Abstract Data Types

Abstract data types allow us deal with the operations and behaviours of a data type and not to be concerned with their operation which is abstracted away.

Data Structures

Static data structure

This is a fixed block of memory that is reserved at the start of the program. This is a contiguous space on disk. The next memory location is the next address and its position can be implied, so there is no need to explicitly point to it.

Suppose we want to remove the 'u'. This is not easy for static memory location because we must move all the succeeding elements up one place.

Dynamic data structure

Dynamic memory allocation is where memory is allocated and deallocated during the running of the program. The memory is allocated on the heap. The heap allows random allocation and access of memory. Dynamic memory allocation uses linked lists where each element points to the address of the succeeding element.

To remove an element just requires pointing to a different address

Conversely to add an element just requires pointing to that address

A addr1 → B addr2 → C addr3 D addr 4

	Advantages	Disadvantages
Static data structures	Memory locations are fixed and can be accessed easily and quickly and are in a contiguous position in memory	Memory is allocated even when it is not being used.
Dynamic data structures	More flexible and more efficient than static data structures because we only use memory that is needed. Uses linked lists and makes it much easier to remove and add element.	Data structure may be fragmented so can be slow to access.

Stacks

Stacks are a last in first out file system just like a stack of plates. That is the last item added to the stack is the first to be retrieved.

peek / top - view the top element on a stack without removing

Circular queue

Priority Queue

A queue is a first in first out data structure. Typically queues are used in buffering where a sequence of instructions are sent to a printer for instance, and the printer prints of the documents in the order in which the instructions arrived. Lists can be used to represent queues

Queues

• Can reverse a sequence of numbers by popping a value from one stack and

Queue operations

Stack operations

Uses of stacks

push - add element to the stack

pushing to another

pop – remove element from the stack

isEmpty – test to see if stack is empty *isFull* – test to see if stack is Full

Used in Reverse Polish Notation.

Stack frames used in subroutine calls

• Add – add element to the end of a queues

- remove – remove element from front of queue
- *isEmpty* test to see if queue is empty
- *isFull* test to see if queue is Full

Linear queue

As an item is removed from the queue all the other items move up one space. For a long queue this can take a lot of processing.

> 0 1 2 3 4 5 o I o u r 1 2 3 4 5 o I o u r 0 1 2 3 4 5 o I o u r

Linear queue using pointers

As an item is removed from the queue the pointer representing the start of the queue also moves up one. We need to know the length of the queue and how many elements have been removed. The problem with this method is that we end up with a lot of empty cells in memory that are now unused at the front of the list.

In a linear array when item are removed from the memory location those memory locations are allocated but are no longer used. Circular queues get around this problem by "recycling" theses memory locations. So that the memory locations at the front of the queue now become memory locations at the back of the queue

Each element is assigned a priority. Highest priority items are removed first. If elements have the same priority then the item nearest the front of the queue is removed first. So in this case O would be the first item removed.

Alternatively, the queue could store items in priority order and the item removed from the front of the queue as with a linear queue

Graphs

A graph is a way of representing the relation between data. A graph is made up of vertices/nodes that are connected by edges or arcs. This could represent a rail or road network.

Graphs do not need to be connected. This is a valid graph.

Weighted graph

Weighted graphs add a value to an arc. This might represent the distance between places or the time taken between train stations

Adjacency Matrix With No Weighting

- Graphs can be represented as adjacency matrices.
- Graphs with no weights are given a value of 1 for connected nodes.

	Α	В	С	D	Е	F
Α	-	1	-	1	-	-
В	1	-	1	-	1	1
С	-	1	-	-	-	1
D	1	-	-	-	1	-
Е	-	1	-	1	-	-
F	-	1	1	-	-	-

Adjacency Matrix With Weighting

	Α	В	С	D	E	F
Α	-	21	-	3	-	-
В	21	-	9	-	5	12
С	-	9	-	-	-	10
D	3	-	-	-	16	-
Е	-	5	-	16	-	-
F	-	12	10	-	-	-

Adjacency List With No Weighting

Graphs can also be represented as adjacency lists. Adjacency list for Figure 1.

В	[A, E, C,F]
С	[B, F]
D	[A, E]
E	[D, B]
F	[B, C]

Adjacency List With Weighting

Graphs can also be represented as adjacency lists. Adjacency list for Figure 2.

Α	{D:3, B:21}
В	{A:21, E:5, C:9, F:12}
С	{B:9, F:10}
D	{A:3, E:16}
E	{D:16, B:5}
F	{B:12, C:10}

Directed Graphs

Undirected graphs have connections in both directions. Directed graphs only apply in one direction and are represented with edges with arrow heads on one end.

Directed graph as adjacency list А В [A, E, C, F] С [F] D [A, E] Е F

Directed araph as adjacency matrix

			Т	о			
		Α	В	С	D	Ε	F
	Α						
From	В	1		1		1	1
	С						1
	D	1				1	
	Е						
	E						

Adjacency matrices versus Adjacency lists

- For sparse graphs where there are a few edges there will be a lot of empty cells in the adjacency matrices thereby taking up more unused computer memory
- Adjacency lists take longer to process so are slower
- Deciding whether to use adjacency matrices or lists depends on the application
- For sparse graphs where memory is a limiting factor adjacency lists are preferable
- For graphs with lots of edge adjacency matrix is preferable

Trees

- A tree is a connected, undirected graph with no cycles.
- Connected Every node is connected either indirectly to directly to every other node.
- No Cycles There is only one path between nodes
- Undirected can traverse in both directions along the edge
- A rooted tree has a root node that has no parent and all other nodes are
- descended from the root. All other nodes can be a parent and/or a child node. A leaf node has no children

Child node

Leaf node

Binary Tree

- •
- •
- branch right.

Tree data structure

- •

- array

Node index	Left Tree	Right Tree
1	2	3
2	4	5
3	6	7
4	-1	-1
5	-1	-1
6	-1	-1
7	-1	-1

Null pointers

A [D, B]

- In a binary tree a node can only have a maximum of two child nodes A binary tree can be used for sorting a sequence of numbers The first number is the root node
- If the number is smaller than the node then we branch left if it is bigger we

A binary tree for a sequence of numbers: 10,1,17,4,8,11,14,16,5,12

- We can represent a tree data structure with three lists/arrays.
- An array contains the values at the nodes
- An array that points to the location of left child of the node in the values array An array that points to the location of right child of the node in the values

If a node does not have child node then this is indicated with a -1 or null

Hash Table

- Hashing allows stored data to be accessed very quickly without the need to search through every record. This is achieved by relating the data itself to its index position using a key. There are several hashing algorithms that can achieve this.
- If the calculated number is bigger than the length of the list then you will need to apply the modulo.
- Collisions occur when a bin is already occupied. In such a situation the data are placed in the next available bin.
- You can rehash with a higher modulus and number of elements when the number of collisions becomes high.
- The load factor is the number of occupied bins divided by the number of total bins.
- The hash table should contain more bins than there are elements that you would like to store by a load factor of 0.75
- If the load factor is exceeded, we can rehash using a larger hash table with a greater number of bins.

Worked example

Put the numbers 81, 93, 76, 51, 17, 61 into a hash table with 10 elements. Because the values are bigger than the length of the list, we apply the modulo which is the length of the table.

81 MOD 10 = 1 (81 goes into index position 1)
93 MOD 10 = 3
76 MOD 10 = 6
51 MOD 10 = 1 (a collision has occurred, place in next available position)
17 MOD 10 = 7
61 MOD 10 = 1

0	1	2	3	4	5	6	7	8	9
	81	51	93	61		76	17		

Other hashing algorithms

If the data you want to convert has letters and not numbers you can convert the data to corresponding ASCII values.

Worked example

Let us consider the following names: Bart, Homer, Lisa, Milhouse, Ralf. We have a hash table with 10 elements.

•	-	-	Dort	Lico		Ŭ	llomor	Milhouso	Dalf		
0	1	2	3	4	5	6	7	8	9		
Ralf						389	MOD 10	9			
Milh	ouse					898	MOD 10	8			
Lisa	Lisa		76 + 105 + 115 + 97			+ 105 + 115 + 97		393	MOD 10	3 (collision))
Bart	Bart 6		66 + 97 + 114 + 99			393	MOD 10	3			
Hom	Homer		72 + 111 + 109 + 101 + 114				MOD 10	7			

Dictionaries

A dictionary is a abstract data type. It contains a list of pairs of values with a key that is associated with a value. We use key to access a value.

```
dict = {key1: value1, key2: value2, ..., keyN: valueN}
```

Create empty	id={}	
dictionary		
,		

	Create a dictionary	<pre>id={23:"James",25: "Thomas",18:"Gordon",32:"Percy"}</pre>
	Return a value associated with a key	id[23] -> James
	Add a value	id[33] = "Trevor"
	List values	id
	Remove a value	del id[32]

Using a dictionary to represent a graph

g = {"a":{"b":5}, "b":{"a":5,"c":3,"d":4}, "c":{"b":3}, "d":{"b":4}}

Vectors

Vector notation

Function Representation

A vector can be represented as a Function (f: $S \rightarrow R$) where S is the set that maps to R. For instance S=[0,1,2,3,4] and R=[4.0,5.5,6.7,9.1,-2.3]

 $0 \rightarrow 4.0$

 $1 \rightarrow 5.5$

 $2 \rightarrow 6.7$

 $3 \rightarrow 9.1$ $4 \rightarrow -2.3$

List/1-D array representation

e.g. A 5 vector over R would be: [4.0,5.5,6.7,9.1,-2.3]

Dictionary representation

A 5 vector could be represented as a dictionary with both set and mapping e.g. R={0: 4.0,1: 5.5,2: 6.7,3: 9.1,4: -2.3}

Visualisation of a vector

Vector addition

the other vector.

We can represent a vector as geometric point in space. A 2-vector e.g. [3,4] can be represented by an arrow with its tail at [0,0] and its head at [3,4]. Vectors have both magnitude and direction.

Each element in the vector is added to the corresponding value at that element in

magnitude = $\sqrt{3^2 + 4^2}$

direction = $\tan^{-1}(4/3)$

Worked example

```
a = [2, 3, 6, 8]
     + + + +
c = [3, 1, 4, 5]
a+b = [2+3, 3+1, 6+4, 8+5]
a+b = [5, 4, 10, 13]
```

Scalar vector multiplication

by the scalar

Worked Example

Find 2a where a= [2, 3, 6, 8] 2a = [4, 6, 12, 16]

Dot product

such that $a = [a_1, a_2, ..., a_n]$ and $b = [b_1, b_2, ..., a_n]$

Worked example

Find a.	b where	a= [2,	3, 6,	8] and	b=	[3,1,4,5]
а	= [2,	З,	6,	8]	
		Х	Х	Х	Х	
b	= [З,	1,	4,	5]	
a.b	= [6 +	3 +	24 +	40]	
a.b	= 73					

Convex combination of 2 vectors

Worked Example

where a=0.4 and b=0.6

```
au = [1*0.4, 2*0.4]
au = [0.4, 0.8]
bv = [4*0.6, 3*0.6]
bv = [2.4, 1.8]
au+bv = [2.4+0.4, 0.8+1.8]
au+bv = [2.8, 2.6]
```

Angle between 2 vectors

```
Worked example
```

```
a.b = (3 \times 4) + (4 \times 3) = 24
|a|=\sqrt{3^2+4^2}=5
|b| = \sqrt{4^2 + 3^2} = 5
24 / 5 . 5 = 24/25 = 0.96 = 16.3°
```

Find a+b where a=[2, 3, 6, 8] and b=[3, 1, 4, 5]

Vectors can be multiplied by scalars (single numbers). Each element is multiplied

```
2a = [(2x2), (3x2), (6x2), (8x2)]
```

The dot product of two vectors is calculated by multiplying the corresponding element in both vector and adding together all the elements. Given vector a and b

Then $a.b = (a_1 \times b_1) + (a_2 \times b_2) + \dots + (a_n \times b_n)$

Every convex combination of 2 points lines on a line between the two points 2 points. This has the form au + bv where a + b = 1 and $a, b \ge 0$

Find the convex combination au + bv of vectors u = [1, 2] and v = [4, 3],

(4,3) (2.8,2.6) (1.2)

The angle between 2 vectors is calculated as: $\cos(\alpha) = a.b/|a|.|b|$

Calculate the angle between two vectors a = [3, 4], b = [4, 3]

