
Client server model

Client server model
• Server: runs programs to serve applications to other computers
• Client: a computer that makes use of a service
• A client will make a request to a server. The server will run processes that are

continuously listening for communications on a specific port. A server will
serve many clients.

• When the server receives the request it then responds to the request
• Typical servers: file server, email server, FTP server, web server

Web server
• A web server is a computer on which are stored all the elements of a website

including text images and other multimedia content as well as the HTML and
CSS files.

• The web server will be able to understand HTTP requests from clients and
respond to those requests.

• The web server will continuously be listening out for requests from clients.
• A browser requests a file from a web server using HTTP. When the request

reaches the web server the file sent back to the browser, via HTTP.

Websocket
• A websocket is an API that define the protocols between a client web browser

and a server.
• A websocket protocol allows a persistent and dedicated full duplex

(simultaneous two-way communication) connection between the client web
browser and the server.

• Allows continuous transmission of data
• By comparison HTTP is half duplex and has greater overheads so is less

efficient.
• Much faster because packets are smaller and contain less information so

bandwidth requirement is reduced
• Useful for applications that require continuous real time data transfer ways

between the client and server such as online gaming video conferencing, live
video streaming anything that requires the constant transfer of data especially
both

CRUD
There are four processes needed in a database with full functionality: Create,
Retrieve, Update, Delete (CRUD).

REST (Representational state transfer)
• REST is an API (Application Program Interface (API) that allows programs to

work together. The functionality of one program can be accessed from
another program

• REST runs on a server and allows clients to communicate with the server
• The database is connected to a client browser using REST API
• The HTTP request methods are mapped to SQL using the REST API following

the principles of CRUD
• Javascript which runs on the client can communicate with the server through

HTTP and can make calls to the REST API

CRUD, HTTP and SQL mapping

CRUD HTTP SQL

Create POST INSERT

Retrieve GET SELECT

Update PUT UPDATE

Delete DELETE DELETE

Web database architecture

JSON and XML
JSON (Javascript Object Notation) and XML (Extensible Markup Language) are
standard methods of transferring data between a server and a client.

JSON Example
{“students":[

 { "firstName":“Thomas", "lastName":“Brown“,

“dateOfBirth":27/3/2001},

 { "firstName":“James", "lastName":“Frank“,

“dateOfBirth":13/4/2002}

]}

XML Example
<students>

 <student>

 <firstName>Thomas</firstName>

 <lastName>Brown</lastName>

 <dateOfBirth> 27/3/2001 </dateOfBirth>

 </ student >

 < student >

 <firstName>James</firstName>

 <lastName>Frank</lastName>

 <dateOfBirth> 13/4/2002 </dateOfBirth>

 </student>

</ students>

JSON versus XML

JSON XML

Very easy to read Contains tags so is not so easy to read

More compact less code Lots of tags needed so is less compact

Only set data types can be used Greater flexibility of data types

Syntax is very simple so easy to
create

More complex syntax

Quick to parse Slow to parse because it contains lots
of tags

Thin versus thick client computing

Thin client
• Relies on a server to do much of the processing.
• The server needs to be extremely powerful to in order to be able to process all

the requests from all clients on a network.
• A thin client computer can be low specification and does not need much hard

disk storage or processing power.
• Much of the application software will be installed on the server.
• Client is essentially a terminal

Thick client
• All the applications are installed on the local machine.
• The processing is performed on the client.
• Very little reliance on the server

 Advantages Disadvantages

Thin
Client

Cheap low spec and old
machines can be used for the
clients

Easy to maintain and manage
software updates on a server

Data are stored in one central
location on the server so can be
more secure

Make it harder to pirate
software

If server goes down the whole
network is affected

Need expensive very high
performing server

Need a good quality network to
transfer data and requests between
clients and server

Can be a security risk as data are
transferred over the network

Thick
client

Do not need such a robust
network and there is a lot less
network traffic

Do not need such high spec
servers

Different software can be
installed on different machines

Need to have high specification
clients

Software needs to be on all client
machines, thereby making
maintenance and updating software
more difficult

Client browser:
HTTP request

web documents

HTTP Server:
Respond to HTTP

request

