and kilometres <sup>3</sup>                                                                                           |  |  |
| 14.    | Units of volum                                         | е            | 1cm <sup>3</sup> = 1000mm <sup>3</sup>                                                                     |                                                                  | 10                                            |                                                                                                                                           |  |  |
|        |                                                        |              | 1m <sup>3</sup> = 10000                                                                                    | 000cm³                                                           | Volume                                        | = 1 cm × 1 cm × 1 cm Volume = 10 mm × 10 mm × 10 mm<br>= 1 cm <sup>3</sup> = 1000 mm <sup>3</sup>                                         |  |  |
| 15     | Linite of compari                                      | ·L           | Metric units of capacity are                                                                               | Metric units of capacity are millilitres, centilitres and litres |                                               |                                                                                                                                           |  |  |
| 15.    | Units of capaci                                        | ity          | 10 <i>m</i> /=1 <i>c</i> /                                                                                 |                                                                  | 10                                            | 00 <i>m</i> /= 100 <i>c</i> /= 1/                                                                                                         |  |  |
| 16.    | Capacity and<br>volume<br>conversions                  |              | 1cm <sup>3</sup> = 1 <i>m</i> /                                                                            |                                                                  |                                               | 1000cm <sup>3</sup> = 1/                                                                                                                  |  |  |
| Percer | itages                                                 |              |                                                                                                            |                                                                  |                                               |                                                                                                                                           |  |  |
| 17.    | Percentage                                             | Mea          | ns 'out of 100'                                                                                            |                                                                  |                                               |                                                                                                                                           |  |  |
|        |                                                        | A de         | ecimal you multiply by to represent a percentage                                                           |                                                                  |                                               |                                                                                                                                           |  |  |
| 18.    | Multiplier                                             | To u<br>mult | ise a multiplier to find a percentage, divide your percentage by 100, then tiply the amount by this value. |                                                                  |                                               |                                                                                                                                           |  |  |
|        | Percentage                                             | Calc         | ulate the percentage and add onto the original                                                             |                                                                  |                                               |                                                                                                                                           |  |  |
| 19.    | increase                                               | Or u         | se a multiplier                                                                                            |                                                                  | amount                                        | $\times \frac{100 + \% \text{ increase}}{100}$                                                                                            |  |  |
|        | _                                                      | Calc         | ulate the percentage and su                                                                                | ubtract fron                                                     | n the original                                |                                                                                                                                           |  |  |
| 20.    | Percentage<br>decrease                                 | Or u         | Or use a multiplier                                                                                        |                                                                  | $amount \times \frac{100 - \% increase}{100}$ |                                                                                                                                           |  |  |
| 21.    | Percentage<br>change                                   |              |                                                                                                            | Change<br>Origina                                                | $\overline{l} \times 100$                     |                                                                                                                                           |  |  |
| 22.    | Express one<br>number as a<br>percentage<br>of another |              |                                                                                                            | Number<br>Number                                                 | $\frac{1}{2} \times 100$                      |                                                                                                                                           |  |  |

|     | Reverse<br>percentage | Use when asked to find the priginal amount after a percentage increase or decrease. |                                                                                 |  |  |  |  |
|-----|-----------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| 23. |                       | Original Value x Multiplier = New Value                                             |                                                                                 |  |  |  |  |
|     |                       | Multipli                                                                            | er                                                                              |  |  |  |  |
| 24. | Interest              | A fee paid for borrowing money or money                                             | earnt through investing.                                                        |  |  |  |  |
| 25. | Simple<br>interest    | Interest that is calculated as a percentage of the original                         | I = Prt<br>I – Interest<br>P – Original amount<br>r – interest rate<br>t - time |  |  |  |  |
| 26  | Compound              | When interest is calculate on the original amount and any previous interest         | $P\left(1+\frac{R}{100}\right)^n$                                               |  |  |  |  |
| 20. | interest              | Or $Original \times Multiplier^{time}$                                              | R – Interest rate<br>n – the number of interest periods (e.g. yrs)              |  |  |  |  |
| 27. | Тах                   | A financial charge placed on sales or savings by the government e.g. VAT            |                                                                                 |  |  |  |  |
| 28. | Loss                  | Income minus all expenses, resulting in a n                                         | Income minus all expenses, resulting in a negative value                        |  |  |  |  |
| 29. | Profit                | Income minus all expenses, resulting in a p                                         | ositive value                                                                   |  |  |  |  |
| 30. | Depreciation          | A reduction in the value of a product over time                                     |                                                                                 |  |  |  |  |
| 31. | Annual                | Means yearly                                                                        |                                                                                 |  |  |  |  |
| 32. | Per annum             | Means per year                                                                      |                                                                                 |  |  |  |  |
| 33. | Salary                | A fixed regular payment, often paid monthly                                         |                                                                                 |  |  |  |  |

| Proportion graphs |                                |                                                                               |                                                                                                         |  |  |  |
|-------------------|--------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| 34.               | Direct<br>proportion           | Two quantities increase at the same rate                                      | $y \propto x$<br>y = kx for a constant k                                                                |  |  |  |
|                   |                                | Graph is a straight line that goes through the origin                         |                                                                                                         |  |  |  |
| 35.               | Inverse/indirect<br>proportion | One variable increases at a constant rate as<br>the second variable decreases | $y \propto \frac{1}{x}$ $y = \frac{k}{x} \text{ for a constant } k$ $y = \frac{k}{x}$ $y = \frac{k}{x}$ |  |  |  |
| 36.               | Constant of                    | Represented by k                                                              |                                                                                                         |  |  |  |
|                   | proportionality                | Its value stays the same                                                      |                                                                                                         |  |  |  |



## Year 10 Mathematics Higher HT 3

| Similarity and Congruence in 2D and 3D |                              |                                                                     |                                                                         |  |  |  |  |
|----------------------------------------|------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| 1.                                     | Congruent                    | Exactly the same shape and size                                     | Exactly the same shape and size                                         |  |  |  |  |
|                                        | <b>C</b> : 1                 | Two shapes where one is an enlargement of another                   |                                                                         |  |  |  |  |
| 2.                                     | Similar                      | Corresponding angles are equal                                      | Corresponding sides are in the same ratio                               |  |  |  |  |
| 3.                                     | Scale factor                 | The proportion by which the dimensions of                           | f an object will increase or decrease by                                |  |  |  |  |
| 4.                                     | Linear scale<br>factor (LSF) | The scale factor/ratio of sides of two similar shapes               | $LSF = \frac{length from  large  shape}{length  from  small  shape}$    |  |  |  |  |
| 5.                                     | Area scale<br>factor (ASF)   | The scale factor ratio of areas/surface areas of two similar shapes | $ASF = \frac{Area \ of \ large \ shape}{lArea \ of \ small \ shape}$    |  |  |  |  |
| 6.                                     | Volume scale<br>factor (VSF) | The scale factor/ratio of volumes of two similar shapes             | $VSF = \frac{volume \ of \ large \ shape}{volume \ of \ small \ shape}$ |  |  |  |  |
| Two t                                  | riangles are a               | congruent if                                                        |                                                                         |  |  |  |  |
| 7.                                     | \$\$\$                       | All 3 sides are equal                                               |                                                                         |  |  |  |  |
| 8.                                     | SAS                          | 2 sides and the included angle are equal                            |                                                                         |  |  |  |  |
| 9.                                     | ASA                          | 2 angles and the corresponding side are equal                       |                                                                         |  |  |  |  |
| 10.                                    | RHS                          | The right angle, hypotenuse and one other side are equal            |                                                                         |  |  |  |  |

| Similar shapes |         |                                                                                                                                                                                       |                                                                                                         |  |  |  |
|----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| 11.            | Lengths | <sup>38.6°</sup> C<br><sup>48.4°</sup> <sup>8</sup> <sup>93°</sup> <sup>6</sup> <sup>48.4°</sup> <sup>93°</sup> <sup>12</sup> <sup>12</sup> <sup>12</sup> <sup>12</sup> <sup>12</sup> | The scale factor from small to big is 2.                                                                |  |  |  |
|                |         | $\frac{\overline{EF}}{\overline{BC}} = \frac{12}{6} \div \frac{6}{6} = \frac{2}{1} = 2 \qquad \frac{\overline{BC}}{\overline{EF}} = \frac{6}{12} = $                                  |                                                                                                         |  |  |  |
| 12.            | Areas   | $6 \text{ cm} \qquad 9 \text{ cm}$ $Area = 32 \text{ cm}^2 \qquad Area = ?$                                                                                                           | LSF = 9÷6<br>=1.5<br>ASF = 1.5 <sup>2</sup><br>So area of bigger shapes is 6 x 1.5 <sup>2</sup>         |  |  |  |
| 13.            | Volumes | Volume = ? $20 \text{ cm}^{3}$                                                                                                                                                        | LSF = 20 ÷8<br>= 2.5<br>VSF = 2.5 <sup>2</sup><br>So volume of smaller shape is 2500 ÷ 2.5 <sup>2</sup> |  |  |  |

| Graph transformations |              |                                                                                           |                             |                                            |                      |                                            |                                    |           |      |
|-----------------------|--------------|-------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|----------------------|--------------------------------------------|------------------------------------|-----------|------|
| 1.                    | y = -f(x)    | Reflection in the x axis                                                                  |                             |                                            |                      | y coordi                                   | y coordinates are multiplied by -1 |           |      |
| 2.                    | y = f(-x)    | Reflection in t                                                                           | the y axis                  |                                            |                      | x coordi                                   | nates are                          | divided b | y -1 |
| 2                     | y = f(x)     | Reflection in the x axis and then in the y axis                                           |                             |                                            | y coordi             | v coordinates are multiplied by -1 AND x   |                                    |           |      |
| э.                    | y = -f(-x)   | Equivalent to<br>origin                                                                   | rotation                    | of 180° ak                                 | out the              | coording                                   | ates are di                        | ivided by | -1   |
| 4.                    | y = f(x) + a | Translation by                                                                            | y the vect                  | or $\begin{pmatrix} 0 \\ a \end{pmatrix}$  |                      |                                            |                                    |           |      |
| 5.                    | y = f(x + a) | Translation b                                                                             | y the vect                  | or $\begin{pmatrix} -a \\ 0 \end{pmatrix}$ |                      |                                            |                                    |           |      |
| 6.                    | y = af(x)    | Stretch by sco<br>direction, par                                                          | ale factor o<br>allel to th | a in the v<br>e y axis                     | ertical              | y coordinates are multiplied by a          |                                    |           |      |
| 7.                    | y = f(ax)    | Stretch by scale factor $\frac{1}{a}$ in the horizontal direction, parallel to the x axis |                             |                                            |                      | x coordinates are multied by $\frac{1}{a}$ |                                    |           |      |
| Exact                 | Trig values  |                                                                                           |                             |                                            |                      |                                            |                                    |           |      |
|                       |              |                                                                                           | θ                           | 0°                                         | 30°                  | 45°                                        | 60°                                | 90°       |      |
|                       |              |                                                                                           | Sin <del>O</del>            | 0                                          | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$                       | $\frac{\sqrt{3}}{2}$               | 1         |      |
|                       |              |                                                                                           | Cos <del>O</del>            | 1                                          | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$                       | $\frac{1}{2}$                      | 0         |      |
| 8.                    | Exact Values |                                                                                           | Tan <del>O</del>            | 0                                          | $\frac{\sqrt{3}}{3}$ | 1                                          | $\sqrt{3}$                         |           |      |
|                       |              | These can be found using the triangles:                                                   |                             |                                            |                      |                                            |                                    |           |      |
|                       |              |                                                                                           |                             |                                            |                      |                                            |                                    |           |      |
|                       |              |                                                                                           |                             |                                            |                      | 2                                          |                                    | 2         |      |
| Trigonometric graphs  |              |                                                                                           |                             |                                            |                      |                                            |                                    |           |      |
| 9.                    | Sine graph   | Repeats every                                                                             | y 360∘                      |                                            |                      |                                            |                                    |           |      |

|       |                  | Crosses the x-axis at -180°, 0                                 | ° <b>,</b> 180°, 360°       |                                    |                                                    |
|-------|------------------|----------------------------------------------------------------|-----------------------------|------------------------------------|----------------------------------------------------|
|       |                  | Maximum of 1 and minimun                                       | n of -1                     | -270 -180 -90                      | 90 180 270 360                                     |
|       |                  | Repeats every 360°                                             |                             |                                    |                                                    |
| 10.   | Cosine graph     | Crosses x-axis at -90°, 90°, 2                                 | 70∘ <i>,</i> 450∘           | -180 _90                           | 0 90 180 270 360                                   |
|       |                  | Maximum of 1 and minimum                                       | n of -1                     | <u> </u>                           |                                                    |
|       |                  | Repeats every 180°                                             |                             |                                    |                                                    |
|       | Tangent<br>graph | Crosses x-axis at -180°, 0°, 18                                | 0°, 360°                    | °, 360°<br>m value<br>−90°, x=90°, |                                                    |
| 11.   |                  | Has no maximum or minimu                                       | um value                    |                                    |                                                    |
|       |                  | Has vertical asymptotes at x<br>x=270°                         | «=-90∘, x=90∘,              |                                    |                                                    |
| Non – | right angled     | l trigonometry                                                 |                             |                                    |                                                    |
|       |                  | Finding sides                                                  |                             | Finding angle                      | 25                                                 |
|       |                  | $a^2 = b^2 + a^2 - 2baaa$                                      | - A                         |                                    | $\cos A = \frac{b^2 + c^2 - a^2}{c^2 + c^2 - a^2}$ |
|       |                  | <i>a</i> = <i>b</i> + <i>c</i> 2 <i>b</i> c c <i>b</i>         | 571                         |                                    | 2bc                                                |
| 12.   | Cosine rule      | $b^2 = a^2 + c^2 - 2ac\cos \theta$                             | os B                        |                                    | $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$             |
|       |                  | $c^2 = a^2 + b^2 - 2ab \cos \theta$                            | os C                        |                                    | $\cos C = \frac{a^2 + b^2 - c}{2ab}$               |
|       |                  | Finding sides                                                  | Finding angle               | 25                                 | Ambiguous case                                     |
|       |                  |                                                                |                             |                                    | Can sometimes produce                              |
| 13.   | Sine rule        | a b c                                                          | $\sin(A)  \sin(B)  \sin(C)$ |                                    | missing anales                                     |
|       |                  | $\overline{\sin(A)} = \overline{\sin(B)} = \overline{\sin(C)}$ | $\frac{a}{a} = \frac{a}{l}$ | $\frac{d}{dc} = \frac{d}{c}$       | $\sin\theta = \sin(180 - \theta)$                  |
|       |                  |                                                                |                             |                                    |                                                    |

|     |                       | $Area = \frac{1}{2}ab\sin C$ | B |
|-----|-----------------------|------------------------------|---|
| 14. | Area of a<br>triangle | $Area = \frac{1}{2}bc\sin A$ |   |
|     |                       | $Area = \frac{1}{2}ac\sin B$ | b |



| Collecting data            |                           |                                                                                                                                                                                  |                                                                                                                                                                                     |  |
|----------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.                         | Population                | The whole set of items that are of interest e.g. all the people in a school                                                                                                      |                                                                                                                                                                                     |  |
|                            |                           | Observes or measures every member of a population.                                                                                                                               |                                                                                                                                                                                     |  |
| 2.                         | Census                    | Advantages <ul> <li>Should give a completely accurate result</li> </ul>                                                                                                          | <ul> <li>Disadvantages</li> <li>Time consuming</li> <li>Hard to process such large quantities of data</li> <li>Cannot be sued when the testing process destroys the item</li> </ul> |  |
| A<br>th                    |                           | A collection of observations taken from then used to find out information of th                                                                                                  | n the subset of the population which is<br>ne population as a whole                                                                                                                 |  |
| 3.                         | Sample                    | <ul> <li>Advantages</li> <li>Less time consuming and expensive than a census</li> <li>Fewer people have to respond</li> <li>Less data to process compared to a census</li> </ul> | <ul> <li>Disadvantages</li> <li>Data may not be as accurate</li> <li>Sample may not be large enough to give information about smaller sub groups in the population</li> </ul>       |  |
| 4.                         | Sampling units            | Individual units of a population                                                                                                                                                 |                                                                                                                                                                                     |  |
| 5.                         | Sampling frame            | The list of people or items to be sampled                                                                                                                                        |                                                                                                                                                                                     |  |
| 6.                         | Stratum                   | A subset of the population which is being sampled                                                                                                                                |                                                                                                                                                                                     |  |
| 7.                         | Strata                    | Plural of stratum                                                                                                                                                                |                                                                                                                                                                                     |  |
| 8.                         | Bias                      | Prejudice for or against one group or opinion or result in a way that is unfair                                                                                                  |                                                                                                                                                                                     |  |
| Random sampling techniques |                           |                                                                                                                                                                                  |                                                                                                                                                                                     |  |
|                            |                           | Where every member of the sampling frame has an equal chance of being selected.                                                                                                  |                                                                                                                                                                                     |  |
| 9.                         | Simple random<br>sampling | <ul> <li>Advantages</li> <li>Free of bias</li> <li>Easy and cheap to implement for small populations and samples</li> </ul>                                                      | <ul> <li>Disadvantages</li> <li>Not suitable when population size or sample size is large</li> <li>A sampling frame is needed</li> </ul>                                            |  |

|      | Systematic<br>sampling                                                                                                           | Where required elements are chosen at regular intervals from an ordered list                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                        |  |
|------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10.  |                                                                                                                                  | Advantages <ul> <li>Simple and quick to use</li> <li>Suitable for large samples and populations</li> </ul>                                                                                                                                                       | <ul> <li>Disadvantages</li> <li>A sampling frame is needed</li> <li>It can introduce bias if the sampling frame is not random</li> </ul>                                                                                                                                                                                               |  |
|      |                                                                                                                                  | The population is divided into mutual<br>and a random sample is taken from each number sample in a stratum<br>$= \frac{number in}{number in p}$                                                                                                                  | y exclusive strata (e.g. males and females)<br>ach<br>n<br>stratum<br>opulation × overall sample size                                                                                                                                                                                                                                  |  |
| 11.  | Stratified sampling                                                                                                              | <ul> <li>Advantages</li> <li>Sample accurately reflects the population structure</li> <li>Guarantees proportional representation of groups within a population</li> </ul>                                                                                        | <ul> <li>Disadvantages</li> <li>Population must be clearly classified into distinct strata</li> <li>Selection within each stratum suffers from the same disadvantages as simple random sampling</li> </ul>                                                                                                                             |  |
| Non- | random samplir                                                                                                                   | ng techniques                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |  |
|      |                                                                                                                                  | A researcher selects a sample that reflects the characteristics of the whole population                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        |  |
| 12.  | Quota sampling                                                                                                                   | <ul> <li>Advantages</li> <li>Allows a small sample to be representative of the whole population</li> <li>No sampling frame required</li> <li>Quick, easy and inexpensive</li> <li>Allows for easy comparison between different groups in a population</li> </ul> | <ul> <li>Disadvantages</li> <li>Non random sampling can<br/>introduce bias</li> <li>Population must be divided into<br/>groups which can be costly or<br/>inaccurate</li> <li>Increasing scope of study increases<br/>number of groups, which adds<br/>time and expense</li> <li>Non-responses are not recorded<br/>as such</li> </ul> |  |
|      | Taking the sample from people who are available at the time the study i carried out and who fit the criteria you are looking for |                                                                                                                                                                                                                                                                  | re available at the time the study is<br>are looking for                                                                                                                                                                                                                                                                               |  |
| 13.  | _                                                                                                                                | Also known as 'convenience sampling'                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                        |  |
|      | Opportunity<br>sampling                                                                                                          | Advantages<br>• Easy to carry out<br>• Inexpensive                                                                                                                                                                                                               | <ul> <li>Disadvantages</li> <li>Unlikely to provide a representative sample</li> <li>Highly dependent of the individual researcher</li> </ul>                                                                                                                                                                                          |  |

| Types of data |                                     |                                                                                                                                                                                                                                                       |  |  |
|---------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 14.           | Quantitative data<br>(or variables) | Data (or variables) associated with numerical observations e.g. shoe size                                                                                                                                                                             |  |  |
| 15.           | Qualitative date<br>(or variables)  | Data (or variables) associated with non-numerical observations e.g. hair colour                                                                                                                                                                       |  |  |
| 16.           | Continuous<br>variable (data)       | A variable that can take any value in a given range e.g. time                                                                                                                                                                                         |  |  |
| 17.           | Discrete variable<br>(data)         | A variable that can take only specific values in a given range e.g. number of girls in a family                                                                                                                                                       |  |  |
| Repre         | esenting and inte                   | erpreting data                                                                                                                                                                                                                                        |  |  |
| 18.           | Class                               | Another name for the groups in a grouped frequency table                                                                                                                                                                                              |  |  |
| 19.           | Class boundaries                    | The maximum and minimum values that belong in each class                                                                                                                                                                                              |  |  |
| 20.           | Class width                         | The difference between the upper and lower class boundaries                                                                                                                                                                                           |  |  |
| 21.           | Midpoint                            | The average of the class boundaries                                                                                                                                                                                                                   |  |  |
| 22.           | Outlier                             | An extreme value that lies outside the overall pattern of the data                                                                                                                                                                                    |  |  |
| 23.           | Anomalies                           | Any outliers that should be removed from the data because it is an error and it would be misleading to keep it in                                                                                                                                     |  |  |
| Types         | of graphs/chart                     | S                                                                                                                                                                                                                                                     |  |  |
| 24.           | Box plots                           | A diagram that displays median,<br>quartiles, minimum and<br>maximum values of a set of data                                                                                                                                                          |  |  |
| 25.           | Cumulative<br>frequency             | A running total of frequencies                                                                                                                                                                                                                        |  |  |
| 26.           | Cumulative<br>frequency table       | A table that shows how many data<br>items are less than or equal to the<br>upper class boundary of each data<br>classTime, t (minutes)FrequencyCumulative Frequency $0 < t \le 20$ 1616 $20 < t \le 30$ 2440 $30 < t \le 50$ 1959 $50 < t \le 80$ 867 |  |  |

| 27.    | Upper class<br>boundary       | The highest possible value in each class                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28.    | Cumulative<br>frequency graph | A graph with the data values on the x axis and the cumulative frequency on the y axis               | Interquartile<br>Range<br>42 - 26 =<br>16  marks<br>16  marks<br>10  class  A2<br>10  marks<br>10  marks |
| 29. Hi | Histogram                     | A chart where the area of each bar is<br>proportional to the frequency of<br>each class             | 10-<br>9-<br>8-<br>Ajr 7-<br>6-<br>6-<br>5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | nstogram                      | Area of each bar = k x frequency (k =<br>1 is the easiest value to use when<br>drawing a histogram) | 9 4 -<br>3 -<br>2 -<br>1 -<br>245 250 255 260<br>Weight (Grams)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31.    | Frequency density             | The height of each bar on a<br>histogram                                                            | If $k = 1$ then:<br>$frequency \ density = \frac{frequency}{class \ width}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31.    | Frequency polygon             | Can be formed by joining the middle<br>of each bar in a histogram                                   | 10-<br>9-<br>8-<br>4-<br>5-<br>0-<br>245 250 255 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



## Year 10 Mathematics Higher HT 5

| Quad                        | ratics - definition                            | ons                                                                                                |                                                 |
|-----------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                             |                                                | Solutions to a quadratic equation/function<br>$ax^2 + bx + c = 0$                                  |                                                 |
| 2.                          | Roots                                          | The x values where the graph crosses the x axis                                                    | 2 1 2 3 4                                       |
|                             |                                                | A quadratic can have 0, 1 or 2 roots                                                               | 4                                               |
|                             |                                                | Curved shaped called a parabola                                                                    | $y = x^2$                                       |
| З.                          | Quadratic graph                                | A positive $x^2$ will give a 'U' shape                                                             | $y = -x^2$                                      |
|                             |                                                | A negative $x^2$ will give a '∩' shape                                                             |                                                 |
| 4.                          | Turning points                                 | The point where a curve turns in the opposite direction                                            | Maximum Minimum                                 |
| Using                       | the discriminar                                | nt                                                                                                 |                                                 |
| 5.                          | Discriminant                                   | The part of the quadratic formula under the square root                                            | $b^2 - 4ac$                                     |
| 6.                          | $b^2 - 4ac > 0$                                | Two distinct real roots                                                                            |                                                 |
| 7.                          | $b^2 - 4ac = 0$                                | One repeated real root                                                                             |                                                 |
| 8.                          | $b^2 - 4ac < 0$                                | No real roots                                                                                      |                                                 |
| Skletching quadratic graphs |                                                |                                                                                                    |                                                 |
|                             | General shape                                  | A positive x <sup>2</sup> will give a '∪' shape<br>A negative x <sup>2</sup> will give a '∩' shape |                                                 |
|                             | Find the roots                                 | By factorising or using the formula                                                                | Equation must be equal to zero                  |
| 9.                          | Find the y<br>intercept                        | Substitute x =0 zero into the equation                                                             |                                                 |
|                             | Calculate the coordinates of the turning point | Complete the square to get in the form of $f(x) = a(x + p)^2 + q$                                  | Coordinates of turning point are then $(-p, q)$ |

| Solvir | Solving quadratic inequalities                                                                                             |                                                                                               |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| 10.    | Solve (by factorising or using quadratic formula)<br>$ax^2 + bx + c = 0$                                                   | e.g<br>$     x^{2} - 2x + 8 = 0 $ $     (x + 4)(x - 2) = 0 $ $     x = -4 \text{ or } x = 2 $ |  |  |  |
| 11.    | Sketch the graph clearings showing the roots and parabola shape                                                            | y = (x+4)(x-2)                                                                                |  |  |  |
| 12.    | Check whether your quadratic was greater than<br>or less than zero then highlight parts of the graphs<br>that satisfy this | If<br>$x^2 - 2x + 8 > 0$<br>y<br>y = $(x+4)(x-2)$<br>is the solution                          |  |  |  |

| Circles | ircles - definitions and formulae |                                                                                                        |                |  |
|---------|-----------------------------------|--------------------------------------------------------------------------------------------------------|----------------|--|
| 1       | Diamator                          | A straight line from edge to edge passing through the centre                                           |                |  |
| 1.      | Diameter                          | Double the size of the radius                                                                          |                |  |
| 2       | Dadius                            | A straight line from the centre to the edg                                                             | e              |  |
| 2.      | Radius                            | Half the size of the diameter                                                                          |                |  |
| 3.      | Radii                             | The plural of radius                                                                                   |                |  |
| 4.      | Circumference                     | Distance around the outside of the circle                                                              |                |  |
| 5.      | Arc                               | Part of the circumference                                                                              |                |  |
| 6.      | Chord                             | A line within a circle where each end touches the edge                                                 |                |  |
| 7.      | Sector                            | The region created by two radii and an arc                                                             |                |  |
| 8.      | Segment                           | The region created by a chord and an arc                                                               |                |  |
| 9.      | Tangent                           | A line outside the circle which only touches the circumference at one point                            |                |  |
| 10.     | Semi -circle                      | Half a full circle                                                                                     |                |  |
| 11.     | Line segment                      | A finite part of a straight line with two distinct endpoints                                           |                |  |
| 12.     | Perpendicular<br>bisector         | A straight line that is perpendicular to the line $L$ and passes through the midpoint of $L$           |                |  |
| 13.     | Circumcircle                      | A unique circle that passes through all three vertices of a triangle                                   | B              |  |
| 14.     | Circumcentre                      | The centre of a circumcircle, where the perpendicular bisectors of the sides of the triangle intersect | A Circumcenter |  |

| 15.    | Cyclic<br>quadrilateral       | A quadrilateral with all four vertices on the circumference of a circle                                             |                  |
|--------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|
| Circle | Theorems                      |                                                                                                                     |                  |
| 16.    | Angles at the centre          | Angle at the centre is twice the angle<br>at the circumference                                                      | C<br>B<br>B      |
| 17.    | Angles in the<br>same segment | Angles at the circumference in the same segment are equal                                                           |                  |
| 18.    | Angles in a semi-<br>circle   | Angle in α semi-circle is 90°                                                                                       |                  |
| 19.    | Cyclic<br>quadrilateral       | Opposite angles of a cyclic<br>quadrilateral add to 180°                                                            | B                |
| 20.    | Tangent to a<br>circle        | Angle between a tangent and radius is<br>90°<br>Two tangents from the same point to a<br>circle are equal in length | A<br>O<br>B<br>C |

| 21.       | Alternate<br>segment                          | Angles in the alternate segment are equal                                                                                               | 10 Sec                                                                                                            |
|-----------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Circle ge | eometry                                       |                                                                                                                                         |                                                                                                                   |
|           |                                               | With centre $(0,0)$ and radius, $r$                                                                                                     | With centre $(a, b)$ and radius, $r$                                                                              |
|           |                                               | $x^2 + y^2 = r^2$                                                                                                                       | $(x-a)^2 + (y-b)^2 = r^2$                                                                                         |
| 22.       | Equation of a circle                          | r (0,0) x                                                                                                                               | (a, b) r (x, y)                                                                                                   |
| 23.       | Intersections<br>between circles<br>and lines | <ul> <li>No intersection</li> <li>Once (where the line touches the circle</li> <li>Twice (where the line crosses the circle)</li> </ul> | one point of v no points of intersection                                                                          |
| 24.       | Gradient of a<br>radius to a circle           | Gradient (m) of radius to a<br>point(x, y) with an equation<br>$x^2 + y^2 = r^2$ is $\frac{y}{x}$                                       | (x, y)                                                                                                            |
| 25.       | Gradient of<br>tangent to a<br>circle         | Gradient (m) of tangent to a point $(x, y)$ is the negative reciprocal of the gradient of the radius at the same point                  | $\begin{array}{c} y \\ \hline \\$ |



## Surds

| 1.    | Surd                           | A number written exactly using square or cube roots                                                                                          | e.g. $\sqrt{5}$ is a surd but $\sqrt{25}$ is not because it has a value of 5                                   |
|-------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 2.    | Rationalise                    | Eliminate a surd                                                                                                                             |                                                                                                                |
| 3.    | Multiply                       | $\sqrt{a} 	imes \sqrt{b} = \sqrt{ab}$ and $\sqrt{a} 	imes \sqrt{a} = a$                                                                      | e.g. $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ and $\sqrt{3} \times \sqrt{3} = 3$                                  |
| 4.    | Divide                         | $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$                                                                                             | e.g. $\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}$                                               |
| E     | Add and                        | $\sqrt{a} + \sqrt{b}$ cannot simplify                                                                                                        | e.g. $\sqrt{3} + \sqrt{2} = \sqrt{3} + \sqrt{2}$                                                               |
| 5.    | subtract                       | But $\sqrt{a} + \sqrt{a} = 2\sqrt{a}$                                                                                                        | <b>e.g.</b> $5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$                                                                |
| 6.    | Simplify                       | $\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$                                                                     | <b>e.g.</b> $\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$                                        |
| 7     | Rationalise the<br>denominator | Multiply numerator and denominator<br>(use equivalent fractions) by whatever<br>will result in the denominator simplifying<br>to an integer. | e.g. $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{7}{\sqrt{7}}$           |
| 7.    |                                |                                                                                                                                              | e.g. $\frac{1}{5+\sqrt{2}} = \frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}} = \frac{5-\sqrt{2}}{3}$ |
| Algeb | oraic Fraction                 | S                                                                                                                                            |                                                                                                                |
| 8.    | Simplifying                    | Cancel common factors (factorising if needed)                                                                                                | $\frac{(x-3)(x+2)}{(x+2)(x+5)} = \frac{x-3}{x+5}$                                                              |
| 9.    | Adding and subtracting         | Find a common denominator                                                                                                                    | $\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad + bc}{bd}$                               |
| 10.   | Multiplying                    | Multiply as with normal fraction                                                                                                             | $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$                                                               |
| 11.   | Dividing                       | Divide as with normal fractions                                                                                                              | $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$                                |

| Changing the subject of a formula |                                                                                           |                                                                                    |                                                                                                                                                         |                                                                                                                                                 |
|-----------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.                               | Always use inverse operations to isolate the term you have been asked to make the subject |                                                                                    |                                                                                                                                                         |                                                                                                                                                 |
|                                   | If the letter you want as the subject appears twice you will need to factorise            |                                                                                    |                                                                                                                                                         |                                                                                                                                                 |
|                                   | Make $u$ the subject:<br>v = u + at<br>(-at)<br>v - at = u<br>So<br>u = v - at            |                                                                                    | Make <i>u</i> the subject:<br>$v^2 = u^2 + 2as$<br>(-2as)<br>$v^2 - 2as = u^2$<br>$(\sqrt{)}$<br>$\sqrt{v^2 - 2as} = u$<br>So<br>$u = \sqrt{v^2 - 2as}$ | Make <i>m</i> the subject:<br>I = mv - mu ( <i>Factorise</i> )<br>I = m(v - u) (÷ (v - u))<br>$\frac{I}{v - u} = m$ So<br>$m = \frac{I}{v - u}$ |
| Algebraic proof                   |                                                                                           |                                                                                    |                                                                                                                                                         |                                                                                                                                                 |
| 13.                               | Proof                                                                                     | A logical argument fro a mathematical statement                                    |                                                                                                                                                         |                                                                                                                                                 |
| 14.                               | Counter                                                                                   | Use an example that does not fit the statement to prove the statement is incorrect |                                                                                                                                                         |                                                                                                                                                 |
| Notation to use in proof          |                                                                                           |                                                                                    |                                                                                                                                                         |                                                                                                                                                 |
| 15.                               | n                                                                                         | Any number                                                                         |                                                                                                                                                         |                                                                                                                                                 |
| 16.                               | n+1                                                                                       | Consecutive number                                                                 |                                                                                                                                                         |                                                                                                                                                 |
| 17.                               | 2n                                                                                        | Even number                                                                        |                                                                                                                                                         |                                                                                                                                                 |
| 18.                               | 2n + 2                                                                                    | Consecutive even number to 2n                                                      |                                                                                                                                                         |                                                                                                                                                 |
| 19.                               | 2n + 1                                                                                    | Odd number                                                                         |                                                                                                                                                         |                                                                                                                                                 |
| 20.                               | 2n + 3                                                                                    | Consecutive odd number to 2n + 1                                                   |                                                                                                                                                         |                                                                                                                                                 |
| 21.                               | an                                                                                        | A multiple of a e.g. 3n represents a multiple of 3                                 |                                                                                                                                                         |                                                                                                                                                 |
| Functions                         |                                                                                           |                                                                                    |                                                                                                                                                         |                                                                                                                                                 |
| 22.                               | Function                                                                                  | A rule for working out values of y (output) given values of x (input)              |                                                                                                                                                         |                                                                                                                                                 |
| 23.                               | f(x)                                                                                      | Function notation read as 'f of x', where x is the input into the function         |                                                                                                                                                         |                                                                                                                                                 |
| 24.                               | Composite                                                                                 | fg(x)                                                                              | g(x) Evaluate $g(x)$ first then substitute this into $f(x)$                                                                                             |                                                                                                                                                 |
| 25.                               | functions                                                                                 | gf(x)                                                                              | Evaluate $f(x)$ first then substitute this into                                                                                                         | g(x)                                                                                                                                            |
| 26.                               | Inverse<br>fuction                                                                        | $f^{-1}(x)$                                                                        | Reverses the effect of the original function                                                                                                            | $f(x){=}3x{+}2$ $f^{-1}(x){=}rac{x{-}2}{3}$                                                                                                    |