
Classification of Algorithms 
 
Comparing Algorithms 
 
• The time efficiency of algorithms refers how long an algorithm takes to run as 

a function of the size of the input. 
• More than one algorithm can be used to solve the same proble.  
• For instance to calculate the sum of a sequence of numbers we can use the 

following algorithm: 
𝑠𝑢𝑚 =  (𝑛 + 1) ∗  𝑛 / 2 

where 𝑛 is the number we wish to sum the values up to. Using this calculation the 
time remains constant regardless the value of n. In other words, regardless of how 
many numbers we wish to add up the time taken will always be same. 
 
We could use an alternative algorithm to calculate the sum of a sequence of 
numbers 
 
sum ← 0 

FOR i ← 1 to n 

 sum ← sum + i 

ENDFOR 

OUTPUT sum 

 
Using this algorithm the number of operations increases in linear time with the 
size of the input. Therefore, the time taken for the algorithm to run will grow in 
linear time as in size of the input increases.  Clearly this is more inefficient than the 
first algorithm even though it solves the same problem. 
 
Another area where algorithms differ in their efficiency is in regard to the memory 
requirements of algorithms. For instance programs that read in huge data files into 
memory can end up taking up a large space in memory.  
 
When developing algorithms it is important to consider the hardware constraints 
of the system you are developing for (eg mobile phone which has limited 
processing and space capability). If you have large memory then your algorithm 
can afford to be less space efficient.  Likewise if you have access to tremendous 
processing power algorithm (eg supercomputer) your may not need to be time 
efficient although it is still desirable to make algorithms as efficient as possible. 
 
Maths for Big-O Notation 
 
A function allows us to map a set of input values to a set output values 
 

𝑦 = 𝑓(𝑥) 
 
where x is a value from the domain and y a value from the codomain 
 

domain -> codomain 
 
A linear function takes the form 𝑦 = 𝑚𝑥 + 𝑐, where m is the gradient and c the 
intercept on the y axis. 
 
A polynomial function takes the form 𝑦 =  𝑎𝑥2  +  𝑏𝑥 + 𝑐 
 
An exponential function takes the form 𝑦 =  𝑎𝑥  
 
A logarithmic function takes the form 𝑦 =  𝑎 log𝑛 𝑥 
 
Permutations illustrate how the number of operations grows factorially when we 
add additional dimensions to some problems. 
 
 
 
 
 

How many different combinations can sequence of digits have? 

No. of digits No of combinations 

2 2 

3 6 

4 24 

5 120 

 
Big O notation gives us an idea of how long a program will run if we increase the 
size of the input.  We need to consider how many operations will need to be 
carried out for a given size of input.  This gives us the time complexity of the 
algorithm.   
 

Constant Time O(1) 
 
The time remains constant even when  
the number of input increases. E.g. 
calculating the sum of a sequence of 
numbers. 
 

𝑠𝑢𝑚 =  (𝑛 + 1) ∗  𝑛 / 2 
 
Regardless of how many numbers we 
wish to add up the time taken will 
always be same. 
 

 

 

Logarithmic Time O(log n) 
 
The time taken for the algorithm to 
run will grow slowly as in size of the 
input increases. 
 
 

 
 

Linear Time O(n) 
 
The time taken for the algorithm to 
run will grow in linear time as in size 
of the input increases. 
Eg inefficient algorithm to calculate 
the sum of a sequence of numbers 
 
sum = 0 

for i=0 to n 

 sum = sum + i 

output(sum) 

 

 

 

Polynomial Time O(n2) 
 
The time taken for the algorithm to 
run will grow proportionally to the 
square of the size of the data set. 
Normally when you have nested for 
loops this will have a polynomial time 
complexity. 
 
for i=0 to n 

 for j=0 to n 

  Do something 

 

 

 

Exponential Time O(2n) 
 
The time taken for the algorithm will 
grow as the power of the number of 
inputs, so the time taken for the 
algorithm to run will grow very quickly 
as more input data are added. 
 

 
 
The time taken for an algorithm to run will depend on the hardware (eg processor 
clock speed, RAM size), even though the number of operations will be constant for 
a fixed input. 
 
Tractable problems  are problems that have a polynomial or less time solution eg 
O(1), O(n), O(log n), O(n2) 
 
Intractable problem are problems that can be theoretically solved but take longer 
than polynomial time e.g. O(n!), O(2n) 
 
Heuristic algorithms are used to provide approximate but not exact solutions to 
intractable problems 
 
The travelling Salesman Problem 
The idea is to find the shortest route to visit all cities.  This is a permutation of the 
number of cities so has a factorial time complexity so quickly becomes an 
intractable problem with an unfeasibly huge number of permutations. 
 
To solve this we use an heuristic algorithm.  This provide an acceptable solution to 
the problem but it may not be the optimal or best solution.  So for the travelling 
salesman problem we may find a short route but not necessarily the shortest 
route.  Heuristic algorithms for the travelling salesman problem include the 
following: 
 

• Greedy algorithm – take the shortest route to the next city 

• Visit the cities in a circle 

• Brute force algorithm – Apply to small but different subsets of cities and 
combine together.  Apply the brute force algorithm to fewer manageable 
problems rather than a single intractable problem 

 
Time Complexity of common algorithms 

Linear Search O(n) 

Binary Search O(log n) 

Binary Tree Search O(log n) 

Bubble Sort O(n2) 

Merge sort O(n log n) 

Travelling Salesman Problem O(n!) 

Brute force password cracker where n is the length 
of the password 

O(An) 

 
Unsolvable problems Some problems cannot be solved by a computer.  The 
Halting problem is one such problem and show that some problems cannot be 
solved algorithmically.  
 
The halting problem states that there is no computer program that exists that can 
determine whether another computer program will halt or will continue to run 
forever given some specified input.  
 
The halting problem show that some problems cannot be solved by a computer 
 
 


