
Classification of Algorithms

Comparing Algorithms

• The time efficiency of algorithms refers how long an algorithm takes to run as

a function of the size of the input.
• More than one algorithm can be used to solve the same proble.
• For instance to calculate the sum of a sequence of numbers we can use the

following algorithm:
𝑠𝑢𝑚 = (𝑛 + 1) ∗ 𝑛 / 2

where 𝑛 is the number we wish to sum the values up to. Using this calculation the
time remains constant regardless the value of n. In other words, regardless of how
many numbers we wish to add up the time taken will always be same.

We could use an alternative algorithm to calculate the sum of a sequence of
numbers

sum ← 0

FOR i ← 1 to n

 sum ← sum + i

ENDFOR

OUTPUT sum

Using this algorithm the number of operations increases in linear time with the
size of the input. Therefore, the time taken for the algorithm to run will grow in
linear time as in size of the input increases. Clearly this is more inefficient than the
first algorithm even though it solves the same problem.

Another area where algorithms differ in their efficiency is in regard to the memory
requirements of algorithms. For instance programs that read in huge data files into
memory can end up taking up a large space in memory.

When developing algorithms it is important to consider the hardware constraints
of the system you are developing for (eg mobile phone which has limited
processing and space capability). If you have large memory then your algorithm
can afford to be less space efficient. Likewise if you have access to tremendous
processing power algorithm (eg supercomputer) your may not need to be time
efficient although it is still desirable to make algorithms as efficient as possible.

Maths for Big-O Notation

A function allows us to map a set of input values to a set output values

𝑦 = 𝑓(𝑥)

where x is a value from the domain and y a value from the codomain

domain -> codomain

A linear function takes the form 𝑦 = 𝑚𝑥 + 𝑐, where m is the gradient and c the
intercept on the y axis.

A polynomial function takes the form 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

An exponential function takes the form 𝑦 = 𝑎𝑥

A logarithmic function takes the form 𝑦 = 𝑎 log𝑛 𝑥

Permutations illustrate how the number of operations grows factorially when we
add additional dimensions to some problems.

How many different combinations can sequence of digits have?

No. of digits No of combinations

2 2

3 6

4 24

5 120

Big O notation gives us an idea of how long a program will run if we increase the
size of the input. We need to consider how many operations will need to be
carried out for a given size of input. This gives us the time complexity of the
algorithm.

Constant Time O(1)

The time remains constant even when
the number of input increases. E.g.
calculating the sum of a sequence of
numbers.

𝑠𝑢𝑚 = (𝑛 + 1) ∗ 𝑛 / 2

Regardless of how many numbers we
wish to add up the time taken will
always be same.

Logarithmic Time O(log n)

The time taken for the algorithm to
run will grow slowly as in size of the
input increases.

Linear Time O(n)

The time taken for the algorithm to
run will grow in linear time as in size
of the input increases.
Eg inefficient algorithm to calculate
the sum of a sequence of numbers

sum = 0

for i=0 to n

 sum = sum + i

output(sum)

Polynomial Time O(n2)

The time taken for the algorithm to
run will grow proportionally to the
square of the size of the data set.
Normally when you have nested for
loops this will have a polynomial time
complexity.

for i=0 to n

 for j=0 to n

 Do something

Exponential Time O(2n)

The time taken for the algorithm will
grow as the power of the number of
inputs, so the time taken for the
algorithm to run will grow very quickly
as more input data are added.

The time taken for an algorithm to run will depend on the hardware (eg processor
clock speed, RAM size), even though the number of operations will be constant for
a fixed input.

Tractable problems are problems that have a polynomial or less time solution eg
O(1), O(n), O(log n), O(n2)

Intractable problem are problems that can be theoretically solved but take longer
than polynomial time e.g. O(n!), O(2n)

Heuristic algorithms are used to provide approximate but not exact solutions to
intractable problems

The travelling Salesman Problem
The idea is to find the shortest route to visit all cities. This is a permutation of the
number of cities so has a factorial time complexity so quickly becomes an
intractable problem with an unfeasibly huge number of permutations.

To solve this we use an heuristic algorithm. This provide an acceptable solution to
the problem but it may not be the optimal or best solution. So for the travelling
salesman problem we may find a short route but not necessarily the shortest
route. Heuristic algorithms for the travelling salesman problem include the
following:

• Greedy algorithm – take the shortest route to the next city

• Visit the cities in a circle

• Brute force algorithm – Apply to small but different subsets of cities and
combine together. Apply the brute force algorithm to fewer manageable
problems rather than a single intractable problem

Time Complexity of common algorithms

Linear Search O(n)

Binary Search O(log n)

Binary Tree Search O(log n)

Bubble Sort O(n2)

Merge sort O(n log n)

Travelling Salesman Problem O(n!)

Brute force password cracker where n is the length
of the password

O(An)

Unsolvable problems Some problems cannot be solved by a computer. The
Halting problem is one such problem and show that some problems cannot be
solved algorithmically.

The halting problem states that there is no computer program that exists that can
determine whether another computer program will halt or will continue to run
forever given some specified input.

The halting problem show that some problems cannot be solved by a computer

