
Object Oriented Programming
Classes and Objects

Why Use Object Oriented Programming (OOP)
• OOP is based on two principles:

• Duplicate code is bad
• Code will always be changed

• Can modify and maintain existing code much more easily
• Reuse of code in other programs through libraries
• Has better structure and design so is suited to big projects
• Clear modular structure with a defined interface and which can abstract and

hide away details

Classes
• Classes are the integral component of object oriented programs.
• A class is the blueprint or template for the structure of an object.
• A class contains methods and property/attribute fields that describe the

behaviours and characteristics of objects.

Create a class

Prototype
class NameOfClass(object)

Example
class Employee(object):

By convention class names start with a capital letter.

Objects and instantiation
• If a class is the template of an object then an object is the realisation or

instance of a class. Multiple objects can be created from a class.
• Instantiation refers the creation of objects. Remember the class is just a

template, we can then create multiple objects from the template and this is
what we refer to as instantiation.

Object instantiation

Prototype
Object =

NameOfClass(object)

Example
fred = Employee(object):

Attributes
Attributes are characteristics of an object and can be defined and initialised in the
constructor method (more on this later)

class Employee():

 #constructor

 def __init__(self,name,dob,salary):

 self.name=name

 self.dob=dob

 self.salary=salary

Object Instantiation

Fred=Employee("Fred","26th April 2000","£40,000")

Lucy=Employee("Lucy","5th May 2003","£23,000")

Methods
• Classes define behaviours using methods. Methods are subroutines defined

inside a class. Classes can contain multiple methods.
• In Python, all methods need to have the object parameter (by convention

called self) and they can have additional parameters. A class method can be
called by:

Prototype
Object =

NameOfClass.nameOfMethod()

Example
Scooby =

Dog.name(“Scooby”)

class Greeting():

 # method

 # self: object parameter,

 # name: an additional parameter

 def salutation(self,name):

 print(“Hello”,name)

Object Instantiation

g=Greeting()

g.salutation(“Fred”)

Bounded verses unbounded methods calls
The need for an object parameter (self) becomes evident when we consider an
unbounded method call where the object itself is explicitly passed as a parameter
into the method call. By convention this object parameter is called self

class Greeting():

 def salutation(self,name):

 print(“Hello”,name)

g=Greeting()

g.salutation(“Fred”) # bounded

Greeting.salutation(g,”Fred”) # unbounded

Calling a method from a method
A method can call another method within the same class using:
self.methodName()

class Greeting:

 def salutation(self):

 self.formal()

 self.informal() # calling a method

 def formal(self):

 print (“Good afternoon sir“)

 def informal(self):

 print (“Wagwan“)

g = Greeting()

g.salutation()

Special methods: Constructor
The constructor is a special method that is called automatically whenever an
object is created. In Python, it is given as:

def __init__(self):

class Greeting():

 def __init__(self): # Constructor

 print(“Hello World”)

g=Greeting() # Object Instantiation

Constructor with parameter example

class Greeting():

 def __init__(self,name): # Constructor

 print(“Hello World”, name)

g=Greeting(“Fred”) # Object Instantiation

Inheritance

• Inheritance allows us to use methods and attributes in one class from another

class.
• The inherited class is called the parent or super class. At the top of the

inheritance chain is the base class, so parents and super classes are not always
a base class.

• The subclass will have the methods and attributes from the superclass in
addition to its own method and attributes

• Many programming languages only allow single inheritance. In Python
multiple inheritance is allowed, but we will consider only single inheritance
and it is generally deprecated.

• Inheritance defines an IS-A relation between classes. For instance:
• A house is a building
• A car is a vehicle
• A dog is an animal

Invoking Inheritance from a superclass class into a subclass

Prototype
class Subclass(Baseclass):

Example
class Mammal(Animal):

Animal is the super / base / parent class. The
mammal and bird classes are the derived /
child / sub classes

A chain or hierarchy of classes can be
established. At the top of the chain of
classes is the base class. In this example it is
Animal. As far as possible inheritance chains
should be avoided.

Example inheritance

superclass/parent/base

import math

class Calculator():

 def square(self, x):

 return x*x

 def square_root(self, x):

 return math.sqrt(x)

sub class/child

class Trigonometry(Calculator):

 def pythagerous(self, x, y):

 y2=self.square(y)

 x2=self.square(x)

 return self.square_root(x2+y2)

t=Trigonometry()

print(t.pythagerous(3,4))

print(t.square(3))

Composition and Aggregation Association

• A class is used by creating an instance of it with another class.
• Association links multiple objects and defines a HAS-A relation between

classes. There are two forms of association:
✓ Composition association: The child class cannot exist independently

of the parent class
✓ Aggregation association: The child class can exist independently of

the parent class.

Composition uses an instance of a class. One object is contained in another object.
A child object does not exist independently of its parent class. In other words, if a
parent object does not exist, then the child object cannot exist. Composition is said
to have a strong HAS-A relation.

For instance a building can have
rooms, but if the building does not
exist then the rooms cannot exist.

Composition uses an instance of a class. Subclass will not work without the
superclass.

Example composition

class ParentClass():

 def method(self):

 print(“Hello”)

class ChildClass():

 def method2(self):

 self.b=ParentClass() # instance of class

object=ChildClass()

object.b.method2() # invoke method from class

In aggregation one object is the owner of another object. The classes can exist
independently of one another. Aggregation is said to have a weak HAS-A relation.

For instance, a student can have a
teacher. But if teacher is removed, the
student object will still exist

The object of a class is passed as a parameter into a method Subclass.

Example aggregation

class ClassA():

 def salutation(self):

 print("Hello World")

class ClassB():

 def __init__(self,object):

 self.b=object

obj1=ClassA() # pass object as parameter

obj2=ClassB(obj1)

obj2.b.salutation()

Encapsulation, Overriding and Polymorphism

Encapsulation is used to hide data and methods, thereby preventing them from
being accessed and changed. Public, private and protected methods and attributes
have different accessibility.

Encapsulation allows us to restrict access to methods and attributes so we can
prevent the data from being inadvertently modified

In Python private methods and attributes start with two underscores

Public methods Accessible from outside the class

Private methods Accessible in their own class

Public attributes Accessible from anywhere

Private attributes Accessible in their own class or via a defined method

Protected
methods

Only current class can access methods (Accessibility
depends on language)

Protected
attributes

Only current class can access attributes (Accessibility
depends on language)

Private and public methods

class Square:

 def __init__(self):

 self.__defineSquare()

 def __defineSquare(self): # private method

 print("square has 4 equal sides")

 def defineSquare(self):

 print("square has 4 equal sides")

blueSquare=Square()

blueSquare.defineSquare()

not accessible, will not work

 blueSquare.__defineSquare()

Class attributes are defined at the top of a class and not in methods.
For each instance of an object the values of the class attributes is the same.

class Shape(object):

 # class attributes

 __colour = ""

 name = ""

 def __init__(self):

 self.__colour="blue"

 self.name="square"

 def getColour(self):

 print("Colour is: ", self.__colour)

 def getName(self):

 print("name is: ", self.name)

s=Shape()

print(s.getName())

s.name="triangle"

print(s.getName())

print(s.getColour())

This is protected so changing colour will not work

s.__colour="red"

print(s.getColour())

Getter and Setter methods
Private class attributes cannot be accessed directly. Instead getter and setter
methods are used to provide access to private class attributes. A get method
returns the value of an attribute. A set method allows the value of an attribute to
be changed.

class GetSet:

 __x=0

 def __init__(self,x):

 self.__x = x

 def get_x(self):

 return self.__x

 def set_x(self, x):

 self.__x = x

y=GetSet(12)

print(y.get_x())

Overriding
A method in child class will override a method and attributes in a parent class. This
is achieved by using the same name for a method in the child class as in the parent
class. In this situation the method in the child class will be used. What will the
following code output?

class Parent(object):

 def salutation(self):

 print ("Hello")

class Child(Parent):

 def salutation (self):

 print ("Goodbye")

p=Parent()

p.salutation()

c=Child()

c.salutation()

Polymorphism allows us to have a function that can take on many forms for its
parametersPolymorphism uses overriding. We can use a method of the same
name in each class but works differently.

Sometimes an object comes in many types or forms. We access them using the
same method. For instance if we take the len function it can take many types

such as strings and lists.

len(“Hello”)

len([1,2,3,4])

class English():

 def greeting(self):

 print("Hello")

class French():

 def greeting(self):

 print("Bonjour")

def greeting(language):

 language.greeting(language)

greeting(French)

greeting(English)

Polymorphism with abstract class and inheritance

Abstract class: The method is not supplied in the superclass. It must be
implemented in the subclass.

class Language():

 def greeting(self):

 raise NotImplementedError("Subclass must implement

abstract method")

class English(Language):

 def greeting(self):

 print("Hello")

class French(Language):

 def greeting(self):

 print("Bonjour")

e=English()

f=French()

e.greeting()

f.greeting()

Static, abstract and virtual methods

Static attributes are defined for the class. Notice that in Python they are not
defined within methods and we can access them without creating an object
instance.

class Greeting(object):

 salutation_english=“Hello”

 salutation_french=“Bonjour”

print(Greeting.salutation_english)

g=Greeting()

print(g.salutation_english)

print(g.salutation_french)

With static methods there is no need for object instantiation.

Using the @staticmethod decorator

class StaticClass(object)

 @staticmethod #decorator

 def static_method(x):

 print (x)

StaticClass.static_method(2)

Example

class Calclator(object):

 @staticmethod #decorator

 def add_nums(x,y):

 print (x+y)

Calculator.add_nums(2,3)

Without using the @staticmethod decorator

class Calclator(object):

 def add_nums(self,x,y):

 print (x*y)

Calculator.add_nums = staticmethod(Calculator.add_nums)

Calculator.add_nums(2,3)

Abstract method - The method is not supplied in the base class. It forces the
method to be implemented in the subclass.

class Superclass(object):

 def greeting(self):

 raise NotImplementedError("Please Implement this

method")

class Subclass(Superclass):

 def greeting(self):

 print ("Hello World")

s=Subclass()

s.greeting()

Virtual methods defined in a superclass can be overridden by methods in a
subclass. The difference between virtual and abstract methods is that virtual
methods have implementation whereas abstract methods do not. All methods in
Python are virtual.

class Parent:

 def greeting(self):

 print ("Hello from Parent")

 self.greeting_virtual()

 def greeting_virtual(self,name):

 print "Hello"

class Child(Parent):

 def greeting_virtual(self):

 print "Hello from virtual Child"

c = Child()

c.greeting()

An interface is a class containing abstract methods. An interface enforces classes
to have a fixed set of methods. The methods are run from the class and not the
interface.

class A():

 def abstractMethod1(self):

 pass

 def abstractMethod1(self):

 pass

Drawing and interpreting class diagrams

Inheritance (arrow)

Composition (black diamond)

aggregation (white diamond)

public

+

Private

-

Protected

Class diagrams in UML (Unified Modelling language)

OOP Design principles

Favour composition over inheritance
• Each class can be tested more easily using composition. It is not possible to

test a child class independently of a parent class using inheritance.
• There can be side-effects for child classes if a method in the parent class is

changed.
• Composition is more flexible. A new class can replace another class easily if

composition is used.
• Inheritance can rely too much on long inheritance chains.

Encapsulate what varies
Encapsulation allows us to make future changes to the code more easily.
By making attributes and methods private we are protecting other parts of the
code from change because they are not accessing the encapsulated elements.

Program to interfaces, not implementation
An interface is a set of abstract methods. The methods are given by the subclass
and not the superclass. This is a way of finding commonality between unrelated
classes that need to have common methods. This allows us to have a framework
for all our classes.

