
Number Systems 
 
Natural numbers - We use N to denote mathematical notation for natural 
numbers. Natural numbers are positive integers. Integers are whole numbers. 
Natural numbers are a subset of integers. The set of natural numbers can also 
include zero. Thus the set of natural numbers can be: 
 

N= {1,2,3 … . } Or N= {0,1,2,3 … . , ∞} 
 
Cardinal and ordinal numbers - Natural numbers are used for counting and 
ordering.  More formally we use the terms cardinal and ordinal.  
 
Cardinal numbers are used for counting.  
 
Ordinal numbers are used for ordering. Gives the position of items in a list. For 
instance in the list A where 
 
 A = {“apple”,”banana”,”orange”},  
 
The first item in position 1 is “apple”, the second is in position 2: “banana” and the 
third is in position 3: “orange” 
 
Integers - We use Z to denote mathematical notation for the set of integers. 
Integers are whole numbers include the set of natural numbers in addition to 
negative numbers. Thus the set of integer numbers is: 
 

Z = {… , −3,  − 2,  − 1,  0,1,2,3 , … } 
 
Rational numbers - We use Q to denote mathematical notation for rational 
numbers. Rational numbers are any number that can be represented by a fraction 

where the numerator and denominator are integers a and b 
𝑎 

𝑏
.Rational numbers 

can be positive and negative and include integer values. A recurring number such 
as 0.3333… is a rational number because it can be represented by a fraction, in this 

case 
1 

3
 

 
Irrational numbers - Infinite series of non repeating digits andcannot be written as 
a quotient of integers (ie fractions) and cannot be written as a terminating decimal 
or repeating decimal. These numbers cannot be represented exactly, although for 
most practical purposes the values used for these constants are sufficient when 

rounded. Examples of irrational numbers: 𝜋, 𝑒, √2, √7, 0.271982… 
 
Real numbers - The set of real numbers R includes both rational and irrational 
numbers. Real numbers are uses for the measurement of continuous values. Eg 
measuring length or weight. 
 

    -2,   -1, 0 ,  
1 

2
 , 1, √2, 2,  𝑒, 3,  𝜋 

 
Relation between number sets 
 

 

Number bases 

 
Denary (or decimal) is base-10 and is the number system we are most familiar 
with. We have the columns of units, tens, hundreds, thousands and so on. Base-10 
means that we have 10 possible values (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) in each column. 
 
Binary is base-2 and has 2 values, 0 and 1. It requires a greater number of digits in 
binary to represent a number than denary. This is how data and instructions are 
stored in a computer. 
 
To calculate the maximum value for a given number of bits we use 2n-1 where n is 
the number of bits.  For example for 4 bits we have 24-1 which is 15. 
 

Bits Max value binary Max value denary 

1 12 110 

2 112 310 

3 1112 710 

4 11112 1510 

5 111112 3110 

6 1111112 6310 

7 11111112 12710 

8 111111112 25510 

 
Hexadecimal is base-16.  To make up the 16 values we use the ten denary 
numbers in addition to 6 letters (A, B, C, D, E, F). 
 

Denary Hex. Binary  Denary Hex. Binary 

010 016 00002  810 816 10002 

110 116 00012  910 916 10012 

210 216 00102  1010 A16 10102 

310 316 00112  1110 B16 10112 

410 416 01002  1210 C16 11002 

510 516 01012  1310 D16 11012 

610 616 01102  1410 E16 11102 

710 716 01112  1510 F16 11112 

 
Hexadecimal is used a lot in computing because it much easier to read than binary.  
There are far fewer characters than binary.  So hexadecimal is often used in place 
of binary as a shorthand to save space. For instance, the hexadecimal number 
7BA3D456 (8 digits) is 01111011101000111101010001010110 (32 digits) in binary 
which is hard to read. 
 
Hexadecimal is better than denary at representing binary because hexadecimal is 
based on powers of 2.  
 

Converting between number bases 
 
Denary to binary conversion 
1) Create a grid: 
 

128 64 32 16 8 4 2 1 

        

 
2) Add a 1 to the corresponding cell if number contributes to target number and 

0 to all the other cells 
 
Worked example: convert 2410 to binary. 
 

128 64 32 16 8 4 2 1 

0  0     0      1 1 0 0 0 

 
1610 + 810=2410  

The binary value is 110002 (we can ignore the preceding zeros) 

Binary to denary conversion  
 
Worked example: Convert 010110012 to denary 
1) Create the grid: 
 

128 64 32 16 8 4 2 1 

0 1 0 1 1 0 0 1 

 
2) Add up the cells that have a corresponding value of 1: 

64 + 1610 + 810 + 1= 8910 
 
 
Hexadecimal to binary conversion 

1) Find the corresponding 4-bit binary number for the hex digits 
2) Concatenate the binary values to give the final binary value 

 
Example: convert C316 to binary 
C16 = 1210 = 11002 
316= 310 = 00112 
110000112 
 
Binary to hexadecimal conversion 

1) Split the binary number into groups of 4 bits: 11102 10102. If the number 
of bits is not divisible by 4 prepend the binary number with 1,2 or 3 zeros 
to make it divisible by 4. 

2) Find the corresponding Hex value for each of the 4-bit groups 
 
Worked example: Convert 111010102 to hexadecimal 
11102 |10102 
11102 = 1410 = E16   
10102 = 1010 = A16   
EA16 
 
Hexadecimal to denary conversion general approach 

1) Find the corresponding 4-bit binary number for the hex digits 
2) Concatenate the binary values to give the final binary value 
3) Convert the binary number to denary 
4) Add the second value 

 
Worked example: Covert 1AB16 to denary 
116 = 00012 

A16 = 10102 

B16 = 10112 

 
Concatenate: 0001101010112 = 42710 
 
Denary to hexadecimal conversion general approach 

1) Convert to binary 
2) Split the binary number into groups of 4 bits: 11102 10102. If the number 

of bits is not divisible by 4 prepend the binary number with 1,2 or 3 zeros 
to make it divisible by 4. 

3) Find the corresponding Hex value for each of the 4-bit groups 
 
Worked example: Convert 50310 to hex 
Convert to binary: 1111101112 
Split into groups of 4 bits: 00012 | 11112 | 01112 
00012 = 116 
11112 = F16 
 01112 =716 

1F716 
 
 
 
 



Hexadecimal to denary conversion for two hex digits 
1) Convert the two hex values separately to denary value 
2) Multiply the first value by 16  
3) Add the second value 

 
Worked example: Covert A316 to denary 
A16 = 1010 

316 = 310 
(1010 x 1610) +310 = 16310 
 
Denary to hexadecimal conversion for denary values 255 or less 

1) Integer divide the denary number by 16 
2) Take the modulus 16 of the denary number 
3) Convert the two numbers to the corresponding hex values. 

 
Worked example: Convert 18910 to hex 
18910 / 1610 = 1110 remainder 1510  
1110 = B16 
1510 = F16 
18910 = BF16 
 
 

Units of Information 
 
Bits and Bytes 
 
A bit is the fundamental unit of binary numbers.  A bit is a binary digit that can be 
either 0 or 1.  Bit is short for binary digit 
 
A byte contains 8 bits, as a power of 23. 

 
The number of different values that can be represented by a sequence of bits is 2n 

where n is the number of bits. 
 

No. of 
bits 

No. of 
values 

Values 

1 2 (21) 0, 1 

2 4 (22) 00,  01, 10, 11 

3 8 (23) 000, 001, 010, 011,100,101,110,111 

4 16 (24) 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 
1001, 1010, 1011, 1100, 1101, 1110 , 1111 

 
Units   
• We often state that a kilobyte is 1024 bytes but this is not strictly true 

because a kilobyte is 1000 bytes.  
• Powers of 2 units including kibibytes, mibibytes, gibibytes and tibibytes were 

introduced to allow us to refer to the number of bytes unambiguously. 
• We should therefore use kibibytes to refer to 1024 bytes. This also applies 

elsewhere where we often use megabytes, gigabytes and terrabytes when we 
should use mebibytes, gibibytes and tebibytes, respectively.  

• There is only a small difference in the number of bytes between kB and KiB, 
but this increases significantly for larger powers such as between yottabytes 
(1024) and yobibytes (280).  

 
Units Powers of 10 

UNIT SYMBOL NUMBER OF BYTES 

Kilobyte kB 103 (1000) 
Megabyte MB 106 (1 million) 
Gigabyte GB 109 (1 billion) 
Terabyte TB 1012 (1 trillion) 

 
Units Powers of 2 

UNIT SYMBOL NUMBER OF BYTES 

KibiByte KiB 210 (1024) 

MebiByte MiB 220 

GibiByte GiB 230 
TebiByte TiB 240 

 

 

Binary Number System 
 
Unsigned Binary 
 
Signed Integer – can be used to represent both positive and negative numbers 
 
Unsigned Integer – can only represent positive numbers 
 
For unsigned integers the minimum and maximum values are 0 and 2n-1 
respectively, where n is the number of bits. 
 
FOR UNSIGNED INTEGERS DO NOT GET CONFUSED BETWEEN THE MAXIMUM 
VALUE (2n-1) AND THE NUMBER OF VALUES (2n) THAT CAN BE REPRESENTED FOR 
A GIVEN NUMBER OF BITS  

 
For signed integers the minimum value is 

-2n

2
 

and the maximum value is 
2n

2
− 1 

 
 SIGNED INTEGERS UNSIGNED INTEGERS 

NO. OF BITS Min Value Max Value Min Value Max Value 
2 -2 1 0 3 
3 -4 3 0 7 
4 -8 7 0 15 
5 -16 15 0 31 
6 -32 31 0 63 
7 -64 63 0 127 
8 -128 127 0 255 

  
Add unsigned binary integers 
 

Binary addition rules 
02 + 02 = 02 
02 + 12 = 12 
12 + 02 = 12 
12 + 12 = 102 (carry 1) 
12 + 12 + 12=112 (carry 1) 

 

Example 
           0 1 0 0 1 0 0 12 
+         0 1 0 1 0 1 0 12 
           1 0 0 1 1 1 1 12 
  carry   1              1 
 

Multiply unsigned binary numbers 
Multiplication in binary is the same as it is in denary 

 
Binary Multiplication rules 
02 x 02 = 02 
02 x 12 = 02 
12 x 02 = 02 
12 x 12 = 12  
 
 
 

Example 
      

1 1 1 1 0 12 
   

x 
  

1 0 0 12 
    

1 1 1 1 0 12    
0 0 0 0 0 0 02   

0 0 0 0 0 0 0 02 

+ 1 1 1 1 0 1 0 0 02 

1 0 0 0 1 0 0 1 0 12 

    
Two’s Complement – Technique applied to binary numbers to make then negative 

 

Steps for converting from Denary to Two’s Complement 
1) Find binary value of the positive denary number 
2) Flip all 1 bits to 0 and 0 bits to 1 
3) Add 1 

 
Worked Example: Convert -18 to Two’s complement binary in 8 bits 
 

1. Find binary value of the positive 
denary number 

  1810 = 0 0 0 1 0 0 1 02 

2. Flip all 1 bits to 0 and 0 bits to 1    1 1 1 0 1 1 0 12 
3. Add 1    1 1 1 0 1 1 0 12 

+ 0 0 0 0 0 0 0 1 2 
   1 1 1 0 1 1 1 0 2 
 

 
Example of a quick way to convert a negative number to Two’s complement binary 
 

1. Find binary value of the positive 
denary number 

  1810 = 0 0 0 1 0 0 1 02 

2. Flip all 1 bits to 0 and 0 bits to 1, 
up to the final 1 and copy the 
remaining bits.  This is the same a 
flipping all the bits and adding 1 

   1 1 1 0 1 1 1 02 

     
Steps for converting a negative Two’s complement number to denary 

1) Flip bits 
2) Add 1 
3) Convert from binary to denary  
4) Add the minus sign (it is really easy to forget) 

 
Worked Example: convert the following negative Two’s complement number to 
denary: 100110102 

 

1. Flip bits 
2. Add 1 
3. Convert to denary  
4. Add the minus sign 

 

1 0 0 1 1 0 1 02 -> 0 1 1 0 0 1 0 12 
0 1 1 0 0 1 1 02 
0 1 1 0 0 1 1 02 = 10210 
-10210 
 

Steps to Subtract binary numbers 
1. Apply two’s complement to the second binary number 
2. Add the two numbers together 

 
Worked Example: Subtract the following two numbers: 
  0 0 1 0 1 0 1 12       4310 
- 0 0 0 1 0 0 0 12       1710 
 
 

1. Apply two’s complement to the 
second binary number 

 
2. Add the two numbers together 
 
Disregard the overflow 1 
 

0 0 1 0 1 0 1 12 - >  
1 1 1 0 1 1 1 12 

 

     0 0 1 0 1 0 1 12 

  + 1 1 1 0 1 1 1 12 

(1) 0 0 0 1 1 0 1 02     2610 
 

Fixed Point Representation 
Fixed point binary is one method used to represent fractions in binary. An 
imaginary point is used to represent the fractional part of a number. The table 
below shows the corresponding decimal and binary representation of some 
fractions.  We need to introduce an imaginary point to the binary number to 
separate the whole and fractional part of the number. 

 
 Fraction 

 
Decimal  Binary 

21 2

1
 

2 10 



20 1

1
 

1 1 

2-1 1

2
 

0.5 0.1 

2-2 1

4
 

0.25 0.01 

2-3 1

8
 

0.125 0.001 

2-4 1

16
 

0.0625 0.0001 

2-5 1

32
 

0.03125 
 

0.00001 

2-6 1

64
 

0.015625 
 

0.000001 

2-7 1

128
 

0.0078125 
 

0.0000001 

 
Worked example: What is binary fraction 1001.11002 in denary?  

 
8 4 2 1 

  

 
𝟏

𝟐
 

𝟏

𝟒
 

𝟏

𝟖
 

𝟏

𝟏𝟔
 

 
1 0 0 1 . 1 1 0 0 

8 + 1 + 0.5 + 0.25 = 9.75    

 
Worked example: What is denary number 3.12510 in fixed point binary, 
represented with 4 bits before and after the imaginary point.  

 
8 4 2 1 

  

 
𝟏

𝟐
 

𝟏

𝟒
 

𝟏

𝟖
 

𝟏

𝟏𝟔
 

 
0 0 1 1 . 0 0 1 0 

0011.0010 

 
Floating Point Representation 
Floating point representation allows us to have a greater range of numbers for a 
given number of bits than fixed point binary. Floating point numbers are split into 
two parts: 
 

• Mantissa –  Represents the significant bits of a number. The larger number of 
bits used to represent the mantissa the greater the precision. 

• Exponent – The power to which the mantissa is raised. The larger the number 
of bits used to represent the exponent the greater the range of numbers. 

 
Example: the denary number 0.001234 that can also be represented as 1.234 x 10 -

3 where 1.234 is the mantissa and 10 -3 is the exponent, 

 
Real numbers 
 

0 . 1 1 1 0 1 1 0 0 1 0 0 

Sign bit                      Mantissa                                        Exponent 
 

• Example: 8 bits for the mantissa, 4 bits for the exponent 

• The sign bit (red left most bit) determines whether the number is positive or 
negative. If the sign bit is 0 then the number will be positive and if the sign bit 
is 1 then the number will be negative.  

• Likewise the first (leftmost) bit of the exponent determines whether the 
exponent is positive or negative.  

• In this example both the mantissa and exponent are positive. 

• The imaginary point is placed directly after the sign bit. 
 
 
 

Examples: Convert the following 12 bit floating point numbers where the first 8 
bits represent the mantissa and the remaining 4 bits represent the exponent to 
denary 
 
Positive Mantissa and Positive Exponent 
 

0 . 1 1 1 0 1 1 0 0 1 0 0 

 
Exponent: 00001002 = 410 
Mantissa: 0.1110110002  
The point of the mantissa moves 4 points to the right thus:   
01110.110002 = 14.7510 

 
Positive Mantissa and Negative Exponent 
 

0 . 1 1 0 0 0 0 0 1 1 1 0 

 
The exponent is negative so we have to apply two’s complement to find the 
denary equivalent 
Exponent:  1 1 1 0 2 
Flip bits:     0 0 0 1 2 
Add 1:        0 0 1 0 2 = -2 10 
Mantissa:  0 . 1 1 0 0 0 0 0 2 
The point of the mantissa moves 2 points to the left thus:    
0 . 0 0 1 1 2 = 0.187510 

 
Negative Mantissa and Positive Exponent 
 

1 . 0 1 0 1 0 0 0 0 1 0 0 

 
Exponent:  0 1 0 0 2 = 4 10 
The mantissa is negative so we have to apply two’s complement 
Mantissa:  1 . 0 1 0 1 0 0 0 2 
Flip bits:    0 . 1 0 1 0 1 1 1 2 
Add 1:        0 . 1 0 1 1 0 0 0 2 
The point of the mantissa moves 4 points to the right thus:    
1 0 1 1 . 0 2 = -11.010 

 
 
Negative Mantissa and Negative Exponent 
 

1 . 0 1 0 0 0 0 0 1 1 1 0 

 
The exponent is negative so we have to apply two’s complement to find the 
denary equivalent 
Exponent: 1 1 1 0 2 
Flip bits:     0 0 0 1 2 
Add 1:         0 0 1 0 2 = -2 10 
The mantissa is negative so we have to apply two’s complement to find the denary 
equivalent 
0 . 1 1 0 0 0 0 02 
The binary point of the mantissa moves 2 points to the left thus:    
0 . 0 0 1 1 2 = -0.187510 

 
 
 
 
 
 

Range using floating point representation with a 6 bits for the mantissa and 4 bits 
for the exponent 
 

Largest positive value that can be represented 
 
Minimum positive value that can be represented 
 
Largest magnitude negative value that can be represented 
 
Smallest magnitude negative number that can be represented 
 

0.11111 00112 
 
0.10000 10002 
 
1.00000 00112 
 
1.01111 10002 
 

 
Rounding Errors 
There are fractions that we cannot represent exactly using fixed point or floating 

point representation. For instance, we cannot represent 
1

10
 exactly.  

 
4 bits: 0.0012 = 0.12510-0.110 = 0.02510 
6 bits: 0.000112 = 0.0937510 - 0.110 = -0.0062510 
8 bits: 0.00011012 = 0.101562510 - 0.110 =  0.001562510  
10 bits: 0.0001100112 = 0.09960937510 – 0.110 = 0.0004106310 
 

The greater the number of bits the closer we can get to 
1

10
 but we can never 

represent it exactly even if we can get very close. We say that the number of bits is 
asymptotic to the fraction we are trying to represent.  
 
Normalisation 
These are all the same number: 

• 32.5191 x 100 

• 0.0325191 x 103 

• 0.0000325191 x 106 

• 32519.1 x 10-3 

• 32519100.0 x 10-6 
 
But this is the normalised number: 3.25191 x 101 
 
In scientific notation for a normalised number there is only 1 digit before the 
decimal point and it must be a significant (non zero) value. 
 
The purpose of normalising is to allow the maximum precision for a given number 
of bits.   
 
In floating point representation the first two bits of the mantissa will be 0.12  
(remember 0 is the sign bit) for positive numbers. The mantissa is between 0.510 
(0.12) and 1 (0.11111112). 
 
In floating point representation the first two bits of the mantissa will be 1.02  
(remember 1 is the sign bit) for negative numbers. The mantissa is between -0.510 
and -110. 
 

Example normalised numbers 
1.01001 0011 
0.11101 1001 
 

Example of non-normalised numbers 
1.10110 0011 
0.00100 0111 

 
Normalisation is important because we increase the precision of the number we 
wish to represent 
 
Example: Representing 110. Using e have the following floating point 
representation with 8 bits for the mantissa and 4 bits of the exponent. 
 
0.1111111 00002 = 0.992187510 
 
In binary this is the normalised number because the first bit after the decimal 
point is a significant value. For a non-normalised number.  



 
0.0011111 00102 = 0.9687510 
 
The normalised number has allowed to represent 110 with greater accuracy. 
 
 
Worked Example  
Normalise the following positive number with 8 bits for the mantissa and 4 bits for 
the exponent: 0.0001110  01012 
 
Move the point 3 places to the right: 0000.11102  
subtract 3 from the exponent to make it smaller so the exponent becomes 00102 
Mantissa: 0.11102 
Exponent: -310  = 0112 = 1012 
0.11100 00102 
 
Worked Example  
Normalise the following negative number with 8 bits for the mantissa and 4 bits 
for the exponent: 1.1110100 00102 
 
Move the point 3 places to the right so: 1.010000010 
The mantissa is larger so the exponent needs to be smaller. 
Subtract -310 from the exponent which gives: -110 = 11112 
1.0100000 11112 
 
 
Absolute and Relative Error 
 
The absolute error is the positive difference between the actual value and our 
floating point value. 
 

Absolute error = | actual number – floating number | 
 
The relative error is the absolute error divided by the actual value 
 

Relative error =  
| actual number – floating number | 

actual number
 

 
 
Consider a table that is 1m in length and it is measured to be 1.1m. The absolute 
error is 0.1m, and the relative error is 0.1 or 10 percent. 
 
Consider a building that is 100m in height but it is measured to be 101. The 
absolute error is 1m (greater that for the table) , but the relative error is now 1% 
(smaller than for the table). 
 
Worked example 
Given 4 bits what is the relative and absolute error if we try to represent the 
number 0.910 using 4 bits 
 
0.1112= 0.87510 
 
Absolute error:  actual number – represented number | 0.9 – 0.875 | = 0.025    
Relative error = absolute error / actual number    0.025 / 0.9 = 0.028 = 2.8% 
 
Range and Precision 
 
For floating point representation the larger the number of bits used for the 
mantissa the greater the precision and the larger the number of bits used for the 
exponent the greater the range.  Of course there is a trade off between the two 
given a fixed number of bits. 
 
Consider a 12 bit floating point representation with  4 bits for the mantissa and 8 
bits for the exponent. 
 

Exponent range: 1000000 = -128 to 0111111 127. 
The precision does not allow us to go below increments of 1/8 or 0.125. 
 
Now consider the same 12 bit representation with 8 bits for the mantissa and 4 
bits for the exponent 
Exponent ranges from 1000=-8 to 0111 7 
The precision allows us to go as far as 1/128 or 0.0078125 
 
In fixed point binary the range and precision depends on the position of the 
implied point. Consider 8 bits: 
 
For 0.0000000 then our range is 0 to 1.99 and with intervals of 0.0078125 
 
For 0000000.0 then our range is 0 to 127 and intervals are 0.5 are less precise 
 
Fixed point binary is quicker than floating point binary and requires fewer 
operations to perform calculations. 
 
 
Underflow Number is too small to be represented in a number of bits. For 
instance you cannot represent the number 0.00390625 using fixed point 8 bits.  
The number would be represented as 0.  Can occur when you divide a small 
number be a very large number.  
 
Overflow Number is too large to be held.  When the result of a sum is too large to 
be represented by your number system you might run out of space to represent it 
and end up storing a much smaller number. For instance 1024 would be too large 
to be held in 8 bits. Can occur when multiplying two very large numbers together. 
 
 
 
Converting from denary to normalised floating point representation 
 
Positive numbers 
Example:  Convert the following denary number 3.25 into a binary real number 
with the first 5 bits represent the mantissa and the remaining 3 bits represent the 
exponent 
Convert to binary: 11.01 
Normalised binary = 0.1101 x 22 
5-bit mantissa: 0.1101 
Exponent: 2 = 010 
01101 010 
 
Negative Numbers 
Example:  Convert the following denary number -2.7510 into a binary real number 
with first 6 bits represent the mantissa and the remaining 4 bits represent the 
exponent 
 
Convert to binary: 10.11002 
Apply two’s complement: 01.01002 
Shift the point two place to the left until you get to the normalised number  
1.010102 
Exponent: is 210 = 00102 
1.01010 00102 
 

 

Information Coding Systems 
 
ASCII and Unicode 
 
Character coding schemes allows text to be represented in the computer.  One 
such coding scheme is ASCII. ASCII uses 7 bits to represent each character which 
means that a total of 128 characters can be represented. 
 

Lower case letters 26 

Upper case letters 26 

Numbers 10 

Symbols (e.g. comma, colon) 33 

Control characters 33 

 
ASCII encoded values for some characters 

A 10000012 6510 

B 10000102 6610 

a 11000012 9710 

b 11000102 9810 

“0” 01100002 4810 

“1” 01100012 4910 

 
• ASCII has a limited character set (7 bits, 128 characters), but Unicode has 16 

bits and allows many more (65K) characters. 
• Unicode provides a unique character for different languages and different 

platforms. 
• It allows us to represent different alphabets for instance Greek, Mandarin, 

Japanese, Emojis etc.  
• Unicode and ASCII are the same up to 127. 
 
We need to be able to differentiate between character code representation and 
binary representation. 
 
For instance, the binary representation for 48 is 1 1 0 0 0 02 
 
The ASCII code for ‘48’ is 0 1 1 0 1 0 0   0 1 1 1 0 0 02 
 
 

Error Checking and Correcting 
 
When data are sent over a network between devices there needs to be a way to 
check that the bits have not been corrupted by interference during transmission 
and have been correctly received. Corruption occurs when a bit transmitted as a 0 
is converted to a 1 and vice versa. 

 
Transmitted signal 0 1 0 0 1 1 0 1 

Received signal 0 1 0 1 1 1 0 1 

 
Parity Bits 
Parity bits allow us to check whether there is an error in a sequence of bits. 
A parity bit is a check bit that is appended to a sequence of binary digits.  The 
parity bit takes on a value of 0 or 1 according to whether the total number of 1s is 
odd or even. 
 
Even Parity 
For even parity the total number of 1s in the sequence including the parity bit 
needs to be even. In the following sequence we have 9 bits with a value of 1 
therefore the parity bit is 1 for even parity giving is a total of 8 1s which is even.  
 

1 0 1 1 1 1 1 0 

Odd Parity 
For odd parity the total number of 1s in the sequence including the parity bit 
needs to be odd.  In the following sequence we have 7 bits with a value of 1 
therefore the parity bit is 0 for odd parity giving is a total of 7 1s which is odd.  
 

0 0 1 0 1 0 1 0 

 
Finding Errors 



If 1 bit in our sequence that was corrupted during transmission then the parity bit 
will be able to pick this up. 
 
For instance, in the following sequence of transmitted data we use even parity to 
check the bits. we have 4 bits with a value of 1 and the parity bit a 1.  Clearly there 
is a problem. We have an odd number of 1s for even parity which is not right so 
one of the bits has been corrupted. 
 

1 1 1 0 1 0 1 0 

 
Limitations of Parity bits 

• Parity bits do not work if an even number of bits have been corrupted. 

• Therefore only used for short sequences of bits where more that corrupted 
bit is unlikely. 

• We do not know which bit is in error so we cannot fix, so we have to discard 
the whole sequence. 

 
Majority Voting 
With majority voting each bit is transmitted three times.  If one of the bits is 
corrupted we take the majority as being the correct value for the bit.  
 
The sequence: 0 1 0 0 1 1 1 

 
will be transmitted as: 000 111 000 000 111 111 111 

 
If one of the three bits is corrupted we take the majority as being the correct value 
for the bit. The values highlight below in red are the incorrect ones. 
 
000 101 010 000 111 111 111 

 
This approach means that 3 times the volume of data needs to be sent. 
 
Check Digit 
A check digit is an additional digit at the end of a sequence of digits to check for 
errors. For instance, a bar code contains 12 digits plus a check digit and the 
purpose of the check digit here is to ensure the bar code has been input correctly. 
In the below example we show how to calculate the check digit. 
 

1. Multiply value by the weighting, this will be 1 or 3 and alternate for each 
digit 

2. Add of the multiplication from all 12 numbers together 
3. Calculate the modulus of 10 of the result 

 
Worked example 
 

 
 

 
 
Add values = 140 
140 MOD 10 = 0 

 
Checksum 
A checksum is designed to check for errors in a block of data transmitted between 
computers over a network. Often when you download a large file you can 
calculate its checksum and compare this against a separate checksum that is made 

available alongside the file to ensure the file has not been corrupted or tampered 
with during transmission. If the checksums are the same then the file’s integrity 
can be ensured, otherwise the file has been corrupted. 
 
A Simple Checksum Algorithm 
 
1. Split message into 8-bit blocks  
2. add together  
3. apply two’s complement 
 
0 1 1 1 0 1 1 1    1 0 0 0 1 0 0 0    0 1 1 0 0 1 1 0 
  

0 1 1 1 0 1 1 1  
1 0 0 0 1 0 0 0 

+ 0 1 1 0 0 1 1 0 

(1) 0 1 1 0 0 1 0 1  
1 0 0 1 1 0 1 1 

 
 
To validate 
a) split into 8 bit blocks  
b) add together all the sequences including the checksum  
c) The result should be zero 
 
 
 

 


