
Abstract Data Types 
 
Abstract data types allow us deal with the operations and behaviours of a data 
type and not to be concerned with their operation which is abstracted away. 
 

Data Structures 
 
Static data structure  
This is a fixed block of memory that is reserved at the start of the program. This is 
a contiguous space on disk.  The next memory location is the next address and its 
position can be implied, so there is no need to explicitly point to it. 
 

 
 
Suppose we want to remove the ‘u’.  This is not easy for static memory location 
because we must move all the succeeding elements up one place. 
 

             
 
Dynamic data structure  
Dynamic memory allocation is where memory is allocated and deallocated during 
the running of the program.  The memory is allocated on the heap. The heap 
allows random allocation and access of memory. Dynamic memory allocation uses 
linked lists where each element points to the address of the succeeding element. 
 

 
 
To remove an element just requires pointing to a different address 
 

 
 
Conversely to add an element just requires pointing to that address 
 

 
 

 Advantages Disadvantages 

Static data 
structures 

Memory locations are 
fixed and can be accessed 
easily and quickly and are 
in a contiguous position in 
memory 
 

Memory is allocated even when 
it is not being used. 
 

Dynamic data 
structures 

More flexible and more 
efficient than static data 
structures because we 
only use memory that is 
needed. 
 
Uses linked lists and 
makes it much easier to 
remove and add element. 
 

Data structure may be 
fragmented so can be slow to 
access. 
 

  
 
 

Stacks 
 
Stacks are a last in first out file system just like a stack of plates.  That is the last 
item added to the stack is the first to be retrieved.  
 

 
 
Stack operations 
push – add element to the stack 
pop – remove element from the stack 
peek / top – view the top element on a stack without removing 
isEmpty – test to see if stack is empty 
isFull – test to see if stack is Full 
 
Uses of stacks 
• Can reverse a sequence of numbers by popping a value from one stack and 

pushing to another  
• Used in Reverse Polish Notation. 
• Stack frames used in subroutine calls 
 
 
 

Queues 
 
A queue is a first in first out data structure.  Typically queues are used in buffering 
where a sequence of instructions are sent to a printer for instance, and the printer 
prints of the documents in the order in which the instructions arrived. Lists can be 
used to represent queues   
 
Queue operations 
• Add – add element to the end of a queues 
• remove – remove element from front of queue 
• isEmpty – test to see if queue is empty 
• isFull – test to see if queue is Full 
 
Linear queue 
As an item is removed from the queue all the other items move up one space. For 
a long queue this can take a lot of processing. 
 

 
 
Linear queue using pointers 
As an item is removed from the queue the pointer representing the start of the 
queue also moves up one. We need to know the length of the queue and how 
many elements have been removed.  The problem with this method is that we end 
up with a lot of empty cells in memory that are now unused at the front of the list.  
 

 
 
Circular queue 
In a linear array when item are removed from the memory location those memory 
locations are allocated but are no longer used.  Circular queues get around this 
problem by “recycling” theses memory locations. So that the memory locations at 
the front of the queue now become memory locations at the back of the queue  
 

 
 
Priority Queue 
Each element is assigned a priority.  Highest priority items are removed first.  If 
elements have the same priority then the item nearest the front of the queue is 
removed first. So in this case O would be the first item removed. 
 

 
 
Alternatively, the queue could store items in priority order and the item removed 
from the front of the queue as with a linear queue 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Graphs 
 
A graph is a way of representing the relation between data. A graph is made up of 
vertices/nodes that are connected by edges or arcs.  This could represent a rail or 
road network. 
 

 
Figure 1 

 
Graphs do not need to be connected. This is a valid graph. 
 

 
 
Weighted graph 
Weighted graphs add a value to an arc.  This might represent the distance 
between places or the time taken between train stations 
 

 
Figure 2 

 
Adjacency Matrix With No Weighting 
• Graphs can be represented as adjacency matrices.  
• Graphs with no weights are given a value of 1 for connected nodes. 

  
A B C D E F 

A - 1 - 1 - - 

B 1 - 1 - 1 1 

C - 1 - - - 1 

D 1 - - - 1 - 

E - 1 - 1 - - 

F - 1 1 - - - 

 
Adjacency Matrix With Weighting  

A B C D E F 

A - 21 - 3 - - 

B 21 - 9 - 5 12 

C - 9 - - - 10 

D 3 - - - 16 - 

E - 5 - 16 - - 

F - 12 10 - - - 

 
Adjacency List With No Weighting 
Graphs can also be represented as adjacency lists. Adjacency list for Figure 1. 
 

A [D, B] 

B [A, E, C,F] 

C [B, F] 

D [A, E] 

E [D, B] 

F [B, C] 

 
Adjacency List With Weighting 
Graphs can also be represented as adjacency lists. Adjacency list for Figure 2. 
 

A {D:3, B:21} 

B {A:21, E:5, C:9, F:12} 

C {B:9, F:10} 

D {A:3, E:16} 

E {D:16, B:5} 

F {B:12, C:10} 

 
Directed Graphs 
Undirected graphs have connections in both directions.  Directed graphs only 
apply in one direction and are represented with edges with arrow heads on one 
end. 

 
 

Directed graph as adjacency list 

A 
 

B [A, E, C, F] 

C [F] 

D [A, E] 

E 
 

F 
 

 

Directed graph as adjacency matrix 

                                     To 

 
 
 
From 

 
A B C D E F 

A 
      

B 1 
 

1 
 

1 1 

C 
     

1 

D 1 
   

1 
 

E 
      

F 
      

 

 
Adjacency matrices versus Adjacency lists 
• For sparse graphs where there are a few edges there will be a lot of empty 

cells in the adjacency matrices thereby taking up more unused computer 
memory 

• Adjacency lists take longer to process so are slower 
• Deciding whether to use adjacency matrices or lists depends on the 

application 
• For sparse graphs where memory is a limiting factor adjacency lists are 

preferable 
• For graphs with lots of edge adjacency matrix is preferable 

Trees 
 
• A tree is a connected, undirected graph with no cycles. 
• Connected - Every node is connected either indirectly to directly to every 

other node. 
• No Cycles – There is only one path between nodes 
• Undirected - can traverse in both directions along the edge 
• A rooted tree has a root node that has no parent and all other nodes are 

descended from the root. All other nodes can be a parent and/or a child node. 
• A leaf node has no children 
 

 
 
Binary Tree 
• In a binary tree a node can only have a maximum of two child nodes  
• A binary tree can be used for sorting a sequence of numbers 
• The first number is the root node 
• If the number is smaller than the node then we branch left if it is bigger we 

branch right. 
 
A binary tree for a sequence of numbers: 10,1,17,4,8,11,14,16,5,12 

 
 
Tree data structure 
• We can represent a tree data structure with three lists/arrays.   
• An array contains the values at the nodes 
• An array that points to the location of left child of the node in the values array 
• An array that points to the location of right child of the node in the values 

array 
• If a node does not have child node then this is indicated with a  -1 or null 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hash Table 
 

• Hashing allows stored data to be accessed very quickly without the need to 
search through every record.  This is achieved by relating the data itself to its 
index position using a key.  There are several hashing algorithms that can 
achieve this. 

• If the calculated number is bigger than the length of the list then you will need 
to apply the modulo. 

• Collisions occur when a bin is already occupied.  In such a situation the data 
are placed in the next available bin. 

• You can rehash with a higher modulus and number of elements when the 
number of collisions becomes high. 

• The load factor is the number of occupied bins divided by the number of total 
bins.   

• The hash table should contain more bins than there are elements that you 
would like to store by a load factor of 0.75 

• If the load factor is exceeded, we can rehash using a larger hash table with a 
greater number of bins. 
 

Worked example 
Put the numbers 81, 93, 76,51,17, 61 into a hash table with 10 elements. Because 
the values are bigger than the length of the list, we apply the modulo which is the 
length of the table. 
 

81 MOD 10 = 1  (81 goes into index position 1) 
93 MOD 10 = 3 
76 MOD 10 = 6 
51 MOD 10 = 1 (a collision has occurred, place in next available position) 
17 MOD 10 = 7 
61 MOD 10 = 1 

 

0 1 2 3 4 5 6 7 8 9  
81 51 93 61 

 
76 17 

  

 
Other hashing algorthms 
If the data you want to convert has letters and not numbers you can convert the 
data to corresponding ASCII values.  
 
Worked example 
Let us consider the following names: Bart, Homer, Lisa, Milhouse, Ralf.  We have a 
hash table with 10 elements. 
 

Homer 72 + 111 + 109 + 101 + 114 507 MOD 10 7 

Bart 66 + 97 + 114 + 99 393 MOD 10 3 

Lisa 76 + 105 + 115 + 97 393 MOD 10 3 (collision) 

Milhouse  898 MOD 10 8 

Ralf  389 MOD 10 9 

 

0 1 2 3 4 5 6 7 8 9    
Bart Lisa 

  
Homer Milhouse Ralf 

 
 

Dictionaries 
 
A dictionary is a abstract data type. It contains a list of pairs of values with a key 
that is associated with a value. We use key to access a value. 
 
dict = {key1: value1, key2: value2, …, keyN: valueN} 

 
 

Create empty 
dictionary 
 

id={} 

 

Create a dictionary 
 

id={23:”James”,25: 

”Thomas”,18:”Gordon”,32:”Percy”} 

 

Return a value 
associated with a key 
 

id[23] -> James 
 

Add a value 
 

id[33] = “Trevor” 
 

List values 
 

id 
 

Remove a value 
 

del id[32]  
 

 
Using a dictionary to represent a graph 
 
g = {“a”:{“b”:5}, “b”:{“a”:5,”c”:3,”d”:4}, “c”:{“b”:3}, “d”:{“b”:4}}  
 

 
 

Vectors 
 
Vector notation 
 
Function Representation 
A vector can be represented as a Function (f: S → R) where S is the set that maps 
to R.  For instance S=[0,1,2,3,4] and R=[4.0,5.5,6.7,9.1,-2.3] 
0 → 4.0 
1 → 5.5 
2 → 6.7 
3 → 9.1 
4 → -2.3 
 
List/1-D array representation 
e.g. A 5 vector over R would be: [4.0,5.5,6.7,9.1,-2.3] 
 
Dictionary representation 
A 5 vector could be represented as a dictionary with both set and mapping 
e.g. R={0: 4.0,1: 5.5,2: 6.7,3: 9.1,4: -2.3} 
 
Visualisation of a vector 
We can represent a vector as geometric point in space. A 2-vector e.g. [3,4] can be 
represented by an arrow with its tail at [0,0] and its head at [3,4]. Vectors have 
both magnitude and direction. 
 

 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √32 + 42 
 

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = tan−1(4/3) 
 

 
Vector addition 
Each element in the vector is added to the corresponding value at that element in 
the other vector. 
 

Worked example 
Find a+b where a=[2,3,6,8] and b=[3,1,4,5] 

 
a = [2,3,6,8] 

     + + + + 

c = [3,1,4,5] 

a+b = [2+3,3+1,6+4,8+5] 

a+b = [5,4,10,13] 

 
Scalar vector multiplication 
Vectors can be multiplied by scalars (single numbers).  Each element is multiplied 
by the scalar 
 
Worked Example  
Find 2a where a= [2, 3, 6, 8]  
2a = [(2x2), (3x2), (6x2), (8x2)] 

2a = [4, 6, 12, 16] 

 
Dot product 
The dot product of two vectors is calculated by multiplying the corresponding 
element in both vector and adding together all the elements. Given vector a and b 
such that a = [a1, a2, …, an] and b = [b1, b2, …, an]  

Then a.b = (a1 x b1) + (a2 x b2) + …. + (an x bn) 

 
Worked example 
Find a.b where a= [2, 3, 6, 8] and  b=  [3,1,4,5] 
a =[ 2,  3,  6,  8] 

  x x x x 

b =[ 3, 1, 4, 5 ] 

a.b =[ 6 + 3 + 24 + 40] 

a.b = 73 

 
Convex combination of 2 vectors 
Every convex combination of 2 points lines on a line between the two points 2 
points. This has the form 𝑎𝑢 + 𝑏𝑣 where 𝑎 +  𝑏 =  1 and 𝑎, 𝑏 >= 0 
 
Worked Example 
Find the convex combination 𝑎𝑢 + 𝑏𝑣 of vectors u=[1,2]and v=[4,3], 

where a=0.4 and b=0.6 

 
au = [1*0.4,2*0.4]  

au = [0.4,0.8] 

bv = [4*0.6,3*0.6] 

bv = [2.4, 1.8] 

au+bv = [2.4+0.4,0.8+1.8]           

au+bv = [2.8, 2.6] 

  
 
Angle between 2 vectors 
The angle between 2 vectors is calculated as:  

cos(α)  =  a. b / |a|. |b| 
 
Worked example 
Calculate the angle between two vectors a=[3,4], b=[4,3]  

 
a.b = (3 x 4) + (4 x 3) = 24 

|a|=√32 + 42 =5 

|b|=√42 + 32=5 

 24 / 5 . 5 = 24/25 = 0.96 = 16.3  

 
 
 

 


