
Abstraction 
Representational abstraction 
Abstraction allows us to remove unnecessary detail from a problem leaving only 
the essential features thereby making it easier to solve. Maps are examples of 
representational abstraction. 
 
Abstract generalisation 
With abstract generalisation we identify common (general) characteristics thereby 
enabling us to group similar constructs together into a hierarchy 
 
Abstract generalisation is also the ability to see patterns so that we can recognise 
problems or parts of problems that we may have solved before. Lots of 
programming is concerned with reusing pieces of code that were originally 
developed for other solutions.  Even within a piece of code we are writing we may 
notice that quite a lot of our code is repeated.  It is our ability to notice those 
repetitions that help us write more succinct and generalisable code using 
functions perhaps.  
 
Procedural abstraction 
Abstract away the actual values used in a computational method.  In that sense 
algebra and formulas are abstractions. The following expressions have the same 
form: 
 
(1+2) x 3 

(7+9) x 2 

(5.5 + 12.3) x 18.1 

 
We can abstract them away algebraically as: 
 
(a+b) x c 

 
Functional abstraction 
• A functional abstraction maps an input to an output. The function returns a 

value given a certain input.  
• Functional abstraction is an extension of procedural abstraction.  A procedural 

abstraction might form part of a functional abstraction. 
 

def calc(a,b,c): 

    return (a+b)*c  

print(calc(1,2,3)) 

 
• In programming we abstract details using functions. We do not need to know 

how functions work to use them. The functions themselves can be a black box 
to us. The details of how the function works have been abstracted away. 

 
Data abstraction 
The details of how the data are represented are hidden. We do not need to worry 
how ASCII characters, real numbers and integers are represented. Real numbers 
can be represented using exponent and mantissa in binary, but we do not need to 
concern ourselves about this when we a writing programs. We can have more 
complex abstract data types. These include queues, stacks graphs, trees, hash 
tables, dictionaries and vectors. 

 
Problem abstraction 
Remove details of a problem until you are left with a problem that you already 
know how to solve.  This allows us to use solutions that have been applied to 
analogous problems.  For instance Euler solved the Konigsberg bridge problem (is 
it possible to cross all bridges only once) by reducing it down to a graph problem, 
that he already knew how to solve.  
 
Information hiding 
In OOP, this is where data that do not contribute to the essential characteristics of 
an object are hidden. These attributes and methods are private and not accessible 
from outside an object. Essential characteristics of the object can be accessed via 

an interface. Also we do not need to concern ourselves with local variables in 
functions.   

 
Decomposition 
Decomposition is the breaking down of a complex problem into smaller more 
manageable problems that are easier to solve.  Each component of the program 
completes a specific task. This allows algorithms to be more modular and 
therefore more intuitive.   
 
Composition 
Composition is combining the procedures together to form compound procedures 
in order to solve a greater part of the problem that each of the procedures can 
solve separately. Specifying the interface between the components is important 
otherwise they would not fit together. 
 
Automation 
• Putting models into action using algorithms 
• Putting the abstractions into algorithms and putting the algorithms into code. 
• Developing computer models that concentrate on the essence of a problem.  

The models are a simplified representation of reality where assumptions are 
made.   

• For instance, weather forecast models use mathematical models and physics 
to model the atmosphere as a fluid, which is a good way to run simulations 
and predict the weather up to a few days ahead.  

• It is not possible to model the billions of variables, so simplifications are made 
to help solve the problem. As computers get more powerful and algorithms 
improve and we have more data we get better at predicting the weather. 

 

Finite State Machines (FSMs)  
 
FSMs are a model of computation that allow us to understand how computers 
work. FSMs consist of a set number of states that allows the transition between 
states and are determined by a fixed set of inputs and have a set of outputs. 
 
Notation for FSM 
 

     
 

State  End State 

 
 
 
 

Start State  Transition 

 
Finite state diagrams are a graphical way of presenting finite state machines.  

 
 

• S1, S2 and S3 are the states 

• Each transition edge has an input value 

• S1 is the Start State 

• S2 is the Accept State) 

• For the input sequence to be valid the sequence must end on the accept state 
(S2) 

 

Example sequences 
• 0 0 0 1 1 - Valid 
• 1 0 0 1 - Valid  
• 1 0 1 0 - Invalid 
• 1 0 1 - Valid 
 
State transition tables are another way of representing FSM. 
 

Start state Input New State 

S1 0 S2 

S1 1 S3 

S2 0 S1 

S2 1 S2 

S3 0 S3 

S3 1 S2 

 
Trapping invalid input – In the following example S3 captures invalid input there is 
no what to transition to another state once S3 has been achieved. 
 

 
 
Mealy Machines 
• The FSM we have looked at so far have a valid and invalid state.  The valid 

state is the accept state 
• Mealy machines are a type of FSM that have outputs on each transition and 

have no end state 
 
Example Mealy Machine 
 

 
 
The red number is the input and the blue number is the output. 
 

Input Output 

0 1 1 1 0 1 1 0 1    1 0 0 0 1 1 0 1 1    

1 1 1 0 0 1 0 0 0    1 0 0 1 1 1 1 1 1 

1 0 1 0 0 1 1 1 0    1 0 0 1 1 0 0 0 1 

 
Corresponding state transition diagram 

Start state Input New State Output 

S0 0 S1 1 

S0 1 S2 1 

S1 0 S0 1 

S1 1 S1 0 

S2 1 S1 0 

S2 0 S0 0 
 


