
Abstract Data Types

Abstract data types allow us deal with the operations and behaviours of a data
type and not to be concerned with their operation which is abstracted away.

Data Structures

Static data structure
This is a fixed block of memory that is reserved at the start of the program. This is
a contiguous space on disk. The next memory location is the next address and its
position can be implied, so there is no need to explicitly point to it.

Suppose we want to remove the ‘u’. This is not easy for static memory location
because we must move all the succeeding elements up one place.

Dynamic data structure
Dynamic memory allocation is where memory is allocated and deallocated during
the running of the program. The memory is allocated on the heap. The heap
allows random allocation and access of memory. Dynamic memory allocation uses
linked lists where each element points to the address of the succeeding element.

To remove an element just requires pointing to a different address

Conversely to add an element just requires pointing to that address

 Advantages Disadvantages

Static data
structures

Memory locations are
fixed and can be accessed
easily and quickly and are
in a contiguous position in
memory

Memory is allocated even when
it is not being used.

Dynamic data
structures

More flexible and more
efficient than static data
structures because we
only use memory that is
needed.

Uses linked lists and
makes it much easier to
remove and add element.

Data structure may be
fragmented so can be slow to
access.

Stacks

Stacks are a last in first out file system just like a stack of plates. That is the last
item added to the stack is the first to be retrieved.

Stack operations
push – add element to the stack
pop – remove element from the stack
peek / top – view the top element on a stack without removing
isEmpty – test to see if stack is empty
isFull – test to see if stack is Full

Uses of stacks
• Can reverse a sequence of numbers by popping a value from one stack and

pushing to another
• Used in Reverse Polish Notation.
• Stack frames used in subroutine calls

Queues

A queue is a first in first out data structure. Typically queues are used in buffering
where a sequence of instructions are sent to a printer for instance, and the printer
prints of the documents in the order in which the instructions arrived. Lists can be
used to represent queues

Queue operations
• Add – add element to the end of a queues
• remove – remove element from front of queue
• isEmpty – test to see if queue is empty
• isFull – test to see if queue is Full

Linear queue
As an item is removed from the queue all the other items move up one space. For
a long queue this can take a lot of processing.

Linear queue using pointers
As an item is removed from the queue the pointer representing the start of the
queue also moves up one. We need to know the length of the queue and how
many elements have been removed. The problem with this method is that we end
up with a lot of empty cells in memory that are now unused at the front of the list.

Circular queue
In a linear array when item are removed from the memory location those memory
locations are allocated but are no longer used. Circular queues get around this
problem by “recycling” theses memory locations. So that the memory locations at
the front of the queue now become memory locations at the back of the queue

Priority Queue
Each element is assigned a priority. Highest priority items are removed first. If
elements have the same priority then the item nearest the front of the queue is
removed first. So in this case O would be the first item removed.

Alternatively, the queue could store items in priority order and the item removed
from the front of the queue as with a linear queue

Graphs

A graph is a way of representing the relation between data. A graph is made up of
vertices/nodes that are connected by edges or arcs. This could represent a rail or
road network.

Figure 1

Graphs do not need to be connected. This is a valid graph.

Weighted graph
Weighted graphs add a value to an arc. This might represent the distance
between places or the time taken between train stations

Figure 2

Adjacency Matrix With No Weighting
• Graphs can be represented as adjacency matrices.
• Graphs with no weights are given a value of 1 for connected nodes.

A B C D E F

A - 1 - 1 - -

B 1 - 1 - 1 1

C - 1 - - - 1

D 1 - - - 1 -

E - 1 - 1 - -

F - 1 1 - - -

Adjacency Matrix With Weighting

A B C D E F

A - 21 - 3 - -

B 21 - 9 - 5 12

C - 9 - - - 10

D 3 - - - 16 -

E - 5 - 16 - -

F - 12 10 - - -

Adjacency List With No Weighting
Graphs can also be represented as adjacency lists. Adjacency list for Figure 1.

A [D, B]

B [A, E, C,F]

C [B, F]

D [A, E]

E [D, B]

F [B, C]

Adjacency List With Weighting
Graphs can also be represented as adjacency lists. Adjacency list for Figure 2.

A {D:3, B:21}

B {A:21, E:5, C:9, F:12}

C {B:9, F:10}

D {A:3, E:16}

E {D:16, B:5}

F {B:12, C:10}

Directed Graphs
Undirected graphs have connections in both directions. Directed graphs only
apply in one direction and are represented with edges with arrow heads on one
end.

Directed graph as adjacency list

A

B [A, E, C, F]

C [F]

D [A, E]

E

F

Directed graph as adjacency matrix

 To

From

A B C D E F

A

B 1

1

1 1

C

1

D 1

1

E

F

Adjacency matrices versus Adjacency lists
• For sparse graphs where there are a few edges there will be a lot of empty

cells in the adjacency matrices thereby taking up more unused computer
memory

• Adjacency lists take longer to process so are slower
• Deciding whether to use adjacency matrices or lists depends on the

application
• For sparse graphs where memory is a limiting factor adjacency lists are

preferable
• For graphs with lots of edge adjacency matrix is preferable

Trees

• A tree is a connected, undirected graph with no cycles.
• Connected - Every node is connected either indirectly to directly to every

other node.
• No Cycles – There is only one path between nodes
• Undirected - can traverse in both directions along the edge
• A rooted tree has a root node that has no parent and all other nodes are

descended from the root. All other nodes can be a parent and/or a child node.
• A leaf node has no children

Binary Tree
• In a binary tree a node can only have a maximum of two child nodes
• A binary tree can be used for sorting a sequence of numbers
• The first number is the root node
• If the number is smaller than the node then we branch left if it is bigger we

branch right.

A binary tree for a sequence of numbers: 10,1,17,4,8,11,14,16,5,12

Tree data structure
• We can represent a tree data structure with three lists/arrays.
• An array contains the values at the nodes
• An array that points to the location of left child of the node in the values array
• An array that points to the location of right child of the node in the values

array
• If a node does not have child node then this is indicated with a -1 or null

Hash Table

• Hashing allows stored data to be accessed very quickly without the need to
search through every record. This is achieved by relating the data itself to its
index position using a key. There are several hashing algorithms that can
achieve this.

• If the calculated number is bigger than the length of the list then you will need
to apply the modulo.

• Collisions occur when a bin is already occupied. In such a situation the data
are placed in the next available bin.

• You can rehash with a higher modulus and number of elements when the
number of collisions becomes high.

• The load factor is the number of occupied bins divided by the number of total
bins.

• The hash table should contain more bins than there are elements that you
would like to store by a load factor of 0.75

• If the load factor is exceeded, we can rehash using a larger hash table with a
greater number of bins.

Worked example
Put the numbers 81, 93, 76,51,17, 61 into a hash table with 10 elements. Because
the values are bigger than the length of the list, we apply the modulo which is the
length of the table.

81 MOD 10 = 1 (81 goes into index position 1)
93 MOD 10 = 3
76 MOD 10 = 6
51 MOD 10 = 1 (a collision has occurred, place in next available position)
17 MOD 10 = 7
61 MOD 10 = 1

0 1 2 3 4 5 6 7 8 9
81 51 93 61

76 17

Other hashing algorthms
If the data you want to convert has letters and not numbers you can convert the
data to corresponding ASCII values.

Worked example
Let us consider the following names: Bart, Homer, Lisa, Milhouse, Ralf. We have a
hash table with 10 elements.

Homer 72 + 111 + 109 + 101 + 114 507 MOD 10 7

Bart 66 + 97 + 114 + 99 393 MOD 10 3

Lisa 76 + 105 + 115 + 97 393 MOD 10 3 (collision)

Milhouse 898 MOD 10 8

Ralf 389 MOD 10 9

0 1 2 3 4 5 6 7 8 9
Bart Lisa

Homer Milhouse Ralf

Dictionaries

A dictionary is a abstract data type. It contains a list of pairs of values with a key
that is associated with a value. We use key to access a value.

dict = {key1: value1, key2: value2, …, keyN: valueN}

Create empty
dictionary

id={}

Create a dictionary

id={23:”James”,25:

”Thomas”,18:”Gordon”,32:”Percy”}

Return a value
associated with a key

id[23] -> James

Add a value

id[33] = “Trevor”

List values

id

Remove a value

del id[32]

Using a dictionary to represent a graph

g = {“a”:{“b”:5}, “b”:{“a”:5,”c”:3,”d”:4}, “c”:{“b”:3}, “d”:{“b”:4}}

Vectors

Vector notation

Function Representation
A vector can be represented as a Function (f: S → R) where S is the set that maps
to R. For instance S=[0,1,2,3,4] and R=[4.0,5.5,6.7,9.1,-2.3]
0 → 4.0
1 → 5.5
2 → 6.7
3 → 9.1
4 → -2.3

List/1-D array representation
e.g. A 5 vector over R would be: [4.0,5.5,6.7,9.1,-2.3]

Dictionary representation
A 5 vector could be represented as a dictionary with both set and mapping
e.g. R={0: 4.0,1: 5.5,2: 6.7,3: 9.1,4: -2.3}

Visualisation of a vector
We can represent a vector as geometric point in space. A 2-vector e.g. [3,4] can be
represented by an arrow with its tail at [0,0] and its head at [3,4]. Vectors have
both magnitude and direction.

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √32 + 42

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = tan−1(4/3)

Vector addition
Each element in the vector is added to the corresponding value at that element in
the other vector.

Worked example
Find a+b where a=[2,3,6,8] and b=[3,1,4,5]

a = [2,3,6,8]

 + + + +

c = [3,1,4,5]

a+b = [2+3,3+1,6+4,8+5]

a+b = [5,4,10,13]

Scalar vector multiplication
Vectors can be multiplied by scalars (single numbers). Each element is multiplied
by the scalar

Worked Example
Find 2a where a= [2, 3, 6, 8]
2a = [(2x2), (3x2), (6x2), (8x2)]

2a = [4, 6, 12, 16]

Dot product
The dot product of two vectors is calculated by multiplying the corresponding
element in both vector and adding together all the elements. Given vector a and b
such that a = [a1, a2, …, an] and b = [b1, b2, …, an]

Then a.b = (a1 x b1) + (a2 x b2) + …. + (an x bn)

Worked example
Find a.b where a= [2, 3, 6, 8] and b= [3,1,4,5]
a =[2, 3, 6, 8]

 x x x x

b =[3, 1, 4, 5]

a.b =[6 + 3 + 24 + 40]

a.b = 73

Convex combination of 2 vectors
Every convex combination of 2 points lines on a line between the two points 2
points. This has the form 𝑎𝑢 + 𝑏𝑣 where 𝑎 + 𝑏 = 1 and 𝑎, 𝑏 >= 0

Worked Example
Find the convex combination 𝑎𝑢 + 𝑏𝑣 of vectors u=[1,2]and v=[4,3],

where a=0.4 and b=0.6

au = [1*0.4,2*0.4]

au = [0.4,0.8]

bv = [4*0.6,3*0.6]

bv = [2.4, 1.8]

au+bv = [2.4+0.4,0.8+1.8]

au+bv = [2.8, 2.6]

Angle between 2 vectors
The angle between 2 vectors is calculated as:

cos(α) = a. b / |a|. |b|

Worked example
Calculate the angle between two vectors a=[3,4], b=[4,3]

a.b = (3 x 4) + (4 x 3) = 24

|a|=√32 + 42 =5

|b|=√42 + 32=5

 24 / 5 . 5 = 24/25 = 0.96 = 16.3

