
Databases
Relational Databases

A database is a collection of data stored in an organised and logical way. Data are
stored in tables and tables are made up of records (rows) which can have 1 more
attributes (columns). More complex relational databases have multiple tables
linked together by shared attributes called a key.

Relational databases make it easier to search and find information that you want.

Relational databases reduce the amount of duplication (redundancy) of data.

Record An object about which data can be collected (eg person or item)

Attribute A characteristic of a record

Primary
Key

All tables have a primary key to uniquely identify each record. This
is also known as entity identifier

Foreign
Key

These are primary keys that are held in other tables to cross
reference data between tables allowing tables to be linked
together

Composite
Primary
Key

A primary key that has more than one attribute in order to
uniquely identify the entity

Entity relationships

One-to-one

A phone can only have one number
and a number can only be allocated
to one phone

One-to-many

A player can only belong to one
football club, but a club can have
many players

Many-to-Many

A recipe can have many ingredients
and an ingredient can be in many
recipes

Entity descriptions have the following form:
Entity(Attribute1, Attribute 2, ..)

Example
Customer(CustomerID,CustomerFirstName, ..)

We define the primary key by underlining that attribute
Entity(Attribute1, Attribute 2, …..)

Example:
Customer(CustomerID,CustomerFirstName, ..)

We underline all the attributes that make up the composite primary key
Entity(Attribute1, Attribute 2, …..)

Normalisation

Purpose of Normalisation
• To simplify the data structure
• To reduce data redundancy and to remove repeating data
• To be able to update, remove and search the database
• To reduce the size of the database

First Normal form (1NF)
The data are atomic. Atomic means the data cannot be broken down into smaller
components. There are no repeating groups of attributes.
• Remove repeating attributes (columns) from table.
• Each record (row) needs a unique identifier

Second normal form (2NF)
• Need to be in 1NF (so data are atomic and no repeating groups of attributes)
• No partial key dependencies of non-key attributes

For each non key attribute we determine whether it is dependent on any of the
attributes that make up the primary key

Third normal form (3NF)
• Need to be in 1NF (so data are atomic and no repeating groups of attributes)
• Need to be in 2NF (no partial key dependencies of non-key attributes)
• No dependencies on non-key attributes

Structured Query Language

Define a database table
CREATE TABLE Entity(

 attribute1 DATATYPE PRIMARY KEY,

 attribute2 DATATYPE,

 ..);

Datatypes include: TEXT, INTEGER, FLOAT, BOOLEAN, DATE

Example
CREATE TABLE books(

 bookID INTEGER PRIMARY KEY,

 title TEXT,

 author TEXT,

 year INTEGER,

 publisher TEXT,

 genre TEXT);

Insert Statement - INSERT INTO is a commonly used command in SQL for adding
new records to database tables.

INSERT INTO Entity (attribute 1, attribute 2, ..) VALUES

(value 1, value 2, ..);

Example
INSERT INTO books (bookID, title, author, genre) VALUES

(1, ’Harry Potter and the Order of the Phoenix’, ‘JK

Rowling’, ‘Children’);

Delete Statement - To delete a record we specify which record(s) from which table
we wish to remove.

DELETE FROM books WHERE author=‘JK Rowling’;

Update Statement - makes changes to a record that is already in a table we can
use the UPDATE statement.

UPDATE books SET publisher=“HarperCollins” WHERE

title=“War Horse”

Select Statement - To retrieve data from the table we can use the SELECT
statement.

SELECT * from table;

Example: SELECT * from books;

The * is the wild card and means select everything from the books table.

We can also choose the attributes that we wish to retrieve

SELECT attribute 1, attribute 2 from table;

Example: SELECT title, author from books;

We can avoid selecting repeating data and can select distinct data using:
SELECT DISTINCT author FROM books;

We can sort the output of our SELECT statement by using the ORDER BY clause.
ASC and DESC refer to sorting ascending and descending alphabetically and
numerically.

SELECT title, author FROM books ORDER BY title ASC;

SELECT title, author FROM books ORDER BY title DESC;

The WHERE clause is used to filter records so that we do not apply a statement to
a whole table.
SELECT * FROM books WHERE author=“Michael Morpurgo”

When selecting the data from multiple tables we need to specify the name of the
table from which each attribute we are wishing to retrieve. We need to specify
that we only wish to select the records where the primary key and foreign key
match.

SELECT books.title, authors.name, from authors, books

WHERE authors.author_ID=books.author_ID;

We can also use the INNER JOIN clause to select data from a pair of tables that
have the same values to get the same result.

SELECT books.title, authors.name from authors INNER JOIN books ON
authors.author_ID=books.author_ID;

Client Server database
Client server databases allow simultaneous access from many clients over a
network. The difficulty arises when more that client wishes to access and modify
the same data at the same time. Access can be managed in the following ways:

Record locks - A record lock only allows records to be modified by one client at a
time. The records remain locked to all other clients so they cannot be modified
simultaneously by these clients. Once the client has completed the session then
the records can be unlocked until another client starts to edit the data.

Serialisation - Serialisation only allows one transaction (read and write operation)
at a time (in serial) from multiple connected clients, so that transactions from
different clients do not interfere with one another.

Timestamp ordering – read and write operations will have a timestamp. Each data
item in the database also has a read and write timestamp of their most recent
access. The purpose is not to lose data by overwriting. Some rules include: The
transactions with earlier timestamp will be processed first. If there is a transaction
which tries to write to a database with a later timestamp, the transaction will not
be allowed.

Commitment ordering - Some transactions will have priority over others according
to their dependencies as well as their timestamps.

