

Definiti	ions					
Integer		A whole numbers and the negative equivalents.				
Positive		Greater than zero.				
Negative	9	Less than zero.				
Decimal		A number with digits after the d	ecimal point.			
Operatio	ons	Symbols describing how to comb $\times \rightarrow$ Multiply, $\div \rightarrow$ Divide		\dd	$- \rightarrow$ Subtract,	
			, T 7 F	uu ,	= [
Multiplic	ations terms	<i>Multiplicand:</i> The number being <i>Multiplier</i> : The number that we a <i>Product</i> : The result of the multip	are multiplyir		/ L	$\frac{\text{multiplicand}}{3 = 6}$
Division 1	terms	<i>Dividend</i> : The number being a <i>Divisor:</i> The number we are d <i>Quotient:</i> The result of the div operation.	ividing by.	Divid ↓ 40 Diviso	÷ 8 = 5	$\begin{array}{c} 6 \leftarrow \text{quotient} \\ 4 \overline{)24} \leftarrow \text{dividend} \\ 1 \\ \text{divisor} \end{array}$
					+ and - are inv	erses
Inuora o	perations	The operation used to reverse th	e original		$ imes$ and \div are inv	verses
inverse o	perations	operation.	operation.		Square and square root are inverses	
					Cube and cube	root are inverses
Order of	Operations		В			Brackets
		The order in which operations	l			Indices
		should be done.	DM			& Multiplication
		Net emilte	AS		Addition	n & Subtraction
la alcuita a	≠	Not equal to.				
Inclusive		Includes the first and last numbe	rs given.		Base	Exponent
Index Fo	rm	A number written as a base to the something.	ne power of		Base 2 7	Power Index
Prefix		The first part of a word, sometimes separated from the rest of the word by a hyphen.				
Standard	d Form	A number written in the form: $A \times 10^n$, where A is between 1 and 10.				
Scientific	Notation	Another name for Standard For				
Surd		An method of writing non square numbers as exact numbers in roo				rd because $\sqrt{4} = 2$ it is between 2 and 3
Fraction		Represents a proportion or part of a whole.			e.g. $\frac{4}{5}$	
Numerator		The number or term on top of the fraction.			Numerator	
Denominator		The number of term on the bottom of the fraction. Transfer of term on the bottom of the fraction.				
Rational		Eliminate a surd denominator in a fraction.				
denomin				->		
		ring and rounding (N2, N3, I	N5, N14, N1	5)		
i)	Add & subtract decimals	Use the column method making sure making sure the decimal points are vertically aligned $3.8 - 1.26 \longrightarrow \frac{7}{3.80} - \frac{1.26}{2.54}$				

ii)	Multiply		Calculate: 4.32 × 20.8
	decimals	Multiply the integers and correct place value	Use: $432 \times 208 = 89856$ So: $4.32 \times 20.8 = 89.856$ 2 dp 1 dp 3 dp
iii)	Divide decimals	<u>Dividing a decimal by an integer</u> : Use short division ensuring that a decimal point is placed vertically above the decimal point in the dividend.	3.7 4 14.8
		<u>Division with a decimal remainder</u> : add a decimal point and additional zero's after the dividend to allow you to continue the short division as above.	Calculate: $57 \div 8$ Use: $8 \overline{57 \cdot 0^{\circ}0^{\circ}0}$
		<u>Dividing by a decimal</u> : Multiply dividend and divisor by 10, 100, 1000 so that the divisor becomes an integer then complete short division as above. <u>N.B. Do</u> not place value after the calculation!	Calculate: 6. 488 \div 0. 8 \times 10 \times 10 Use: 64.88 \div 8 = 8.11 So: 6.488 \div 0.8 = 8.11
iv)	Multiply any number between 0 and 1	Use the methods described above in: ii) Multiply decimals <i>N.B.</i> Value of the product will be smaller than the value of the multiplicand if the multiplier is between 0 and 1 and vice-versa.	$12 \times 0.2 = 6$ And: $0.2 \times 12 = 6$
	Divide any number between 0 and 1	Use the methods described above in: iii) Divide decimals <i>N.B.</i> Value of the quotient will be greater than the value of the dividend if the divisor is between 0 and 1.	$12 \div 0.2 = 60$
v)	Use one calculation to find the answer to another	Given: $a \times b = c$ Then: $c \div b = a$ and $c \div a = b$ Adjust place value if necessary.	If: $19 \times 24 = 456$ $456 \div 24 = 19$ $456 \div 19 = 24$ $1.9 \times 24 = 45.6$ $456 \div 190 = 2.4$ $19 \times 240 = 4560$
vi)	Use the product rule for counting: multiple groups	There are <i>n</i> different options available from group A and <i>m</i> different options available from group B. The number of possible combinations that can occur when choosing one option from Group A <u>and</u> one option from Group B is given by: $n \times m$	e.g. A restaurant serves 4 different starter and 5 different main courses. How many combinations of start and main course could you choose? $4 \times 5 = 30$
	Use the product rule for counting: one group with repeats	There are n possible options available from a single group and the same option can be selected multiple times. The number of possible combinations that can occur when choosing m options is given by: n^m	e.g. A combination lock has 3 wheels with the numbers 1 to 8 on each wheel. How many different combinations are possible? $8^3 = 512$
	Use the product rule for counting: one group without repeats	There are n possible options from a single group and each options can be selected once only. The number of possible outcomes that can occur when choosing m options is given by: $n \times (n-1) \times (n-2) \times \dots \times (n-m+1)$	e.g. 12 people run a marathon, how many combinations of gold, silver and bronze medal winners are there? $12 \times 11 \times 10 = 1320$

::)	Round to a				
vii)	given number	 Count the number of decimal places you 	0	\wedge	e.g. 36. 3486343
	of decimal	need.	8	up	36.3 486343
	places	 Look at the number to the right of that 	9 8 7 6 5		To 1 d.p. is 36.3
	places	digit to decide if it rounds up or down.			36.34 86343
		 5 or more it rounds up, 4 or less it rounds 	down 3		To 2 d.p. is 36.35
		down.	โ		36.348 6343
					To 3 d.p. is 36.349
ii)	Round a	• Count the number of digits you need from			e.g. 324 627 938
	large number	the left.		•	3 24627938
	to a given number of	 Look at the number to the right of that digit to decide if it rounds up or down. 	9	ſ	To 1 s.f. is
	significant	 5 or more it rounds up, 4 or less it rounds 	9 8 7 6 5	up	30000000
	figures	down.	65		32 4627938
	ingules	 Replace remaining digits with zeros as 	down 3		To 2 s.f. is
		place holders.	2		32000000
			\downarrow		324 627938
					To 3 s.f. is
	<u> </u>				32500000
ix)	Round a	• Zeros are not significant until after the first			e.g. 0.0034792
	small number	non-zero number.	9		0.003 4792
	to a given	 Find the first non-zero and count the number of digits you need from there. 	987 65	up	To 1 s.f. is 0.003
	number of significant	 Look at the number to the right of that 	6		0.0034 792
	figures	digit to decide if it should round up or	. 4		To 2 s.f. is 0.0035
	ingules	down.	down 3		0.00347 92
		• 5 or more it rounds up, 4 or less it rounds	\downarrow 1		To 3 s.f. is 0.00348
		down.		•	
x)	Estimating	 Round each number to 1 significant figure b 	efore doing	e.g. Esti	
		any calculations.			8.91 × 8789.8
		It is acceptable to round one or more numb		e	520.9×0.492
		calculation to a greater accuracy than 1 sig. makes the calculation easier.	rig. If this	3.91 x	8789.8 4 × 9000
		DO NOT round the answer!		620.9	$\frac{1}{\times 0.492} \approx \frac{1}{600 \times 0.5}$
				020.7	3600
					$\approx \overline{300}$
					≈ 120
1b. Indi	ices, roots, recip	rocals and hierarchy of operations (N2	, N3, N6, N7,	N14)	
X	Use index	• Count how many zero's there are after the 1	and write 10	e.g. 10	$000\ 000 = 10^7$
i)	notation for	to the power of this number.			
	positive powers	• Write a 1 followed by the same number of z	ero's as the	e.a. 10	$^{2} = 100$
	of 10	power 10 is raised to.		C.g. 10	100
ii)	Use index	• Count how many zero's there are in front of	the 1 and		00 000 4 10-7
	notation for	write 10 to the power of the negative of this		e.g. 0. 0	$00\ 000\ 1=\ 10^{-7}$
	negative	• Use the positive of the power 10 is raised to			
	powers of 10	with this number of zero's in front with a de	cimal point	e.g. 10	$^{-2} = 0.01$
		after the first.			

iii)	Recognise common powers Powers of 2 Powers of 3 Powers of 4 Powers of 5	Recall that the positive power of a number tells us how many times to use that number in a multiplication. $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5 = 32, 2^6 = 64, 2^7 = 128, 2^8$ $3^1 = 3, 3^2 = 9, 3^3 = 27, 3^4 = 81, 3^5$ $4^1 = 4, 4^2 = 16, 4^3 = 64, 4^4 = 256, 4^5$ $5^1 = 5, 5^2 = 25, 5^3 = 125, 5^4 = 64$				
iv)	Estimate roots of any given positive number	 Identify the square (or cube) numbers immediately above and below the number we are trying to find the square (or cube) root of. The desired root must lie between the integer roots of the square numbers immediately above and below. 			integers • Next s • Previo 36. • v	ween which two does $\sqrt{42}$ lie? equare number is 49. ous square number is $\sqrt{36} = 6, \sqrt{49} = 7$ $\overline{42}$ lies between : 6 & 7
v)	Find the value of calculations involving positive indices	Recall that a positive power of a number tells us how many times to use that number in a multiplication.			e.g. 3 ⁴ = e.g. 7 ² =	$= 3 \times 3 \times 3 \times 3$ $= 7 \times 7$
	Find the value of calculations involving negative indices	 To calculate a negative power: Calculate the equivalent positive power. Then take the reciprocal. 		$a^{-n} = \frac{1}{a^n}$		e.g. Calculate 4^{-3} . • $4^3 = 64$ • $4^{-3} = \frac{1}{64}$
	Find the value of calculations involving fractional indices	The denominator of the fractional power gives the type of root to evaluate.		$a^{\frac{1}{n}} = \sqrt[n]{a}$	l	e.g. $64^{\frac{1}{2}} = \sqrt{64} = 8$ e.g. $125^{\frac{1}{3}} = 3\sqrt{125} = 5$
vi)	Use powers of 0 and 1	Anything to the	power of $0 = 1$	$a^0 = 1$		e.g. $5^0 = 1$
		Anything to th	e power $1 = $ itself	$a^1 = a$		e.g. $5^1 = 5$
vii)	Use index laws to simplify or evaluate	Multiplication	• Add the powers	$a^m \times a^n = a^m$.+ <i>n</i>	e.g. $2^2 \times 2^3 = 2^5 (= 32)$
	numerical expressions	Division	Subtract the powers	$a^m \div a^n = a^m$	n	e.g. $3^9 \div 3^4 =$ $3^5 (= 243)$
		Brackets	 Multiply the powers 	$(a^m)^n = a^{mn}$	n	e.g. $(7^4)^3 = 7^{12}$

i)	Factors	A factor is a number that divides into another	e.g. factors of 6:
		number	1, 2, 3 and 6
ii)	Multiples	A multiple is a number from the times tables	e.g. multiples of 4: 4, 8, 12, 16, 20,
iii)	Prime number	A prime number is a number with exactly 2 factor	5
		2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,	61, 67, 71, 73, 79, 83, 89, 97
iv)	Product	The answer when two or more numbers are multiplied together.	e.g. Product of 3 & 7: 3 × 7 = 21
v)	Prime factor decomposition	Writing a number as a <i>product of its prime factors</i>	60 6 10 2 3 2 5 Either way, the result is: 2 x 2 x 3 x 5 or 2 ² x 3 x 5 3 5
vi)	Highest common factor (HCF)	The highest number that divides exactly into two or more numbers.	e.g. The HCF of 12 & 8:
vii)	Lowest common multiple (LCM)	The smallest positive number that is a multiple of two or more numbers.	e.g. The LCM of 12 & 8: 24
d. Sto	andard form (N	9)	
i)	Convert a small number to standard form	 Count the number of zero's in front of the first significant figure (including the one in front of the decimal point). The power of ten is negative followed by this number. 	e.g. 0.0000037 = 3.7×10^{-7}
ii)	Convert a large number into standard form	 Count the number of place value position there are after the first significant figure. The power of ten is positive followed by this number. 	e.g. 147 100 000 000 $= 1.47 \times 10^{11}$
iii)	Converting to a small ordinary number	 Look at the digit after the negative in the power of 10. Write this may zero's in front of the first sig. fig. Reposition the decimal place between the first and second zero. 	e.g. 2.4×10^{-6} = 0.0000024
iv)	Adding or subtracting numbers in standard form	 Convert the numbers to ordinary numbers. Add. Convert the sum to standard form. 	e.g. $(2.3 \times 10^4) + (6.4 \times 10^3)$ = 23000 + 6400 = 29400 = 2.94 × 10 ⁴

v)	Multiplying numbers in standard form	 Multiply the numbers between one and 10 at the front. Use index law for multiplication for the powers of 10. If necessary increase the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(4.5 \times 10^3) \times (3 \times 10^5)$ = $13.5 \times 10^{3+5}$ = 13.5×10^8 = 1.35×10^9
vi)	Dividing numbers in standard form	 Divide the numbers between one and 10 at the front. Use index law for division for the powers of 10. If necessary decrease the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(2.5 \times 10^{11}) \div (5 \times 10^{13})$ = 0.5×10^{-2} = 5×10^{-3}
1d. Sur	rds (N8)		
i)	Multiply	$\sqrt{a} imes \sqrt{b} = \sqrt{ab}$ and $\sqrt{a} imes \sqrt{a} = a$	e.g. $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ and $\sqrt{3} \times \sqrt{3} = 3$
ii)	Divide	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	e.g. $\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}$
iii)	Add and	$\sqrt{a} + \sqrt{b}$ cannot simplify	e.g. $\sqrt{3} + \sqrt{2} = \sqrt{3} + \sqrt{2}$
	subtract	But $\sqrt{a} + \sqrt{a} = 2\sqrt{a}$	e.g. $5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$
iv)	Simplify	$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$	e.g. $\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$
v)	Rationalise the denominator	Multiply numerator and denominator (use equivalent fractions) by whatever will result in the denominator simplifying to an integer.	e.g. $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{7}{\sqrt{7}}$ e.g. $\frac{1}{5+\sqrt{2}} = \frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}} = \frac{5-\sqrt{2}}{3}$

ora: the basics			
tions			
Variable	A letter representing a varying or unknown quantity.		
Coefficient	A number which multiplies a variab	le e.g. 4 is the coefficient in 4a	
	One part of an expression/equation/	formula e.g. 4c	
Term	Can involve multiplying and dividing	g coefficients	
	Separated from other terms by add subtraction	ition and $\frac{w}{5}$	
Like terms	Terms that have the same variable but have different coefficients	e.g. c + 4c are like terms c ² and c ³ are not like terms	
	A fixed value.	Coefficient Variable	
Constant	A number on its own or sometimes a letter such as a, b or c to represent a fixed number.	4x - / = 5 Operator Constants	
	One or a group of terms.		
Expression	Can include variables, constants, operators and grouping symbols.	e.g. 3y -3	
	No 'equals' sign	3y ² +y ³	
Equation	Contains an 'equals' sign, =	e.g. 3y – 3 = 12	
Formula	A special type of equation that show variables	vs the relationship between a set of	
Formulae	Plural of 'formula'		
Identity	An equation that is true no matter what values are chosen, \equiv	e.g. $3y \equiv 2y - y$ for any value of y.	
Subject	The variable on its own on one side of	of the equals sign.	
Substitute	Replace a variable with a number.	a = 3, b = 2 and c = 5. Find: 1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$	
Simplify	Minimising the size of an expression		
	tions Variable Coefficient Term Like terms Constant Constant Expression Equation Formula Formulae Identity Subject Substitute	tions A letter representing a varying or un Coefficient A number which multiplies a variable Term One part of an expression/equation/ Can involve multiplying and dividin and variables Separated from other terms by add subtraction Like terms Terms that have the same variable but have different coefficients Constant A fixed value. Constant A number on its own or sometimes a letter such as a, b or c to represent a fixed number. Expression Can include variables, constants, operators and grouping symbols. No 'equals' sign Cantains an 'equals' sign, = Has at least one variable Formula An equation that is true no matter what values are chosen, = Subject The variable on its own on one side	

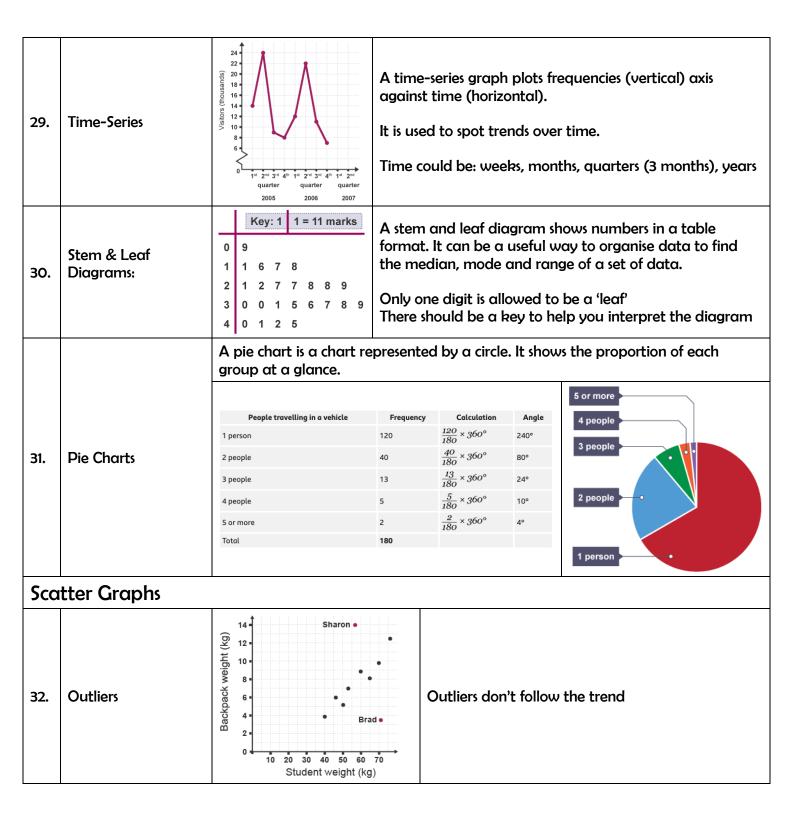
14.	Factorise	Splitting an expression into a produ	uct of factors			
15.	Expand	olication				
16.	Solve Find the value of an unknown					
Algebr	aic Notation					
17.	Adding like terms	Add the coefficients	b + 2b = 3b			
18.	Subtracting like terms	Subtract the coefficients	5b - 4b = b			
19.	Multiplying like terms	If the base is the same, add the powers	$b \times b = b^2$			
20.	Dividing terms	If the base is the same, subtract the powers	$b^5 \div b^2 = b^3$			
21.	Adding different terms	Cannot combine if the terms are different.	b + 2c = b + 2c			
22.	Subtracting different terms	Cannot combine if the terms are different.	3c - 4 = 3c - 4			
23.	Multiplying different terms	Combine with no ' \times ' sign	$d \times e = de$			
24.	Multiplying different terms with coefficients	Combine with no ' \times ' sign, multiply the coefficients	$2d \times 3e = d6e$			
25.	Dividing different terms	Write as fractions with no '÷' sign	$3d \div e = \frac{3d}{e}$			
26.	Dividing different terms with coefficients	$14d \div 7e = \frac{2d}{e}$				
Expar	nding (single brackets)					
27.		the bracket, by the term on the out	side.			
28.		$3a+12 \qquad \begin{array}{c} \times & 2x \\ 2x & 4x^2 \end{array}$	-3			
Facto	rising (single brackets)					
29.	new terms inside the	e bracket 2x	+ 4y 2(x + 2y) - 10xy 5xy(x - 2)			
Expre	Expressions					
		Can be represented by a straight line				
30.	Linear	No indices above 1	- e.g. 2x + 2			
31.	Quadratic	An expression where the highest index is 2	e.g. $2x^2 + 2x + 2$			

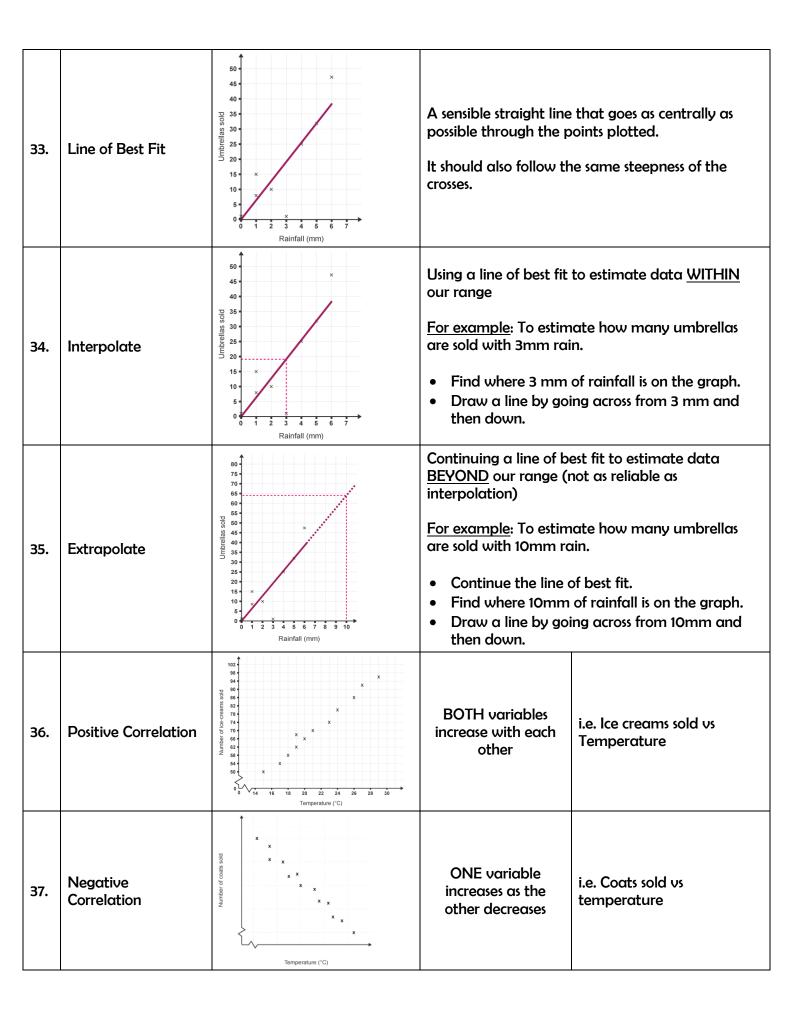
Expar	nding double brack	ets			
32.	Everything in the first bracket must be multiplied by everything in the second				
	Grid me	ethod FOIL method			
	(x+4)(x+1)	7) FIRST: $(x+3)(x-4)$ gives $x \times x = x^2$			
	X x +4	DUTER: $(x+3)(x-4)$ gives $x \times (-4) = -4x$			
33.	x x ² 4x +7 72 28	INNER: $(x+3)(x-4)$ gives $3 \times x = 3x$			
	$= x^{2} + 4x + 7$ $= x^{2} + 11x^{2}$	7x + 28 A 28 LAST: $(x + 3)(x - 4)$ gives $3 \times (-4) = -12$			
Facto	rising a quadratic e	expression			
		Multiply to 5			
		Factorise $x^2 + 5x + 6 \leftarrow \text{Add to } 6$			
	Factorising a	2 and 3 add to 5			
34.	quadratic in the form	2 and 3 add to 5 2 and 3 multiply to 6			
	of $ax^2 + bx + c$	(x+2)(x+3)			
		Check: $(x + 2)(x + 3) = x^2 + 5x + 6$			
		A special type of quadratic which only has two terms.			
	Difference of two	One term is subtracted from the other			
35.	squares	$x^2 - 25 = x^2 - 5^2 = (x + 5)(x - 5)$			
		$y^2 - 49 = y^2 - 7^2 = (y + 7)(y - 7)$			
		$a^2 - 16 = a^2 - 4^2 = (a + 4)(a - 4)$			
Equa	tions				
36.	To solve equations we need to use inverse operations				
37.	What ever you do to one side of the equals sign you must do the same to the other				

38.	One step	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} = 18 \\ 3 \end{array} & \left \begin{array}{c} \frac{x}{4} \\ (\times 4) \\ = 1 \end{array} \right = 24 \end{array} $
39.	Two step	Requires the use of two inverse operations	2x - 7 = 19 $2x = 26$ $x = 13$
40.	With brackets	Expand the brackets first 5(2x + 1) = 35 $10x + 5 = 35$ $10x = 30$ $x = 3$	OR if possible divide by the number outside of the bracket first $4(2x + 4) = 20$ $2x + 4 = 5$ $2x = 1$ $x = \frac{1}{2}$
41.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.	5x + 2 = 3x - 82x + 2 = -82x = -10x = -5
42.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\frac{f}{5} + 2 = 8$ $\frac{f}{5} = 6$ $f = 30$	If everything is part of the fraction then multiply by the denominator first. $\frac{f+2}{5} = 8$ $f+2 = 40$ $f = 38$
Chang	Always use inve If the letter you Make <i>u</i> th	v = u + 2us	
43.	v = u $(-u)$ $v - a$	$ \begin{array}{c} ut) \\ t = u \end{array} \qquad \qquad$	I = m(v - u) (÷ (v - u)) $\frac{I}{v - u} = m$

lterat	ion			
44.	Iteration	The act of repeating a process to generate a sequence of outcomes or with the aim of of appraoching a desired result e.g. finding a solution to an equation		
45.	Iterative sequence	The relationship between consecutive terms		
46.	Roots	Solutions to an equation		
47.	Change of sign	Two values with a root between them		
Seque	ences			
48.	Sequence	An order pattern of numbers or diagrams		
49.	Term	One of the numbers or diagrams in a sequence		
50.	Term to term rule	The rule for moving from one term to the next in a sequence		
51.	Formula	A rule written to describe a realtionship between twp quantities		
52.	Arithmetic sequence	A sequence where the term to term rule is to addd or subtract the same amount each time		
	Quadratic	A sequence where the term to term rule is changing by the same amount each time		
53.	sequence	The second difference is a constant amount.		
54.	Geometric sequence	A sequence where the term to term rule is to multiply by the same amount each time		
55.	Common	The value a geometric sequence is multiplied by from one term to the next		
55.	ratio	Denoted by the letter <i>r</i>		
56.	Series	The sum of the terms in a sequence		
57.	Position to term rule	The rule for finding any value of a sequence		
		The rule to find any term in a sequence of numbers		
58.	nth term rule for an arithmetic sequence	 Find the common difference between the terms This becomes you coefficient of n (this is the times table the sequenc is linked to) The number you need to add or subtract to get to the second term becomes the second term in the nth term rule 6, 10, 14, 18, 22 The sequence increases by 4, so the nth term starts with 4n 		
59.	Nth term for a quadratic sequence	 Find the first difference Find the second difference Halve the second difference and multiply by n² to gain a new sequence of an² Generate the first few term sof this seuence then subtract from the original sequence 		

60.	nth term for a geometric sequence	•	Divide the second sequence by the first The nth term is ar^{n-1} where a is the first sequence				
61.	Finite	Has a f	inal point				
62.	Infinite	Carries	on forever				
63.	Ascending	Increase	25				
64.	Descending	Decrea	ses				
65.	Linear function	An aruthmatic (aguanca that can be represented by a (traight line graph					
Special	Sequences						
66.	Square numbers		1, 4, 9, 16, 25, 36, 49, 64, 81, 100				
67.	Cube numbers		1, 8, 27, 64, 125	1 8 27 64 125			
68.	Triangular numbers		1, 3, 6, 10, 15, 21, 28				
	Eihanna artar		A sequence where each term is the sur	n of the two previous terms			
69.	i9. Fibonacci sequence		e.g. 1, 1, 2, 3, 5, 8, 13, 21				




Defini	itions			
1.	Qualitative Data	Non-numerical data	i.e. Colour of car	
2.	Quantitative Data	Numerical data i.e. House number		
3.	Discrete Data	Numerical data that <u>CANNOT</u> be shown in decimals	i.e. Number of children in a class	
4.	Continuous Data	Numerical data that <u>CAN</u> be shown in decimals	i.e. The heights of children in a class	
5.	Grouped Data	Numerical data given in intervals	i.e. Year group ranges: Year 7-9 Year 10-11 Year 12-13	
Avero	ages			
6.	Measure of location	A single value that describes a position in a do	ıta set	
7.	Measure of central tendency	A single value that describes the centre of the data		
		A measure of how spread out the data is		
8.	Measure of spread	Also known as 'measures or dispersion' or 'measures of variation'		
		Two simple measures of spread are range and	interquartile range (IQR)	
9.	Mode (modal class)	The value that occurs most often		
10.	Range	The difference between the largest and smalle	est values in the data set	
11.	Median	The middle value when the data values are p	ut in ascending order	
		Found by adding all number sin the data set a in the set	and dividing by the number of values	
12.	Mean	$\bar{x} = \frac{\Sigma x}{n}$ Mean from a frequency table	ere: \bar{x} is the mean Σx is the sum of the data values n is the number of data values $f \chi$	
		$\bar{x} = \frac{\Sigma f}{\Sigma}$ Where $\Sigma f x$ is the sum of the products of data is the sum of the frequencies		

	Average	Advantages			Disadvantages		
13.	Mean	Every value mal	kes a diff	erence		Affected by	v extreme values
	Median	Not affected by	extreme	values		May not ch changes	ange even if a data value
	Mode	Easy to find; not values; can be us data					not be a mode
vera	ges from freque	ncy tables					
14.	Modal class	The class with th	e highest	frequen	су.		
15.	Median	If the total frequ	iency is n_i	, then the	e med	ian lies in the	class with the $\frac{n+1}{2}$ th value in
16.	Mean from a frequency table Times Add Divide		of make-up No of Items From 1 7 2 2 3 1 4 4 5 2 1 1	f x 1x7 2x2 3x1 4x4 5x2	=7 =4 =3 =16		Mean = <u>40</u> = 2.5
17.	Estimated mean from a grouped frequency table Times Add Divide	$Class Interval$ $140 \le h < 150$ $150 \le h < 160$ $160 \le h < 170$ $170 \le h < 180$	Mid-point 145 155 165 175 Totals	Frequency 6 16 21 8 51	145 155 165	$bint \times Frequency$ $5 \times 6 = 870$ $5 \times 16 = 2480$ $5 \times 21 = 3465$ $5 \times 8 = 1400$ 8215	Mean = 8215 ÷ 51 =161.07843 = 161.08 (2dp)
18.	Estimate of range from grouped frequency table	The maxiumum	possible	value mi	nus th	e smallest po	ssible value.

19.	Bar chart	A chart to display discrete bar shows the frequency size 5 4 5 3 5 4 3 5 4 3 5 4 3 1 0 8 1 0 0			the Mean: 23 ÷ 10 = 2.3 Median: 2.5 Mode : 3 Range: 4-1 = 3
20.	Pictogram	A chart that uses pictur include a key. Jan Feb Mar Apr	ust Mean: 95÷4 = 23.75 Median: 22.5 Range: 30		
21.	Stem and leaf diagram	STEM LEAF 0 7 1 0 5 5 5 79 2 0 2 2 6 7 3 0 2 4 6 8 Key: 6 1 = A diagram that shows of value. 'Leaves' should be			
22.	Back to back stem and leaf	Compares two sets of results. Must have a key. A B LEAF STEM LEAF 8 8 7 5 0 7 9 7 4 1 0 1 0 5 5 5 79 2 2 2 1 2 0 2 2 6 7 8 6 4 2 0 3 0 2 4 6 8 Key: 6 1 = 61 hours			Set A Mean: 356÷18 = 19.8 Median: 20 Mode: 22 Range: 38-5 = 33 Set B Mean: 385÷17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31
Repre	senting data				
23.	Two-Way Tables	BoysPet9No Pet2TOTAL11	Girls 4 5 9	TOTAL 13 7 20	Two-way tables are a way of sorting data with two categories.

24.	Pictograms	Movie genre Frequency Horror	Used to show frequencies Pictures and images used to represent frequency A key at the bottom helps you interpret the diagram
25.	Bar Charts	15 10 5 0 0 5 10 10 5 0 0 5 10 10 5 10 10 5 10 10 10 10 10 10 10 10 10 10	Frequency on the vertical axis, and categories along the horizontal axis. Used to compare frequencies
26.	Composite Bar Chart	A A A A A A A A A A A A A A	Frequency on the vertical axis, and categories along the horizontal axis. Two shades used to show difference in proportion between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
27.	Comparative Bar Chart	50 40 30 Cm 20 Jan Feb Mar Apr May Month Dual Bar Chart	Frequency on the vertical axis, and categories along the horizontal axis. Bars are next to each other and used to show difference in frequency between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
28.	Line Graph	C under the second seco	A line graph is used to show a change or relationship between two variables. Once the points are plotted, they are joined with straight lines.

38.	No Correlation	Image: state	NO relationship between variables	i.e. IQ and House Number	
39.	Causation	 If one variable causes a change in the other. i.e. an increase temperature <u>WILL</u> cause an increase ice cream sales i.e. the number of bee stings <u>WILL NOT</u> cause an increase in ice cream sales (although both will increase in hot weather) 			

ractions r

Fra	ctions		
1.	Fraction	Part of a whole	
2.	Numerator	The number on the top of the fractic	n numerator
З.	Denominator	The number on the bottom of the fro	action denominator
4.	Equivalent fractions	Fractions that have the same value l look different.	but $\frac{1}{2} \xrightarrow{\frac{2}{4}} \xrightarrow{\frac{3}{6}} \xrightarrow{\frac{4}{8}}$
5.	Improper fraction	A fraction where the numerator is la than the denominator.	rger e.g. $\frac{4}{3}$
6.	Mixed number	A number made from integer and fr parts.	raction e.g. $2\frac{2}{3}$
7.	Unit fraction	A fraction that has a numerator of 1	
	Designed	The reciprocal of a number is 1 divided by the number.	e.g. the reciprocal of 3 is $\frac{1}{3}$
8.	Reciprocal	Dividing by a number is the same as multiplying by its reciprocal	e.g. $ imes$ by $rac{1}{3}$ is the same as \div by 3
Fra	ctions - processes	· · · ·	
9.	Simplifying fractions	Divide the numerator and denomina by the HCF.	$\frac{24}{30} = \frac{4}{5}$
10.	Finding equivalent fractions	Multiply the numerator and denominator by the same number	$\frac{4}{8} \times 2 = 8$ $\times 2 = 16$
11.	Comparing fractions	Write them with a common denomi	nator
12.	Fraction of an amount	Amount divided by the denominato then multiplied by the numerator	r e.g. $\frac{5}{7}$ of 42 42 ÷ 7 x 5 = 30
13.	Multiply fractions	Multiply the numerators and multipl the denominators	$\frac{6}{7} \times \frac{4}{5} = \frac{6 \times 4}{7 \times 5} = \frac{24}{35}$
14.	Divide fractions	 Flip the second fraction (find reciprocal). Change the divide to multiple Multiply the fractions. 	$\frac{4}{3} \div \frac{5}{4} = \frac{4}{5} \times \frac{6}{5} = \frac{4 \times 6}{5 \times 5} = \frac{24}{5 \times 5}$
15.	Add or subtract fractions	 Write as fractions with a common denominator. Add or subtract the numerat 	ors $\frac{2}{8} + \frac{1}{6} = \frac{6}{24} + \frac{4}{24} = \frac{10}{24} = \frac{5}{12}$

16.	Convert improper fractions to mixed numbers	 Divide the numerator by the denominator The answer gives the whole number part. The remainder becomes the numerator of the fraction part 	$\frac{43}{6} = 7\frac{1}{6}$			
17.	Convert mixed numbers to improper fractions	 with the same denominator. Multiply the denominator by the whole number part. Add the numerator to this. Put the answer to this back ove the denominator 	$7\frac{1}{6} = \frac{6 \times 7 + 1}{6} = \frac{43}{6}$			
18.	Adding and subtracting mixed numbers	 Convert mixed numbers to impr Transform both fractions so they Add or subtract the numerators Convert back to mixed number 	have the same denominator			
19.	Multiplying mixed numbers	 Convert mixed numbers to improper fractions Multiply numerators and multiply the denominators Convert back to mixed number if applicable 				
20.	Dividing mixed numbers	 Convert mixed numbers to improper fractions Flip the second fraction (find the reciprocal) Change the divide sign to a multiply Multiply the fractions Convert back to mixed number if applicable 				
Per	centages					
21.	Percentage	Means 'out of 100'				
22.	Multiplier	A decimal you multiply by to represent To use a multiplier to find a percentage then multiply the amount by this value	e, divide your percentage by 100,			
		Calculate the percentage and add onto	o the original			
23.	Percentage increase	Or use a multiplier	amount $\times \frac{100 + \% \text{ increase}}{100}$			
		Calculate the percentage and subtract	from the original			
24.	Percentage decrease	Or use a multiplier	amount $\times \frac{100 - \% \text{ increase}}{100}$			
25.	Percentage change	$\frac{Change}{Original} \times 100$				
26.	Express one number as a percentage of another	$\frac{Number 1}{Number 2} \times 100$				

		Use when asked to find the priginal amount after a percentage increase or decrease.				
27.	Reverse percentage	Original Value x Multiplier = New Value				
		Original Value = <u>Nev</u>	v Value			
		Mu	ltiplier			
28.	Interest	A fee paid for borrowing money or m	noney earnt through investing.			
			l = Prt			
29.	Simple interest	Interest that is calculated as a percentage of the original	I – Interest P – Original amount r – interest rate t - time			
20		When interest is calculate on the original amount and any previous interest	$P\left(1+\frac{R}{100}\right)^n$ P – Original amount			
30.	Compound interest	OR Original × Multiplier ^{time}	R – Interest rate n – the number of interest periods (e.g. yrs)			
31.	Ταχ	A financial charge placed on sales or	savings by the government e.g. VAT			
32.	Loss	Income minus all expenses, resulting in	n a negative value			
33.	Profit	Income minus all expenses, resulting in	n a positive value			
34.	Depreciation	A reduction in the value of a product	over time			
35.	Annual	Means yearly				
36.	Per annum	Means per year				
37.	Salary	A fixed regular payment, often paid	monthly			
FDI	P Conversions	Γ				
38.	Percentage to decimal	Divide by 100				
39.	Decimal to percentage	Multiply by 100				
40.	Fraction to percentage	Find an equivalent fraction with 100 as the denominator				
41.	Percentage to fraction	Write as a fraction over 100 then simplify				
42.	Fraction to decimal	Carry out division or convert to a percentage first				
43.	Decimal to fraction	Use place value to find the denominator and simplify or convert to a percentage first				

Bas	ics to memo	orise									
	Fraction	$\frac{1}{100}$	$\frac{1}{10}$	$\frac{1}{8}$	$\frac{1}{5}$	$\frac{1}{4}$	_	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$
44.	Decimal	0.01	0.1	0.125	0.2	0.2	-	0. 3	0.5	0. Ġ	0.75
	Percentage	1%	10%	12.5%	20%	25	%	33. 3%	50%	66. 7%	75%
Ter	Terminating and recurring decimals										
45.	Terminating decimal	Decin	nals that c	an be wr	itten exa	ctly	e.g	. 0.38			
46.	Recurring decimal		nals where its are rep	-	t or grou	ps		. 0. 7 = 0 .			
				euleu			0.Ė	353 = 0.8 !	53853		
		3	 Let n = the number of recurring digits. Multiply the recurring decimal by 10ⁿ. Subtract (1) from (3) to eliminate the recurring part. Solve for x, expressing your answer as a fraction in its simplest form. 0.7 (one recurring digit) 1.256 (two recurring digits) 							ligits)	
47.	Converting a recurring decir	nal	<i>x</i> = 0.7777				x =1.25656				
47.	to a fraction	nai	10x :	= 7.777				100 <i>x</i>	=125.656	5	
			10x - x = 10x	= 7				100x - x	=125.656	51.2565	65
			9 <i>x</i> :	= 7				99 <i>x</i>	=124.4		
			$x = \frac{7}{9}$				$x = \frac{124.4}{99} = \frac{1244}{990} = \frac{622}{495}$				
	Converting a						e.g. $\frac{4}{7}$ means $4 \div 7$				
48.	fraction to		irry out the	-		ing a					
	recurring decimals	ca	calcualtor or bus stop division				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Rat	io and Prop	ortior									
49	. Ratio		A relationship between two or more quantities								
50	. Unit ratio		Used to compare ratios, one of the parts is 1								
50			The only time it is permissible to have a decimal in a ratio								
51.	Equivalent		Ratios that	have the	same simp	lified f	form	are said to	be equiv	alent	

52.	Scale	A ratio that represents the relationship between a length on a drawing or a map and the actual length					
53.	Proportion	Compares a part with a whole					
	Direct	Two quantities increase at the same rate	$y \propto x$ y = kx for a constant k				
54.	proportion	Graph is a straight line that goes through th origin					
55.	Inverse/indirect proportion	One variable increases at a constant rate a the second variable decreases	$y \propto \frac{1}{x}$ $y = \frac{k}{x} \text{ for a constant } k$				
56.	Proportional	A change in one is always accompanied by	a change in the other				
57	Constant of	Represented by k					
57.	proportionality	Its value stays the same					
58.	Share	Splitting into parts as defined by a ratio					
59.	Unitary method	Finding the value of 1 item then using this to item	o find the value of any number of that				
59.	Unitary method	Use to work out which products give the be	st value for money				
Work	ing with ratio	DS					
60.	Simplifying ratio	Divide all parts by the highest common					
61.	Divide in a given ratio	Divide an amount so the ratio of the final values simplifies to the given ratio	share £20 in the ratio 3:2 £20 £4 £4 £4 £4 £4				

scienceAcader	my Film			
Shap	es and angles - de	efinitions		
1.	Angle	A measure of turn, measured in degrees \circ		
2.	Protractor	Instrument used to measure the size of an angle		
3.	Acute angle	An angle less than 90°		
4.	Right angle	A 90° angle		
5.	Obtuse angle	An angle more than 90° but less than 180°		
6.	Reflex angle	An angle more than 180°		
7.	Parallel lines	Lines that are equal distance apart that will never meet even when extended		
8.	Perpendicular lines	Lines that intersect at a right angle		
9.	Polygon	A 2D shape with straight lines only		
		A polygon where:		
10.	Regular polygon	All sides are the same length All angles are the same size		
11.	Interior angles (I)	An angle inside a polygon		
12.	Exterior angles (E)	An angle outside a polygon Interior angle Interior angle I + E = 180°		
13.	Congruent	Shapes that are the same shapes and size, they are identical.		
14.	Similar	Shapes that are the same shape but are different sizes		
15.	Bisect	Cut in half		
16.	Tessellate	Fit together without leaving gaps		
17.	Symmetry	A shape has symmetry if a central line is drawn to show both sides are exactly the same.		
		We call these lines of symmetry		
18.	Rotational symmetry	A shape has rotational symmetry when it looks the same after some rotation of less than a full turn		

Quadr	ilaterals (4 sided shapes)			
19.	Square		4 equal sides 4 equal angles 2 pairs of parallel sides Diagonals cross at right angles	4 lines symmetry Rotational symmetry order 4	
20.	Rectangle		2 pairs of equal sides 4 right angles 3 pairs of parallel sides	2 lines of symmetry Rotational symmetry order 2	
21.	Rhombus		4 equal sides 2 pairs of equal angles 2 pairs of parallel sides Diagonals cross at right angles	2 lines of symmetry Rotational symmetry order 2	
22.	Parallelogram		2 pairs of equal sides 2 pairs of equal angles 2 pairs of parallel sides	O lines of symmetry Rotational symmetry order 2	
23.	Kite		2 pairs of equal sides 1 pair of equal angles 2 pairs of parallel sides Diagonals cross at right angles	1 line of symmetry Rotational symmetry order 1	
24.	Trapezium		One pair of parallel lines		
25.	Isosceles trapezium		1 pair of parallel sides1 line of symmetry2 pairs of equal angles1 line of symmetry orde		
Triang	les (3 sided shapes)	-		_	
26.	Equilateral		3 equal sides 3 equal angles	3 lines of symmetry Rotational symmetry order 3	
27.	Isosceles		2 equal sides 2 equal angles	1 line of symmetry Rotational symmetry order 1	
28.	Scalene	A A A	No equal sides No equal angles		
29.	Right-angled		1 right angle Can be scalene or isosceles		
Basic	angle rules				
30.	Angles on a straight li	ne add to 180°			

31.	Angles around a point add up to 360°	
32.	Vertically opposite angles are equal	x° y° x°
33.	Angles in a triangle add to 180°	a [*] b [*] a [*] + b [*] + c [*] = 180
34.	Angles in a quadrilateral add up to 360°	A + B + C + D = 360
Angle	s on parallel lines	
35.	Alternate angles are equal	
36.	Corresponding angles are equal	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
37.	Co-interior angles add up to 180°	\rightarrow
Angle	s in polygons	
38.	Interior and exterior angles add to give 180°	Exterior angle Interior angle For any polygon: I + E = 180 ⁰
39.	Sum of interior angles	For a 'n' sided polygon Sum of interior angles = 180 x (n-2)

40.	Size of one interior angle	For a 'n' sided polygon			
		Interior angle = $\frac{180 x (n-2)}{n}$			
41.	Sum of exterior angles	For all polygons, sum of exterior angles = 360°			
	Regular polygons	Exterior angle = 360 ÷ number of sides			
42.		Number of sides = 360 ÷ exterior angle			
		Interior angle = 180 — exterior angle			

Pythagoras' Theorem						
42	Lh matanina	The longest side of a right-angled triangle				
43.	Hypotenuse	It is always opposite the right angle	a			
44.	Right- angled triangle	A triangle that contains a right angle				
		$a^2 + b^2 = c^2$	a			
45.	Pythagoras' Theorem	Where c is the hypotenuse	b			
		Where a and b are the two shorter s	sides $a^2 + b^2 = c^2$			
46.	To find the hypotenuse (c)	$3^{2} + 4^{2} = C^{2}$ $9 + 10 = C^{2}$ $35 = C^{2}$ $\sqrt{a5} = C$ 5	SquareAddSquare root			
47.	To find a short side (a/b)	5 $a \int \frac{8 \text{ cm}}{17 \text{ cm}} = \frac{17^2 - 8^2}{= 289 - 64}$ $a = \sqrt{225}$ $a = \sqrt{225}$ = 15	 Square Subtract Square root 			
49	Pythagoras' in 3D	$a^2 + b^2 + c^2 = d^2$				
48.		$d^2 - b^2 - c^2 = a^2$				

Trigor	nometry - Rig	ht angled –	- SOH C	AH TO	A				
49.	Trigonometry	The ratios between the sides and angles of triangles							
		heta is the angle involved							
50.	Labelling the	Н	is the hypo	tenuse		adjacent (H) $($			
	triangle) is the opp			<i>"</i> р	opposite	~ /	\mathcal{P}^{A}
		A	A is the adjo	acent			(<i>O</i>)		0
51.	Sine		SOH					Sin θ =	нур
						Sin θ	н	$\theta = Sir$	$a^{-1} \frac{Opp}{Hyp}$
52.	Cosine		САН			A		$Cos \theta = \frac{Adj}{Hyp}$	
52.	Cosine	САН				Cos θ H		$\theta = Cos^{-1} \frac{Adj}{Hyp}$	
53.	Tangent	ΤΟΑ					Tan θ =	$= \frac{Opp}{Adj}$	
55.						Tan θ A		$\theta = Tar$	$n^{-1} \frac{Opp}{Adj}$
			θ	0°	30°	45°	60°	90°	
			Sin Ə	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
			Cos Ə	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
54.	Exact Values		Tan Ə	0	$\frac{2}{\sqrt{3}}$	1	√3		
			These can	be foun	d using the second sec	ne triangle:	s: _F		
					1 3	1	1 45°	2	
55.	Angle of elevation	e		Ang	le of depr	ession	2	d	

scienceAcadem			Unit d			
Grapł	ns - definitions	1				
1.	Axis	A reference line on a graph				
2.	Axes	Plural of axis	Plural of axis			
3.	Quadrant	A quarter of a graph separated by a axes				
		Used to show a position on a coordinate pla	ine, (<i>x</i> , <i>y</i>)			
4.	4. Coordinate First coordinate is the horizontal position, (x axis) and the second is the very position (y axis)					
5.	Origin	The point (0,0) on a set of axes				
6.	Plot	Mark a position or positions on a graph				
7.	y intercept	The y value where a graph crosses the y axis	s where x=0			
8.	x intercept	The x value where a graph crosses the x axis where y=0				
9.	Parallel	Lines that are equal distance apart that if extended will never meet				
10.	"y=" graph	Constant y coordinate	y = -x = 4 y = x			
	y 3 p	Will be parallel to the x axis	y=2			
	"x=" graph	Constant x coordinate	y=-3			
11.		Will be parallel to the y axis	x = -1			
12.	Linear function	An arithmetic sequence that can be represe	nted by a straight line graph			
13.	Linear equation	An equation that produces a straight line g	An equation that produces a straight line graph			
		y = mx + c	ax + by + c = 0			
14.	Equation of a line		2			
14.		m = gradient c = y intercept	Where a, b and c are integers			

Coord	inate geometry					
	Gradient	The steepness of a graph	y Arise nin			
15.		$Gradient = \frac{change in y}{change in x} \\ = \frac{rise}{run}$	This has a This has a positive negative gradient gradient			
16.	Gradient between two points	If A = (x ₁ , y ₁) and B = (x ₂ , y ₂) The gradient of line AB = $\frac{y_2 - y_1}{x_2 - x_1}$	$\begin{array}{c} & B \\ (x_2, y_2) \\ (x_1, y_1) \end{array}$			
17.	Parallel lines	Have the same gradients				
	Perpendicular	Lines that are at right angles to one another				
18.		Lines that are perpendicular are the negative reciprocal of one another	If a line has a gradient of m , the gradient of a line perpendicular to it will have a gradient of $-\frac{1}{m}$			
		If two lines are perpendicular, the product of their two gradients is -1				
19.	Mid-point	The coordinate half way between two point If A = (x_1, y_1) and B = (x_1, y_1) the mid-point is $\left(\frac{x_1+x_2}{2}\right)$				
20.	20. Distance between two points Distance (d) between (x_1, y_1) and (x_2, y_2) can be found using the formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$					
Real li	fe graphs	t				
21.	Steady speed	Travelling the same distance each minute				
22.	Velocity	Speed in a particular direction				
23.	Rate of change	Shows how a variable changes over time				
24.	Acceleration How fast velocity changes; measured in m/s ² or km/s ² etc					

Distar	nce - Time g	raphs			
25.	Represent a jo	ourney			
26.	Vertical axis r	epresents the distance from the starting point			
27.	Horizontal ax	is represents the time taken	Distance D		
28.	Straight lines	mean constant speed	A = steady speed,		
29.	Horizontal lin	es mean no movement	B = no movement,		
30	Gradient = sp	eed	C = steady speed back to start		
31.		Average speed = $=\frac{total \ distance}{total \ time}$			
Veloci	ty – Time g	raphs			
32.	Represents th	e speed at given times			
33.	Straight lines	mean constant acceleration or deceleration	V Velocity		
34.	Horizontal ch constant spee	ange means no change in velocity e.g. d	A = steady acceleration,		
35.	Positive gradient-= acceleration		B = constant speed,		
36.	Negative gra	dient = deceleration	C = steady deceleration back to a stop		
37.	Distance trav	elled = area under the graph			
Quad	ratic, cubic o	and other graphs			
38.	Quadratic expression	An expression where the highest index is 2	e.g. $2x^2 + 2x + 2$		
		Solutions to a quadratic equation/function $ax^2 + bx + c = 0$	4		
39.	Roots	The x values where the graph crosses the x a	xis 2 .1 1 2 3 4		
		A quadratic can have 0, 1 or 2 roots			
		Curved shaped called a parabola	$y = x^2$		
40.	Quadratic graph	A positive x^2 will give a 'U' shape	y = x x $y = -x^2$		
		A negative x ² will give a '∩' shape			

41.	Turning points	The point where a curve turns in the opposidirection	site
41.		Can be called a minimum or maximum	Ma×imum Minimum
42.	Cubic	General form of $ax^3 + bx^2 + cx + d = 0$	y 5 (1,4) x y (3,27) (3,27) (3,27)
		Can have 1, 2 or 3 roots	$\begin{array}{c c} -1 & 0 \\ Graph of f(x) = 2x^3 - 3x^2 + 5. \\ b^2 - 3ac = 9 \end{array} \qquad \begin{array}{c c} 0 & \frac{9}{2} \\ Graph of f(x) = -8(x-3)^3 + 27. \\ b^2 - 3ac = 0 \end{array}$
43.	Asymptote	A line a graph will get very close to but wil	l not touch
44.	Reciprocal	General form of $y = \frac{k}{x}$ where k is a number	$y = \frac{k}{x}$ (positive) $y = \frac{-k}{x}$ (negative)
		Has two asymptotes	
45.	Circle	With centre (0,0) and radius, r $x^2 + y^2 = r^2$	$x^{2} + y^{2} = 16 (r = \sqrt{16} = 4)$

scienceAcademy		Unit /				
2D an	d 3D shapes: def	initions				
1.	Dimension	The size of something in a particular direction e.g. height, depth, length, width				
2.	2D shape	A shape that has length/height and a width but no depth				
3.	3D shape	A shape that depth as well as length/height and width				
4.	Polygon	A 2D shape with straight lines only				
		A polygon where:				
5.	Regular polygon	All sides are the same length All angles are the same size				
6.	Compound shape	A shape made up of two or more simple shapes				
7.	Rectilinear shape	A shape where all of its sides meet at right angles				
8.	Perimeter	The distance around the outside of a 2D shape				
9.	Area	The space inside a 2D shape				
10.	Surface area	The total area of all the faces of a 3D shape				
11.	Volume	The space inside a 3D shape				
12.	Capacity	The amount of fluid a 3D object can hold				
13.	S.I. Units	Standard units of measurement used by scientists across the world				
14.	Metric units	Standard units of measurement that vary by powers of 10				
15.	Imperial units	Older units of measurement, some of which are still common e.g. miles, gallons				
16.	Cross section	The shape we get when cutting straight through a 3D shape				
17.	Prism	A 3D shape that has a constant cross section through its length				
18.	Pyramid	A 3D shape with a polygon as its base and triangular sides that meet at the top				

19.	Cylinder	A prism with two circular ends connected by a curved surface			d by a		,	
20.	Sphere	A 3D shape where all points on the surface are the same distance from the centre			ice are		8 m	
21.	Spherical	Means in the shape	of a sp	ohere	I			
22.	Cone	-	A 2D shape that has a circular base joined to a point by a curved side					
23.	Face	A flat surface of a 3	D shap	oe (can be curv	ved) e	dge	vertex	
24.	Edge	A line segment whe	re two	faces meet			face	
25.	Vertex	A point where two	or mor	e edges meet				
26.	Vertices	Plural of vertex						
Meas	ures							
27.	Units of time	Standard units of ti	me are	e seconds, minu	ites, hours, o	days, yea	rs	
	Shies of time	60 seconds = 1 minute	60 mi	nutes = 1 hour	24 hours =	= 1 day	365 days = 1 year	
28.	Units of mass	Metric units of mass	are m	illigrams, gran	ns, kilogram	s and tor	nnes	
20.	Units of mass	1000mg = 1g	1000mg = 1g 1000g = 1kg		= 1kg	1000kg = 1 tonne		
29.	Units of length	Metric units of lengt	tric units of length are millimetres, centimetres, me			metres and kilometres		
29.		10mm = 1cm 100cm = 1m			n = 1m	1000m = 1km		
		Metric units of length are millimetres ² , centimetres ² , metres ² and kilometres ²						
30.	Units of area	1cm ² = 100mm ²		1 cm	<_1cm→	10 mm ↓ 10 mm ►		
		1m ² = 1000cm ²		Area	$a = 1 \text{ cm} \times 1 \text{ c}$ = 1 cm ²	$ \text{Area} = 10 \text{mm} \times 10 \text{mm} \\ = 100 \text{mm}^2 $		

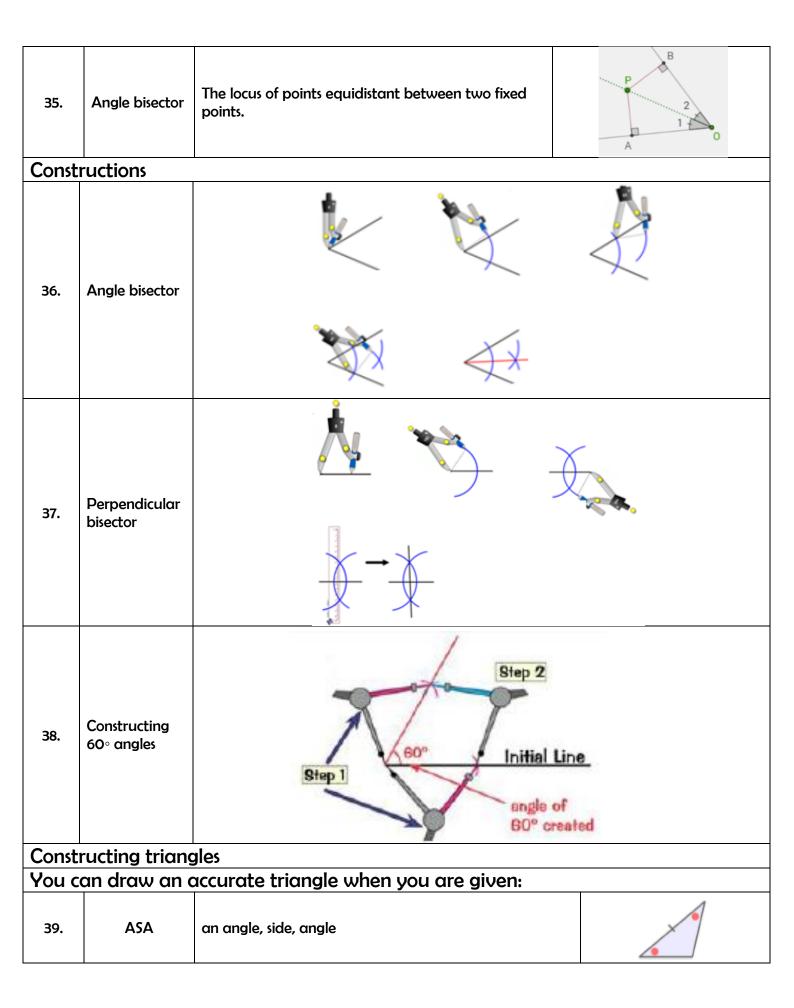
		Metric units of length are millimetres ³ ,	centimetres ³ , metres ³ and kilometres ³
31.	Units of volume	1cm ³ = 1000mm ³	
		1m ³ = 1000000cm ³	
32.	Units of capacity	Metric units of capacity are millilitres, ce	entilitres and litres
52.	Units of capacity	10 <i>ml</i> = 1 <i>cl</i>	1000 <i>m</i> /= 100 <i>c</i> /= 1/
33.	Capacity and volume conversions	1cm ³ = 1 <i>m</i> /	1000cm ³ = 1/
2D Sh	apes		
34.	- Square	Area = $l \times w$ or l^2 as length and wid	of th are equal x
35.	Square	Perimeter = $l + l + l + l$ or	
36.	_ Rectangle	Area = $l \times w$	W
37.		Perimeter = $l + l + w + w$ or	2l + 2w l
38.	Parallelogram	Area = $b \times h$	height base
39.	Triangle	Area = $\frac{b \times h}{2}$ or $\frac{1}{2} \times b \times h$	height base
40.	Trapezium	Area = $\frac{a+b}{2} \times h$ or $\frac{1}{2}(a+b)$	$\times h$

41.	Compound shape	To find the area, split up into simple shapes, find each area and add together. To find the perimeter, find any missing sides than add all the sides together.	5 cm 1 $B cm$ $A_1 = LB$ $A_2 = LB$ $= 8 \times 5$ $= 11 \times 9$ $= 40 cm^3$ $= 99 cm^2$ 2 $9 cm$ Area $= A_1 + A_2$
Circles	i i i i i i i i i i i i i i i i i i i		
42.	Diameter	A straight line from edge to edge passing through the centre	
		Double the size of the radius	
43.	Radius	A straight line from the centre to the edge	
ч		Half the size of the diameter	
44.	Radii	The plural of radius	
45.	Circumference	Distance around the outside of the circle	
46.	Arc	Part of the circumference	
47.	Chord	A line within a circle where each end touches the edge	
48.	Sector	The region created by two radii and an arc	
49.	Segment	The region created by a chord and an arc	
50.	Tangent	A line outside the circle which only touches the circumference at one point	
51.	Semi -circle	Half a full circle	

Area	and circumferenc	e of circles formulae	
52.	Ρί (π)	Constant ratio linking the circumference and diameter of a circle	
52.		3.14159265	
53.	Circumference of a circle	$C = \pi d$	Alternatively, using relationship between r and d $C = 2\pi r$
54.	Arc length	$\frac{x}{360} \times \pi d$	Where x is the angle at the centre
55.	Perimeter of a sector	$\left(\frac{x}{360} \times \pi d\right) + 2r$	This represents the arc length plus the two radii
56.	Area of a circle	A = x	πr^2
57.	Area of a sector	$\frac{x}{360} \times$	πr^2
3D sho	apes: volume		
58.	Prism	Volume = area of cross section × let	ngth
59.	Cuboid	Volume = area of cross section × le Volume = length × width × heigh	
60.	Triangular prism	Volume = area of cross section \times let Volume = $\frac{1}{2} \times$ base \times height \times lenge	
61.	Volume of a cylinder	$V = \pi r^2 h$	
62.	Surface area of a cylinder	$Total \ surface \ area \\ = \ 2\pi r^2 + \pi dh$	
63.	Volume of a pyramid	$V = \frac{1}{3} \times area \ of \ base \\ \times \ perpendicular \ height$	area of base

			1		
64.	Volume of a co	one	$V = \frac{1}{3} \times \pi r^2 h$		
	Surface area of a		Curved surface area = $\pi \pi$	rl	h
65.	cone		$Total \ surface \ area \\ = \ \pi r^2 + \pi rl$		
66.	Volume of a sphere		$= \pi r^2 + \pi r l$ $V = \frac{4}{3} \times \pi r^3$		
67.	Surface area a sphere	ofa	Total surface area = $4\pi r$.2	\bigcirc
68.	Volume of a frustum		Find the volume of the whole cones subtract the volume of the smaller cones to get the volume of the frustum	one	$V = \frac{1}{3} \text{Tr} x^{2} h$ $V = \frac{1}{3} \text{Tr} x^{2} h$ $V = \frac{1}{3} \text{Tr} x^{2} x 15$ $V = 180 \text{Tr} cm^{3}$ $V = \frac{1}{3} \text{Tr} x^{2} h$ $V = \frac{1}{3} \text{Tr} x^{2} h$ $V = \frac{1}{3} \text{Tr} x^{2} x 10$ $V = \frac{1}{3} \text{Tr} x^{2} x 10$ $V = \frac{160 \text{Tr}}{3} \text{ cm}^{3}$
Accuracy	y and Bounds				
69.	Integer		A whole number and the negative e	quivale	ents.
70.	Rounding		Changing a number to a simpler, ea	sy to us	e value
71.	Round to a given number of decimal places	nee • Loo dig	ok at the number to the right of that it to decide if it rounds up or down. r more it rounds up, 4 or less it rounds	dow	e.g. 36. 3486343 36.3 486343 To 1 d.p. is 36. 3 36.34 86343 To 2 d.p. is 36. 35 36.348 6343 To 3 d.p. is 36. 349
72	Round a large number to a given number of significant figures	 the Loc dig 5 o dov Rej 	 Count the number of digits you need from the left. Look at the number to the right of that digit to decide if it rounds up or down. 5 or more it rounds up, 4 or less it rounds down. Replace remaining digits with zeros as place holders. 		e.g. 324 627 938 3 24627938 To 1 s.f. is 30000000 32 4627938 To 2 s.f. is 32000000 324 627938 To 3 s.f. is 325000000
73.	Round a small number to a given number of significant figures	 nor Fin nur Loc dig dov 5 o 	 Zeros are not significant until after the first non-zero number. Find the first non-zero and count the number of digits you need from there. Look at the number to the right of that digit to decide if it should round up or down. 5 or more it rounds up, 4 or less it rounds down. 		e.g. 0.0034792 0.003 4792 To 1 s.f. is 0.003 0.0034 792 To 2 s.f. is 0.0035 0.00347 92 To 3 s.f. is 0.00348

		• Round each number to 1 significant figure be any calculations.	_	e.g. Estimate: 3.91 × 8789.8
74.	Estimating	 It is acceptable to round one or more numbers in the calculation to a greater accuracy than 1 sig. fig. if this makes the calculation easier. DO NOT round the answer! 		$\frac{3.91 \times 8789.8}{620.9 \times 0.492} \approx \frac{4 \times 9000}{600 \times 0.5} \\ \approx \frac{3.600}{300} \\ \approx 120$
75.	Truncation	Approximating a number by ignoring all points after a certain point without round		e.g. 5.6 would be 5 when truncated
76.	Error interval	Measurements measured to the nearest u up to half a unit smaller or larger than th value	e.g. If 5.6 is rounded correct to the nearest 1dp then the interval is $5.55 \le x < 5.65$	
77.	Upper bound	The upper bound is half a unit greater than the rounded number		e.g. the upper bound of 5.6 when measured to the nearest 1dp is 5.65
78.	Lower Bound	The lower bound is half a unit less than the rounded number		e.g. the lower bound of 5.6 when measured to the nearest 1dp is 5.55
		The accuracy when both the upper and lov amount and give the same value	wer bound are	e rounded by the same
79.	Appropriate accuracy	e.g. If UB = 12.3512 and LB = 12.3475		
		To 1dp: UB = 12.4 and LB- 12.3 To 2dp: UB = 12.35 and LB - 12.35 To 3dp: UB = 12.351 and LB =12.348	Here the ap	propriate accuracy is 2 dp

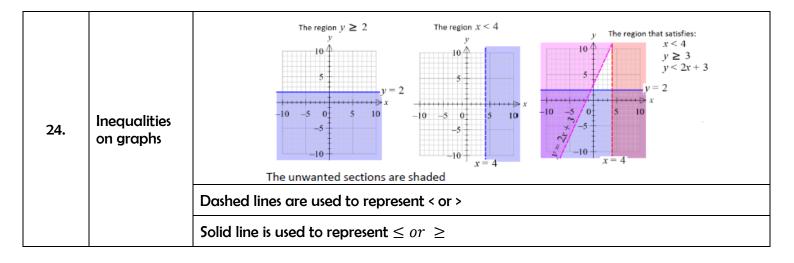

Transf	formations - d	efinitions			Unit 6
		Changing a 2D shap	e in some way.		
1.	Transformation	Rotation	Reflection	Translation	Enlargement
2.	Object	The name given to a	shape before a transfo	ormation has occurre	ed.
3.	Image	The name given to a	shape after a transfor	mation has occurred	
4.	Rotation	A circular movement	t about a fixed point		
Ľ	Centre of	The fixed point that	the shape has been rot	ated about	
5.	rotation	Written as a coordine	ate (x, y)		
6.	Direction	Clockwise or anticloc	kwise		
7.	Reflection	An image as it would	d be seen in a mirror		
•	Line of	The "mirror line" use	d to perform reflection	s.	
8.	reflection	Written using algebr	Written using algebraic notation e.g. $y = 3$, $x = -2$, $y = x$ or x/y axis		
9.	Translation	The movement of a shape without rotating or flipping it			
		Notation used to rep	present translations	(γ)	
10.	Column vector	x is the horizontal me	ovement] (-	
		y is the vertical move	ement		
11.	Resultant vector	The vector that mov	es the shape to its final	position after more	than one translation
12.	Enlargement	A change in size of a	shape (can be bigger o	or smaller)	
13.	Scale factor	The proportions by v	which the dimensions of	an object will increa	se/decrease by
		If fractional then the	image will be smaller	than the object	
14.	Negative scale factor	The image will be on	the opposite side of th	ne centre of enlargem	nent
15.	Centre of	A fixed point to enla	rge an object from		
15.	enlargement	Written as a coordinate (x, y)			
16.	Single transformation	Where the object is c	only transformed once		
17.	Combination	Where the object is t	ransformed multiple ti	mes	
18.	Origin	The point (0,0); whe	re the x and y axis inte	rsect	
19.	Similar	Same shape but diffe	erent sizes		

		e.g. similar shapes are enlargements of one another		
20.	Congruent	Shapes that are the same shape and size		
21.	Invariant	A property that does not change after a	transformation	
22.	Invariant point	A point that does not change after a tra	Insformation	
23.	Describe	Use key words to accurately state what resulting image	has happened to an object to make the	
Transf	formations			
	Rotation	 To carry out you need to: 1. Draw object on tracing paper 2. Place pencil on 'centre of rotation' and carry out the motion 3. Draw your image on the grid 	To describe you need to write: a) "rotation" b) angle of rotation c) direction of rotation d) centre of rotation	
	Reflection	 To carry out you need to: If required draw the 'line of reflection' Count squares from object to line and repeat the other side of the line for all corners of the object Join points up to create the image 	To describe you need to write: a) "reflection" b) the equation of the line of reflection	
	Translation	 To carry out you need to: 1. Use vector notation to work out the horizontal and vertical movement 2. Count squares to carry out movement on all corners of the object 3. Join up points to create the image 	To describe you need to write: a) "translation" b) the column vector	
	Enlargement	 To carry out you need to: If required cross the coordinate that is the centre of enlargement For each corner count from the line of reflection to the object Multiply this movement by the required scale factor Draw new corners from the centre of enlargement with new 	To describe you need to write: a) "enlargement" b) the scale factor c) the centre of enlargement	

	horizontal and vertical	
	movement	
5.	Join up points to create image	

2D sh	apes and 3D	solids - definitions		
1.	Face	A flat surface of a 3D shape		
2.	Edge	A line segment where two faces meet		
3.	Vertex	A point where two or more edges meet		
4.	Vertices	The plural of vertex		
5.	Dimension	The size of something in a particular directions e.g. length, depth	, width, height, diameter,	
6.	Plane	A flat 2D surface		
7.	Plane of symmetry	When a solid can be cut exactly in half and a part on one exact reflection of the part on the other side of the plane	side of the plane is an	
8.	Prism	A 3D shape with a uniform cross section		
9.	Pyramid	A 3D shape with a polygon as a base and triangular sides	that meet at the top	
10.	Arc	A section from the circumference (outside) of a circle		
11.	Sector	A region of a circle bound by two radii and an arc		
12.	Congruent	Exactly the same shape and size e.g. identical		
13.	Regular	A shape where all the sides and angles are the same		
Plans	and elevatio	ns		
14.	Plan	The view from above a solid	Plan Plan	
15.	Front elevation	The view from the front of a solid	Front Side	
16.	Side elevation	The view from a side of the solid		
17.	Clockwise	Following the direction of a clock		
18.	Anticlockwise	Following the opposite direction of a clock		
19.	Compass directions	Terminology needed to accurately describe a location or directions	Northwest West Southwest South	

20.	Sketch	An approximate drawing of an object		
21.	Scale	A ratio that shows the relationship between a length on a drawing/map and the actual length		
Consti	ructions and			
22.	Construct	Draw accurately using a ruler and a pair of compasse	25.	
22	Construction	Lines or arcs drawn as part of working out		
23.	lines	They must not be rubbed out as they show the work	ing	
24.	Equidistant	The same distance from each other or in relation to o	ther things	
25.	Bisect	Cut in half		
26.	Perpendicular	At a 90 degree angle (right angle)		
27.	Perpendicular bisector	A line that cuts another in half at a right angle		
28.	Angle bisector	A line that cuts an angle exactly in half		
20	Logue	The set of all points that fulfil a certain rule		
29.	Locus	Often drawn as a continuous path		
30.	Loci	The plural of locus		
31.	Region	An area bounded by a loci		
Loci	-		-	
32.	Circle	Locus of points that are a fixed distance from a fixed point	2 A -2 0 2 0 2 0 2	
33.	Parallel line	Locus of points a fixed distance from a fixed line		
34.	Perpendicular bisector	The line that cuts another in half at a right angle	P	


40.	SAS	a side, angle, side	×
41.	SSS	all three sides	* #
42.	RHS	that it has a right angle, the hypotenuse and another side	
Bearir	ngs		
		The direction of a line in relation to the North-South line	075° N Clockwise
	.	It is always measured clockwise	310°
43.	Bearing	Always measured from the North line	
		Always written using 3 digits	310 ³ Clockwise

Facto	orising a quadratic e	expression	
		Multiply to 5	
Factorising a quadration 1. in the form of $ax^2 + bx + c$		Factorise $x^2 + 5x + 6 - \text{Add t}$	to 6
		2 and 3 add to 5 2 and 3 multiply to 6	
		(x+2)(x+3)	
		Check: $(x + 2)(x + 3) = x^2 +$	5x + 6
		A special type of quadratic which only	y has two terms.
	Difference of two	One term is subtracted from the other	
2.	squares	$x^2 - 25 = x^2 - 5^2$	= (x + 5)(x - 5)
		$y^2 - 49 = y^2 - 7^2$	= (y + 7)(y - 7)
		$a^2 - 16 = a^2 - 4^2$	= (a + 4)(a - 4)
		By inspection	
		$4x^2 + 20x + 9$	Splitting the middle
	Factorising a quadratic	(4x+9)(x+1)	$4x^2 + 20x + 9$
3.	in the form of $ax^2 + 1$	(4x + 3)(x + 3)	$4x^2 + 2x + 18x + 9$
	bx + c where $a > 1$	(2x+9)(2x+1)	2x(2x+1) + 9(2x+1) (2x+1)(2x+9)
		$(2x + 3)(2x + 1)$ \checkmark (2x + 3)(2x + 3)	
.			
solving	quadratic equations/func	tions	
4	Pu factoricina	Take you factorised form and set each bracket equal to zero	$x^{2} + 4x + 3 = 0$ (x + 3)(x + 1) = 0
4.	By factorising	Solve each separate linear equation to find the solutions/roots	x + 3 = 0 $x + 1 = 0So So x = -3 x = -1$
5.	The quadratic formula	A formula to find the solutions a quadratic equation in the form of $ax^2 + bx + c$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

6.	Completing the square		$x^{2} + bx + c \text{ can be written}$ the form $\left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$		If a is greater than 1 this will need to be factored out first!
Simul	taneous equ	ations			
7.	Simultaneous equations	Two equation	ons where there are two unkno	own w	hich have the same value in each
Solving	g simultaneous	equations			
8.	Elimination	If the match same sign th ✓ Sam ✓ Subt	Add or subtract one equation from another If the matching coeefieicents have the same sign then subtract the equations Same Subtract Subtract 		liminate a variable e matching coefficients have different then add the equations / Different / Add / Substitute
9.	Substitution		o the subject of one equation his into the second equation	is a sin	gle variable
10.	Graphically		of intersection of two graphs tions to the simultaneous		y = 2x y = x + 1

Inequ	alities						
11.	Inequality	The relationship between two expressions that are not equal					
12.	=	Equal to					
13.	<i>‡</i>	Not equal to					
14.	<	Less than	x < −1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2				
15.	>	Greater than	x > 5				
16.	5	Less than or equal to	x≤5 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4				
17.	ž	Greater than or equal to	x≥3 -1 0 1 2 3 4 5 6 7 8 9 10 1				
18.	Inclusive	Gives a finites mage of solutions e.g. $3 < x \le 8$					
19.	Exclusive	Gives an infinite range of solutions	e.g. $x > 5 -4 \le x$				
20.	Integer	A whole number that can be positive negative of	r zero				
		Inequalities are solved in the same way as solving equations					
21.	Solve	Only exception: if you multiply or divide by a negative number you must swap the sign e.g. less than to greater than					
		Give the integers that satisfy the inequality					
22.	List integers solutions	e.g. x > 6 integer solutions are 6, 7, 8					
		e.g5 < x ≤ 5 integer solutions are -4, -3, -2, -1, 0, 1, 2, 3, 4, 5					
		An empty circle shows the value is not included	0				
23.	Represent on a number line	A shaded circle shows the value is included					
		An arrow shows that the solution continues to infinity	$\overset{\bigcirc}{\longrightarrow}$				

Prob	ability - defin	itions					
1.	Probability	The extent to which an event is likely to occur Written as a fraction, decimal or	For equally likely outcomes the probability that an event will happen is $P = \frac{number \ of \ successful \ outcomes}{total \ number \ of \ possible \ outcomes}$				
2.	Theoretical probability	percentage Calculated without doing an experiment	colar number of possible outcomes				
		Probabilities based on the data collected during an experiment					
3.	Experimental probability	Also known as estimated probability	$estimated \ probability = \frac{frequency \ of \ event}{total \ frequency}$				
	p	The more trials you do the more reliable your set of results					
4.	P() notation	P() mean s the probability of the thing insid	le the brackets happening e.g. P(tails)				
5.	Experiment	A repeatable process that gives rise to a num	nber of outcomes				
6.	Relative frequency	In an experiment, how often something happens as a proportion of the number of trials	Relative frequency = $\frac{how \ often \ something \ happens}{all \ outcomes}$				
		You can predict the number of outcomes you will get using relative frequency					
7.	Predictions	Predicted number of outcomes = probability x number of trials					
8.	Event	A collection of one or more outcomes					
9.	Independent	When one event has no effect on another	Here P(A and B) = P(A) x P(B)				
10.	Dependent	When the outcome of one event, changes th	e probability of the next event				
11.	Exhaustive	Events are exhaustive if they cover all possib	le outcomes				
12.	Biased	Unfair					
13.	Unbiased	Fair					
14.	Sample space	The set of all possible outcomes					
15.	Sample space diagram	A diagram showing all possible outcomes from an experiment					

		Can be used to represen	AB				
16.	Venn diagram	Frequencies or probabilities can be placed in the regions		0.1 0.2 0.2			
17.	A ∩ B	A intersection B	All elements in A and B	A			
18.	A ∪ B	A union B All the elements in A OR B OR both		A			
19.	Α'	Complement of A Not in A		A			
	Markanalla	Events that have no out	comes in common				
20.	Mutually exclusive	Here P(A or B) = P(A) +	P(B)	P(A or B) = P(A) + P(B)			
21.	Tree diagram	Used to show the outcor events happening in suc		S P Blac			
22.	AND rule	Multiply the probabilitie					
23.	OR rule	Add the probabilities					
24.	Conditional	The probability of a dependent event					
24.	probability	The probability of a second outcome depends on what has already happened in the first outcome					

1						
Proportion	Compares a part with a	whole				
Proportional	A change in one is alway	ys accompanied by c	ı change in and	other		
Ratio	A relationship between	two or more quantit	ies			
Compound measure	Combine measures of tw	vo different quantitie	25			
		contained in a certa	in	\wedge		
Density		m ³ or kg/m ³		M		
	density	$y = \frac{mass}{volume}$				
Velocity	Speed in a given direction	on	Usu	ally measured in m/s		
Acceleration	The rate of change of ve	elocity	Usu	ally measured in m/s ²		
	The distance travelled in	The distance travelled in an amount of time				
Speed		Usually measured in m/s, mph or km/h				
	speed	$speed = rac{distance}{time}$				
	The force applied over a	ın area		\wedge		
	nressu	$\frac{force}{f}$				
Pressure	pressu	$pressure = \frac{1}{area}$				
	Usually measured in N/r	ually measured in N/m²				
	Standard units of t	ime are seconds, mir	nutes, hours, da	ys, years		
Units of time	60 seconds = 1 minute	60 seconds = 1 minute 60 minutes = 1 hour 24 hou		urs = 1 day 365 days = 1 year		
	Metric units of mas	Metric units of mass are milligrams, grams, kilograms and tonnes				
Units of mass	1000mg = 1g	1000mg = 1g 1000g = 1kg		1000kg = 1 tonne		
	ProportionProportionalRatioCompound measureDensityVelocityAcceleration	ProportionCompares a part with aProportionalA change in one is alwaysRatioA relationship between itCompound measureCombine measures of two The mass of a substance volumeDensityUsually measured in g/cdDensityUsually measured in g/cdVelocitySpeed in a given directionAccelerationThe rate of change of we speedSpeedThe distance travelled in usually measured in m/sSpeedThe force applied over of pressurePressureThe force applied over of speedUnits of timeStandard units of the 60 seconds = 1 minuteUnits of massMetric units of mass	ProportionalA change in one is always accompanied by a RatioRatioA relationship between two or more quantitCompound measureCombine measures of two different quantitiesDensityThe mass of a substance contained in a certar volumeDensityUsually measured in g/cm³ or kg/m³density = $\frac{mass}{volume}$ VelocitySpeed in a given directionAccelerationThe rate of change of velocityAccelerationThe rate of change of velocitySpeedUsually measured in m/s, mph or km/hspeedUsually measured in m/s, mph or km/hspeedThe force applied over an areapressure $pressure = \frac{force}{area}$ Units of timeStandard units of time are seconds, mir 60 seconds = 1 minuteUnits of massMetric units of mass are milligrams, group	Proportion Compares a part with a whole Proportional A change in one is always accompanied by a change in and Ratio A relationship between two or more quantities Compound measure Combine measures of two different quantities Density The mass of a substance contained in a certain volume Usually measured in g/cm³ or kg/m³ density = $\frac{mass}{volume}$ Velocity Speed in a given direction Usual Acceleration The rate of change of velocity Usual Speed The distance travelled in an amount of time Usually measured in m/s, mph or km/h speed = $\frac{distance}{time}$ Pressure The force applied over an area pressure Inte force applied over an area Units of time Standard units of time are seconds, minutes, hours, do so seconds = 1 minute Units of mass Metric units of mass are milligrams, grams, kilograms of the second seco		

12. Units of length		Metric units of length are r	nillimetres,	centimetres, me	tres and kilometres		
		10mm = 1cm	n = 1cm 100cm = 1m		1000m = 1km		
		Metric units of length are r	millimetres ²	, centimetres ² , m	etres ² and kilometres ²		
Units of area		1cm ² = 100	0mm ²	1 cm	10 mm ↓		
		1m ² = 100	0cm ²	Area =	$1 \text{ cm} \times 1 \text{ cm} \qquad \text{Area} = 10 \text{ mm} \times 10 \text{ mm}$ $1 \text{ cm}^2 \qquad = 100 \text{ mm}^2$		
		Metric units of length are	e millimetre	es ³ , centimetres ³ ,	metres ³ and kilometres ³		
Units of volum	ie	1cm ³ = 100	0mm³	1 cm			
		1m ³ = 10000	000cm ³		$ \begin{array}{ll} 1 cm \times 1 cm \times 1 cm & \mbox{Volume} = 10 mm \times 10 mm \times 10 mm \\ 1 cm^3 & = 1000 mm^3 \end{array} $		
Units of capac	i t	Metric units of capacity are millilitres, centilitres and litres					
	ity	10 <i>ml</i> = 1 <i>cl</i>			1000 <i>m</i> /= 100 <i>c</i> /= 1/		
Capacity and volume conversions					1000cm ³ = 1/		
ntages							
Percentage	Mea	ins 'out of 100'					
	A de	ecimal you multiply by to re	present a p	ercentage			
Multiplier				vide your percen	tage by 100, then		
Percentage	Calc	ulate the percentage and a	dd onto the	e original			
increase	Or u	ise a multiplier		amount >	$\times \frac{100 + \% \text{ increase}}{100}$		
	Calc	Calculate the percentage and subtract from the original					
Percentage decrease	Or u	ise a multiplier		amount >	< <u>100 - % increase</u> 100		
Percentage	Change × 100						
change	Original ~ 100						
number as a percentage				$- \times 100$			
	Units of area Units of area Units of volum Units of capac Capacity and volume conversions Tages Percentage increase Percentage increase Percentage decrease Percentage decrease	Units of area Units of volume Units of capacity Capacity and volume conversions Capacity and volume conversions Ntages Percentage increase Percentage increase Or u Percentage decrease Or u Percentage change Increase Or u Percentage decrease Or u Percentage change Increase Increntage </td <td>Units of length10mm = 1cmUnits of areaMetric units of length are r 1cm² = 100Units of areaIm² = 100Im² = 100Im² = 100Im² = 100Im² = 100Units of volumeMetric units of length are 1cm³ = 1000Units of volumeMetric units of length are 1cm³ = 1000Units of capacityMetric units of capacity are 10m/= 1clUnits of capacity and volume conversionsMetric units of capacity are 10m/= 1clCapacity and volume conversions1cm³ = 1m/A decimal you multiply by to re To use a multiplier to find a per multiply the amount by this value Calculate the percentage and a Or use a multiplierPercentage decreaseCalculate the percentage and as Or use a multiplierPercentage decreaseCalculate the percentage and as or use a multiplierPercentage changeCalculate the percentage and as percentagePercentage decreaseCalculate the percentage and as or use a multiplierPercentage changeCalculate the percentage and as percentage</td> <td>Units of length 10mm = 1cm 1000 Units of area Metric units of length are millimetres? 1cm² = 100mm² Units of area 1m² = 1000cm² 1m² = 1000cm² Units of volume Metric units of length are millimetres? 1m³ = 10000m³ Units of volume 1cm³ = 10000cm³ 1m³ = 100000cm³ Units of capacity Metric units of capacity are millilitres, 10m/= 1c/ Capacity and volume conversions 1cm³ = 1m/ ntages Means 'out of 100' Percentage Means 'out of 100' Percentage Calculate the percentage and add onto the increase Percentage Calculate the percentage and add onto the percentage and add onto the increase Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a mult</td> <td>10mm = 1cm100cm = 1mUnits of areaMetric units of length are millimetres², centimetres², mUnits of area$1m^2 = 1000m^2$Units of volumeMetric units of length are millimetres³, centimetres³, Im² = 1000cm²Units of volume$1cm^3 = 1000mm^3$Units of capacityMetric units of capacity are millilitres, centilitres and lit $10m^1 = 1cl$Units of capacity and volume$1cm^3 = 100000cm^3$Units of capacity and volume$1cm^3 = 1ml$Capacity and volume$1cm^3 = 1ml$IntagesMeans 'out of 100'MultiplierA decimal you multiply by to represent a percentage multiply the amount by this value.Percentage increaseCalculate the percentage and add onto the original Or use a multiplierPercentage decreaseCalculate the percentage and subtract from the original Or use a multiplierPercentage changeCalculate the percentage and subtract from the original Dr use a multiplierPercentage decrease$Change$ Or use a multiplierPercentage decrease$Change$ <math>Or use a multiplierPercentagedecrease$Change$ <math>Or use a multiplierPercentagedecrease$Change$ <math>Or use a multiplierPercentagedecrease$Change$ <math>OriginalNumber aa100</math></math></math></math></td>	Units of length10mm = 1cmUnits of areaMetric units of length are r 1cm² = 100Units of areaIm² = 100Im² = 100Im² = 100Im² = 100Im² = 100Units of volumeMetric units of length are 1cm³ = 1000Units of volumeMetric units of length are 1cm³ = 1000Units of capacityMetric units of capacity are 10m/= 1clUnits of capacity and volume conversionsMetric units of capacity are 10m/= 1clCapacity and volume conversions1cm³ = 1m/A decimal you multiply by to re To use a multiplier to find a per multiply the amount by this value Calculate the percentage and a Or use a multiplierPercentage decreaseCalculate the percentage and as Or use a multiplierPercentage decreaseCalculate the percentage and as or use a multiplierPercentage changeCalculate the percentage and as percentagePercentage decreaseCalculate the percentage and as or use a multiplierPercentage changeCalculate the percentage and as percentage	Units of length 10mm = 1cm 1000 Units of area Metric units of length are millimetres? 1cm² = 100mm² Units of area 1m² = 1000cm² 1m² = 1000cm² Units of volume Metric units of length are millimetres? 1m³ = 10000m³ Units of volume 1cm³ = 10000cm³ 1m³ = 100000cm³ Units of capacity Metric units of capacity are millilitres, 10m/= 1c/ Capacity and volume conversions 1cm³ = 1m/ ntages Means 'out of 100' Percentage Means 'out of 100' Percentage Calculate the percentage and add onto the increase Percentage Calculate the percentage and add onto the percentage and add onto the increase Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a multiplier Percentage Calculate the percentage and subtract from or use a mult	10mm = 1cm100cm = 1mUnits of areaMetric units of length are millimetres², centimetres², mUnits of area $1m^2 = 1000m^2$ Units of volumeMetric units of length are millimetres³, centimetres³, Im² = 1000cm²Units of volume $1cm^3 = 1000mm^3$ Units of capacityMetric units of capacity are millilitres, centilitres and lit $10m^1 = 1cl$ Units of capacity and volume $1cm^3 = 100000cm^3$ Units of capacity and volume $1cm^3 = 1ml$ Capacity and volume $1cm^3 = 1ml$ IntagesMeans 'out of 100'MultiplierA decimal you multiply by to represent a percentage multiply the amount by this value.Percentage increaseCalculate the percentage and add onto the original Or use a multiplierPercentage decreaseCalculate the percentage and subtract from the original Or use a multiplierPercentage changeCalculate the percentage and subtract from the original Dr use a multiplierPercentage decrease $Change$ Or use a multiplierPercentage decrease $Change$ $Or use a multiplierPercentagedecreaseChangeOr use a multiplierPercentagedecreaseChangeOr use a multiplierPercentagedecreaseChangeOriginalNumber aa100$		

		Use when asked to find the priginal amount after a percentage increase or decrease.					
23.	Reverse	Original Value x Multiplier = New Value					
23.	percentage	Original Value = <u>New Val</u>	ue				
		Multipli	er				
24.	Interest	A fee paid for borrowing money or money	earnt through investing.				
25.	Simple interest	Interest that is calculated as a percentage of the original	I = Prt I – Interest P – Original amount r – interest rate t - time				
	Compound	When interest is calculate on the original amount and any previous interest	$P\left(1+\frac{R}{100}\right)^n$				
26.	interest	Or $Original \times Multiplier^{time}$	P – Original amount R – Interest rate n – the number of interest periods (e.g. yrs)				
27.	Тах	A financial charge placed on sales or savings by the government e.g. VAT					
28.	Loss	Income minus all expenses, resulting in a ne	egative value				
29.	Profit	Income minus all expenses, resulting in a p	ositive value				
30.	Depreciation	A reduction in the value of a product over time					
31.	Annual	Means yearly					
32.	Per annum	Means per year					
33.	Salary	A fixed regular payment, often paid monthly					

Proportion graphs						
24	Direct	Two quantities increase at the same rate	$y \propto x$ y = kx for a constant k			
34.	proportion	Graph is a straight line that goes through the origin	$y = \kappa x$			
35.	Inverse/indirect proportion	One variable increases at a constant rate as the second variable decreases	$y \propto \frac{1}{x}$ $y = \frac{k}{x} \text{ for a constant } k$ $y = \frac{k}{x}$ $y = \frac{k}{x}$			
36.	Constant of	Represented by k				
50.	proportionality	Its value stays the same				

Similo	Similarity and Congruence in 2D and 3D						
1.	Congruent	Exactly the same shape and size	Exactly the same shape and size				
2	Circuitore	Two shapes where one is an enlargement of	Two shapes where one is an enlargement of another				
2.	Similar	Corresponding angles are equal	Corresponding sides are in the same ratio				
3.	Scale factor	The proportion by which the dimensions of	f an object will increase or decrease by				
4.	Linear scale factor (LSF)	The scale factor/ratio of sides of two similar shapes	$LSF = \frac{length from large shape}{length from small shape}$				
5.	Area scale factor (ASF)	The scale factor ratio of areas/surface areas of two similar shapes	$ASF = \frac{Area \ of \ large \ shape}{lArea \ of \ small \ shape}$				
6.	Volume scale factor (VSF)	The scale factor/ratio of volumes of two similar shapes	$VSF = \frac{volume \ of \ large \ shape}{volume \ of \ small \ shape}$				
Two t	riangles are o	congruent if					
7.	SSS	All 3 sides are equal					
8.	SAS	2 sides and the included angle are equal					
9.	ASA	2 angles and the corresponding side are equal	≅				
10.	RHS	The right angle, hypotenuse and one other side are equal					

Similar shapes					
11.	Lengths	$\frac{48.4^{\circ}}{A} = \frac{8}{5} = \frac{6}{6} = \frac{2}{1} = \frac{12}{6} = \frac{6}{6} = \frac{2}{1} = \frac{8}{12} = \frac{6}{12} = \frac{6}{12}$	The scale factor from small to big is 2.		
12.	Areas	$6 \text{ cm} \qquad 9 \text{ cm}$ $Area = 32 \text{ cm}^2 \qquad Area = ?$	LSF = 9÷6 =1.5 ASF = 1.5 ² So area of bigger shapes is 6 x 1.5 ²		
13.	Volumes	Volume = ? 20 cm Volume = 2500 cm ³	LSF = 20 ÷8 = 2.5 VSF = 2.5 ² So volume of smaller shape is 2500 ÷ 2.5 ²		

science Academy A									
Graph transformations									
1.	y = -f(x)	Reflection in	Reflection in the x axis			y coordi	nates are	multiplied	d by -1
2.	y = f(-x)	Reflection in	the y axis			x coordi	nates are	divided b	y -1
		Reflection in axis	the x axis	and then	in the y	y coordi	nates are	multiplied	d by -1 AND x
3.	y = -f(-x)	Equivalent to origin	o rotation	of 180° ak	oout the	-		ivided by	-
4.	y = f(x) + a	Translation b	y the vect	or $\begin{pmatrix} 0 \\ a \end{pmatrix}$					
5.	y = f(x + a)	Translation b	y the vect	or $\begin{pmatrix} -a \\ 0 \end{pmatrix}$					
6.	y = af(x)	Stretch by scale factor a in the vertical direction, parallel to the y axis			y coordinates are multiplied by a				
7.	y = f(ax)	Stretch by sco direction, par		u –	orizontal	x coordinates are multied by $\frac{1}{a}$			
Exact	Trig values								
			θ	0°	30°	45°	60°	90°	
			Sin O	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
			Cos Ə	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
8.	Exact Values		Tan Θ 0 $\frac{\sqrt{3}}{3}$						
		These can be found using the triangles: 2 5							
						603	1 45° 1	2	

Trigor	nometric gra	phs			
		Repeats every 360°			
9.	Sine graph	Crosses the x-axis at -180°, 0°, 180°, 360°		-270 -180 -90	90 180 270 360
		Maximum of 1 and minimu	m of -1		-11
		Repeats every 360°			
10.	Cosine graph	Crosses x-axis at -90°, 90°, 2	270°, 450°	-180 -90	0 98 180 270 360
		Maximum of 1 and minimum of -1		\checkmark	1
		Repeats every 180°		-360 -270 -780 -60 90 960 270 960	
	Tangent graph	Crosses x-axis at -180°, 0°, 180°, 360°			
11.		Has no maximum or minimum value			
		Has vertical asymptotes at x=-90°, x=90°, x=270°			
Non -	- right angle	d trigonometry		I	
		Finding sides		Finding angle	25
		$a^2 = b^2 + c^2 - 2bc \mathrm{cm}$	os A	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	
12.	Cosine rule	$b^2 = a^2 + c^2 - 2acc$	os B	$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$	
		$c^2 = a^2 + b^2 - 2ab\cos C$		$\cos C = \frac{a^2 + b^2 - c}{2ab}$	
<u> </u>		Finding sides	Finding angle	es Ambiguous case Can sometimes produc	
13.	Sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \qquad \frac{\sin(A)}{a} = \frac{\sin(A)}{a}$		$\frac{(B)}{c} = \frac{\sin(C)}{c}$	two possible solutions for missing angles
				· ·	$\sin\theta = \sin(180 - \theta)$

	rea of a iangle	$Area = \frac{1}{2}ab\sin C$ $Area = \frac{1}{2}bc\sin A$ $Area = \frac{1}{2}ac\sin B$	
--	--------------------	--	--

Colle	cting data			
1.	Population	The whole set of items that are of interest e.g. all the people in a school		
		Observes or measures every member of a population.		
2.	Census	Advantages Should give a completely accurate result 	 Disadvantages Time consuming Hard to process such large quantities of data Cannot be sued when the testing process destroys the item 	
		A collection of observations taken from then used to find out information of the		
3.	Sample	 Advantages Less time consuming and expensive than a census Fewer people have to respond Less data to process compared to a census 	 Disadvantages Data may not be as accurate Sample may not be large enough to give information about smaller sub groups in the population 	
4.	Sampling units	Individual units of a population		
5.	Sampling frame	The list of people or items to be sample	ed	
6.	Stratum	A subset of the population which is be	ing sampled	
7.	Strata	Plural of stratum		
8.	Bias	Prejudice for or against one group or a	opinion or result in a way that is unfair	
Rand	lom sampling tea	chniques		
		Where every member of the sampling selected.	frame has an equal chance of being	
9.	Simple random sampling	Advantages Free of bias Easy and cheap to implement for small populations and samples 	 Disadvantages Not suitable when population size or sample size is large A sampling frame is needed 	

		Where required elements are chosen a	t regular intervals from an ordered list	
10.	Systematic sampling	Advantages Simple and quick to use Suitable for large samples and populations 	 Disadvantages A sampling frame is needed It can introduce bias if the sampling frame is not random 	
		The population is divided into mutual and a random sample is taken from each Number sample in a stratum $= \frac{number in}{number in p}$	n stratum X overall sample size	
11. Stratified sa	Stratified sampling	 Advantages Sample accurately reflects the population structure Guarantees proportional representation of groups within a population 	 Disadvantages Population must be clearly classified into distinct strata Selection within each stratum suffers from the same disadvantages as simple random sampling 	
Non-	random samplin	ng techniques		
		A researcher selects a sample that reflects the characteristics of the whole population		
12.	Quota sampling	 Advantages Allows a small sample to be representative of the whole population No sampling frame required Quick, easy and inexpensive Allows for easy comparison between different groups in a population 	 Disadvantages Non random sampling can introduce bias Population must be divided into groups which can be costly or inaccurate Increasing scope of study increases number of groups, which adds time and expense Non-responses are not recorded as such 	
		Taking the sample from people who a carried out and who fit the criteria you		
13.		Also known as 'convenience sampling'		
	Opportunity sampling	Advantages • Easy to carry out • Inexpensive	 Disadvantages Unlikely to provide a representative sample Highly dependent of the individual researcher 	

Туре	s of data			
14.	Quantitative data (or variables)	Data (or variables) associated with numerical observations e.g. shoe size		
15.	Qualitative date (or variables)	Data (or variables) associated with non-numerical observations e.g. hair colour		
16.	Continuous variable (data)	A variable that can take any value in a given range e.g. time		
17.	Discrete variable (data)	A variable that can take only specific values in a given range e.g. number of girls in a family		
Repr	esenting and inte	erpreting data		
18.	Class	Another name for the groups in a gro	ouped frequency table	
19.	Class boundaries	The maximum and minimum values	that belong in each class	
20.	Class width	The difference between the upper and lower class boundaries		
21.	Midpoint	The average of the class boundaries		
22.	Outlier	An extreme value that lies outside the overall pattern of the data		
23.	Anomalies	Any outliers that should be removed from the data because it is an error and it would be misleading to keep it in		
Туре	s of graphs/chart	S		
24.	Box plots	A diagram that displays median, quartiles, minimum and maximum values of a set of data		
25.	Cumulative frequency	A running total of frequencies		
26.	Cumulative frequency table	A table that shows how many data items are less than or equal to the upper class boundary of each data class	Time, t (minutes) Frequency Cumulative Frequency $0 < t \le 20$ 16 16 $20 < t \le 30$ 24 40 $30 < t \le 50$ 19 59 $50 < t \le 80$ 8 67	
			$50 < t \le 80$ 8 67	

27.	Upper class boundary	The highest possible value in each class	5
28.	Cumulative frequency graph	A graph with the data values on the x axis and the cumulative frequency on the y axis	$\begin{array}{c} \text{Interquartile} \\ \text{Range} \\ \text{42 - 26 =} \\ \text{16 marks} \\ \end{array} \\ \begin{array}{c} \text{Upper Quartile 75\%} \\ \text{Median 50\%} \\ \text{Lower Quartile 25\%} \\ \text{Lower Quartile 25\%} \\ \text{Cass A2} \\ \text{Gass A2} \\ \text{Gas A2} \\ \text{Gass A2} \\ \text{Gass A2} \\ \text{Gass A2} \\$
29.	Histogram	A chart where the area of each bar is proportional to the frequency of each class	10- 9- 8- 17- 6- 5- 3-
23.	nstogram	Area of each bar = kx frequency (k = 1 is the easiest value to use when drawing a histogram)	9 4 - 2 - 1 - 245 250 255 260 Weight (Grams)
31.	Frequency density	The height of each bar on a histogram	If $k = 1$ then: $frequency \ density = \frac{frequency}{class \ width}$
31.	Frequency polygon	Can be formed by joining the middle of each bar in a histogram	10- 9- 8- A;r7- 0- 245 250 255 260 Weight (Grams)

Acade	my -		
Quad	dratics - definition	ons	
		Solutions to a quadratic equation/function $ax^2 + bx + c = 0$	
2.	Roots	The x values where the graph crosses the x axis	
		A quadratic can have 0, 1 or 2 roots	
		Curved shaped called a parabola	$y = x^2$
3.	Quadratic graph	A positive x ² will give a 'U' shape	$y = -x^2$
		A negative x^2 will give a '∩' shape	
4.	Turning points	The point where a curve turns in the opposite direction	Maximum Minimum
Using	the discrimina	nt	
5.	Discriminant	The part of the quadratic formula under the square root	$b^2 - 4ac$
6.	$b^2-4ac > 0$	Two distinct real roots	
7.	$b^2 - 4ac = 0$	One repeated real root	
8.	$b^2 - 4ac < 0$	No real roots	
Sklet	ching quadratic	graphs	
	General shape	A positive x^2 will give a 'U' shape A negative x^2 will give a ' \cap ' shape	
	Find the roots	By factorising or using the formula	Equation must be equal to zero
9.	Find the y intercept	Substitute x =0 zero into the equation	1
	Calculate the coordinates of	Complete the square to get in the form of	Coordinates of turning point are
	the turning point	$\mathbf{f}(x) = a(x+p)^2 + q$	then $(-p, q)$

Solvir	Solving quadratic inequalities		
10.	Solve (by factorising or using quadratic formula) $ax^2 + bx + c = 0$	e.g $x^{2} - 2x + 8 = 0$ $(x + 4)(x - 2) = 0$ $x = -4 \text{ or } x = 2$	
11.	Sketch the graph clearings showing the roots and parabola shape	y = (x+4)(x-2)	
12.	Check whether your quadratic was greater than or less than zero then highlight parts of the graphs that satisfy this	If $x^2 - 2x + 8 > 0$ Therefore x < -4 or $x > 2is the solutionx^2 - 2x + 8 < 0yy = (x + 4)(x - 2)Ifx^2 - 2x + 8 < 0yy = (x + 4)(x - 2)Therefore-4 < x < 2is the solution-4 < x < 2is the solution$	

C			Unit id
Circle	es - definitions of	and formulae	
1.	Diameter	A straight line from edge to edge passing through the centre	
		Double the size of the radius	
2.	Radius	A straight line from the centre to the edge	
		Half the size of the diameter	
3.	Radii	The plural of radius	
4.	Circumference	Distance around the outside of the circle	
5.	Arc	Part of the circumference	
6.	Chord	A line within a circle where each end touches the edge	
7.	Sector	The region created by two radii and an arc	
8.	Segment	The region created by a chord and an arc	
9.	Tangent	A line outside the circle which only touches the circumference at one point	
10.	Semi -circle	Half a full circle	
11.	Line segment	A finite part of a straight line with two distinct endpoints	
12.	Perpendicular bisector	A straight line that is perpendicular to the line L and passes through the midpoint of L	

13.	Circumcircle	A unique circle that passes through all three vertices of a triangle	B
14.	Circumcentre	The centre of a circumcircle, where the perpendicular bisectors of the sides of the triangle intersect	A Circumcenter*
15.	Cyclic quadrilateral	A quadrilateral with all four vertices on the circumference of a circle	
Circle	Theorems		
16.	Angles at the centre	Angle at the centre is twice the angle at the circumference	C B B C B C C C C C C C C C C C C C C C
17.	Angles in the same segment	Angles at the circumference in the same segment are equal	
18.	Angles in a semi- circle	Angle in α semi-circle is 90∘	
19.	Cyclic quadrilateral	Opposite angles of a cyclic quadrilateral add to 180°	B C

20. Tangent to a circle		Angle between a tangent and radius is 90°	A
		Two tangents from the same point to a circle are equal in length	C C
21.	Alternate segment	Angles in the alternate segment are equal	70
Circle g	eometry		
		With centre $(0,0)$ and radius, r	With centre (a, b) and radius, r
		$x^2 + y^2 = r^2$	$(x-a)^2 + (y-b)^2 = r^2$
22.	Equation of a circle	r (r, 0) x	(a, b) r (x, y)
23.	Intersections between circles and lines	 No intersection Once (where the line touches the circle Twice (where the line crosses the circle) 	one point of intersection
24.	Gradient of a radius to a circle	Gradient (m) of radius to a point(x, y) with an equation $x^2 + y^2 = r^2$ is $\frac{y}{x}$	(x, y)
25.	Gradient of tangent to a circle	Gradient (m) of tangent to a point (x, y) is the negative reciprocal of the gradient of the radius at the same point	y Tangent (0,0) x

Surds

Surd	A number written exactly using square or cube roots	e.g. $\sqrt{5}$ is a surd but $\sqrt{25}$ is not because it has a value of 5
Rationalise	Eliminate a surd	
Multiply	$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ and $\sqrt{a} \times \sqrt{a} = a$	e.g. $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ and $\sqrt{3} \times \sqrt{3} = 3$
Divide	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	e.g. $\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}$
5. Add and	$\sqrt{a} + \sqrt{b}$ cannot simplify	e.g. $\sqrt{3} + \sqrt{2} = \sqrt{3} + \sqrt{2}$
subtract	But $\sqrt{a} + \sqrt{a} = 2\sqrt{a}$	e.g. $5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$
Simplify	$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$	e.g. $\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$
Rationalise the	Multiply numerator and denominator (use equivalent fractions) by whatever	e.g. $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{7}{\sqrt{7}}$
denominator	will result in the denominator simplifying to an integer.	e.g. $\frac{1}{5+\sqrt{2}} = \frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}} = \frac{5-\sqrt{2}}{3}$
oraic Fraction	S	
Simplifying	Cancel common factors (factorising if needed)	$\frac{(x-3)(x+2)}{(x+2)(x+5)} = \frac{x-3}{x+5}$
Adding and subtracting	Find a common denominator	$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad + bc}{bd}$
Multiplying	Multiply as with normal fraction	$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
Dividing	Divide as with normal fractions	$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$
	Rationalise Multiply Divide Add and subtract Simplify Rationalise the denominator Simplifying Simplifying Adding and subtracting Multiplying	Surdor cube rootsRationaliseEliminate a surdMultiply $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ and $\sqrt{a} \times \sqrt{a} = a$ Divide $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ Add and subtract $\sqrt{a} + \sqrt{b}$ cannot simplifyBut $\sqrt{a} + \sqrt{b}$ cannot simplifySimplify $\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$ Rationalise the denominatorMultiply numerator and denominator (use equivalent fractions) by whatever will result in the denominator simplifying to an integer.SimplifyingCancel common factors (factorising if needed)Adding and subtractingFind a common denominatorMultiplyingMultiply as with normal fraction

	Always use inverse operations to isolate the term you have been asked to make the subject				
	If the letter ye	ou want as th	e subject appears twice you will need to factorise		
12.	Make u the subject: $v = u + at$ $(-at)$ $v - at = u$ So $u = v - at$ Make u the subject: $v^2 = u^2 + 2as$ $(-2as)$ $v^2 - 2as = u^2$ $\sqrt{v^2 - 2as} = u$ Make m the subject $I = mv - mu$ $(Factorise)I = m(v - u)(\div (v - u))\frac{I}{v - u} = mSou = \sqrt{v^2 - 2as}Make u the subject:(-2as)v^2 - 2as = u^2\sqrt{v^2 - 2as} = uMake m the subjectI = mv - mu(Factorise)I = m(v - u)(\div (v - u))\frac{I}{v - u} = mm = \frac{I}{v - u}$				
Alge	braic proof				
13.	Proof	_	rgument fro a mathematical statement		
14.	Counter example		Use algebra to prove something is true/untrue for all cases Use an example that does not fit the statement to prove the statement is incorrect		
Notati	ion to use in pro	of			
15.	n	Any numb	er		
16.	n+1	Consecutiv	e number		
17.	2n	Even num	ber		
18.	2n + 2	Consecutiv	e even number to 2n		
19.	2n + 1	Odd numb	ber		
20.	2n + 3	Consecutiv	e odd number to 2n + 1		
21.	an	A multiple	of a e.g. 3n represents a multiple of 3		
Func	tions				
22.	Function	A rule for v	vorking out values of y (output) given values of x (input)		
23.	f(x)	Function n	Function notation read as 'f of x', where x is the input into the function		
24.	Composite	fg(x)	Evaluate $g(x)$ first then substitute this into $f(x)$		
25.	functions	gf(x)	Evaluate $f(x)$ first then substitute this into $g(x)$		
26.	Inverse fuction	$f^{-1}(x)$	Reverses the effect of the original function $f(x){=}3x{+}2$ $f^{-1}(x){=}rac{x{-}2}{3}$		

Definitions and processes					
1.	Magnitude	Size	Denoted using straight lines on either side of the vector $ a $		
2.	Vector	A quantity that has both magnitude and a	e.g. velocity direction displacement force		
3.	Directed line segment	Can be used to represent a vector		۳	В
		Can be written in bold a, with underlining \underline{a} or \overrightarrow{AB}	A	<i>AB</i> or ⊻	
4.	Unit vector	A vector with a magnitude of 1		$\mathbf{y} = \langle 0, 1 \rangle$	L>
		Unit vector in the x direction			$i = \langle 1, 0 \rangle$
		Unit vector in the y direction		- 0	x
5.	Column vector	x denotes the horizontal movement	((x)	-⊶+ ++
		y denotes the vertical movement		y)	↓_
6.	Resultant	The vector sum of two or more vectors			
7.	Displacement	The action of moving something from its place or position			
8.	Scalar	A quantity that has magnitude e.g. speed is the magnitude of the velocity vector			
9.	Colinear	Two vectors that lie on the same line			

10.	Triangle law	$\overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{OP}$	v P u A
11.	Parallel vectors	Any vector parallel to the vector a may be written as λa , where λ is a non-zero scalar	b If the number is negative (≠ −1) the new vector -2b has a different length and $-\frac{1}{2}b$ the opposite direction.
12.	$\binom{p}{q}$	Can also be written as $p {f i} + q {f j}$	e.g. $5i + 2j = \binom{5}{2}$
13.	Zero vector	$\overrightarrow{OA} + \overrightarrow{AO} = 0$	X
14.	Vectors and ratios	If P is A point on AB, dividing AB in the ratio λ : μ	$\overrightarrow{OP} = \overrightarrow{OA} + \frac{\lambda}{\lambda + \mu} \overrightarrow{AB}$

Propo	ortion	_		
1.	Constant of	Represented by k		
	proportionality	Its value stays the same		
2.	Direct proportion	Two quantities increase at the same rate	e.g. y is directly proportional to x' $y \propto x$ y = kx	
3.	Inverse proportion	One variable increases at a constant rate while the other variable decreases	e.g. 'y is inversely proportional to x' $y \propto \frac{1}{x}$ $y = \frac{k}{x}$	
Grapł	n transformat	cions	<u>.</u>	
4.	y = -f(x)	Reflection in the x axis	y coordinates are multiplied by -1	
5.	y = f(-x)	Reflection in the y axis	x coordinates are divided by -1	
6.	y = -f(-x)	Reflection in the x axis and then in the y axis	y coordinates are multiplied by -1 AND x	
		Equivalent to rotation of 180° about the origin	coordinates are divided by -1	
7.	y = f(x) + a	Translation by the vector $\begin{pmatrix} 0 \\ a \end{pmatrix}$		
8.	y = f(x + a)	Translation by the vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$		
9.	y = af(x)	Stretch by scale factor a in the vertical direction, parallel to the y axis	y coordinates are multiplied by a	
10.	y = f(ax)	Stretch by scale factor $\frac{1}{a}$ in the horizontal direction, parallel to the x axis	x coordinates are multied by $\frac{1}{a}$	

Rates	Rates of change				
11.	Gradient	The gradient of the tangent to a curve can be used to calcuakte the gradient of a curve at any point	6 5 4 3 2 7 1 1 2 1 1 2 3 -2 -1 0 -1 2 3		
12.	Area under graph	The area under the graph represents the product of the units on the y and x axes	If the graph is a curve then split up into shapes such as trapezia and triangles to find an estimate for the area		
		e.g. for a velocity time graph the area represents the distance travelled	(s/u) poods		