
Abstraction
Representational abstraction
Abstraction allows us to remove unnecessary detail from a problem leaving only
the essential features thereby making it easier to solve. Maps are examples of
representational abstraction.

Abstract generalisation
With abstract generalisation we identify common (general) characteristics thereby
enabling us to group similar constructs together into a hierarchy

Abstract generalisation is also the ability to see patterns so that we can recognise
problems or parts of problems that we may have solved before. Lots of
programming is concerned with reusing pieces of code that were originally
developed for other solutions. Even within a piece of code we are writing we may
notice that quite a lot of our code is repeated. It is our ability to notice those
repetitions that help us write more succinct and generalisable code using
functions perhaps.

Procedural abstraction
Abstract away the actual values used in a computational method. In that sense
algebra and formulas are abstractions. The following expressions have the same
form:

(1+2) x 3

(7+9) x 2

(5.5 + 12.3) x 18.1

We can abstract them away algebraically as:

(a+b) x c

Functional abstraction
• A functional abstraction maps an input to an output. The function returns a

value given a certain input.
• Functional abstraction is an extension of procedural abstraction. A procedural

abstraction might form part of a functional abstraction.

def calc(a,b,c):

 return (a+b)*c

print(calc(1,2,3))

• In programming we abstract details using functions. We do not need to know

how functions work to use them. The functions themselves can be a black box
to us. The details of how the function works have been abstracted away.

Data abstraction
The details of how the data are represented are hidden. We do not need to worry
how ASCII characters, real numbers and integers are represented. Real numbers
can be represented using exponent and mantissa in binary, but we do not need to
concern ourselves about this when we a writing programs. We can have more
complex abstract data types. These include queues, stacks graphs, trees, hash
tables, dictionaries and vectors.

Problem abstraction
Remove details of a problem until you are left with a problem that you already
know how to solve. This allows us to use solutions that have been applied to
analogous problems. For instance Euler solved the Konigsberg bridge problem (is
it possible to cross all bridges only once) by reducing it down to a graph problem,
that he already knew how to solve.

Information hiding
In OOP, this is where data that do not contribute to the essential characteristics of
an object are hidden. These attributes and methods are private and not accessible
from outside an object. Essential characteristics of the object can be accessed via

an interface. Also we do not need to concern ourselves with local variables in
functions.

Decomposition
Decomposition is the breaking down of a complex problem into smaller more
manageable problems that are easier to solve. Each component of the program
completes a specific task. This allows algorithms to be more modular and
therefore more intuitive.

Composition
Composition is combining the procedures together to form compound procedures
in order to solve a greater part of the problem that each of the procedures can
solve separately. Specifying the interface between the components is important
otherwise they would not fit together.

Automation
• Putting models into action using algorithms
• Putting the abstractions into algorithms and putting the algorithms into code.
• Developing computer models that concentrate on the essence of a problem.

The models are a simplified representation of reality where assumptions are
made.

• For instance, weather forecast models use mathematical models and physics
to model the atmosphere as a fluid, which is a good way to run simulations
and predict the weather up to a few days ahead.

• It is not possible to model the billions of variables, so simplifications are made
to help solve the problem. As computers get more powerful and algorithms
improve and we have more data we get better at predicting the weather.

Finite State Machines (FSMs)

FSMs are a model of computation that allow us to understand how computers
work. FSMs consist of a set number of states that allows the transition between
states and are determined by a fixed set of inputs and have a set of outputs.

Notation for FSM

State End State

Start State Transition

Finite state diagrams are a graphical way of presenting finite state machines.

• S1, S2 and S3 are the states

• Each transition edge has an input value

• S1 is the Start State

• S2 is the Accept State)

• For the input sequence to be valid the sequence must end on the accept state
(S2)

Example sequences
• 0 0 0 1 1 - Valid
• 1 0 0 1 - Valid
• 1 0 1 0 - Invalid
• 1 0 1 - Valid

State transition tables are another way of representing FSM.

Start state Input New State

S1 0 S2

S1 1 S3

S2 0 S1

S2 1 S2

S3 0 S3

S3 1 S2

Trapping invalid input – In the following example S3 captures invalid input there is
no what to transition to another state once S3 has been achieved.

Mealy Machines
• The FSM we have looked at so far have a valid and invalid state. The valid

state is the accept state
• Mealy machines are a type of FSM that have outputs on each transition and

have no end state

Example Mealy Machine

The red number is the input and the blue number is the output.

Input Output

0 1 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1

1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1

1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1

Corresponding state transition diagram

Start state Input New State Output

S0 0 S1 1

S0 1 S2 1

S1 0 S0 1

S1 1 S1 0

S2 1 S1 0

S2 0 S0 0

