
Algorithms
Traversing Graphs

We can use depth first traversal or breadth first traversal to traverse a graph.

Graph used in examples to follow

A [D, B]

B [A, E, C,F]

C [B, F]

D [A, E]

E [D, B]

F [B, C]

Breadth First Traversal
Breadth first traversal starts at a node and explores all the neighbour nodes before
moving onto the next level of nodes. A breadth first traversal uses an iterative
approach. A typical application of a breadth first traversal is for determining the
shortest path of an unweighted graph

breadth_first_traversal(node)

 queue = []

 visited = []

 queue.append(node)

 visited.append(node)

 while queue is not empty

 node = queue.pop(0)

 print (node, end = " ")

 for i in graph[node]:

 if i not in visited

 queue.append(i)

 visited.append(i)

graph={'A':['D','B'],\

'B':['A','E','C','F'], 'C': ['B','F’],\

'D': ['A','E'], 'E':['D','B'],'F':['B','C']}

breadth_first_traversal("A")

Trace Table

Node i Output Visited Queue

A

[A] [A]
A

[]

D

[A,D] [D]
B

[A,D,B] [D,B]

D

D

[B]
A

E

[A,D,B,E] [B,E]

B

B

[E]
A

E

C

[A,D,B,E] [E,C]

F

[A,D,B,E,C,F] [E,C,F]
E

[C,F]

C

[F]
F

[]

Depth First Traversal

Depth first traversal starts at a node and traverses along each path as far as it goes
before backtracking to the next branch. Depth first traversal uses recursion An
application of a depth first traversal is for navigating a maze.

Uses recursive calls

depth_first_traversal(node)

 visited.append(node)

 for i in graph[node]:

 if i not in visited

 depth_first_traversal(i)

Graph represented as an adjacency list

graph={“A”:[“D”,“B”], “B”:[“A”,”E”,”C”,”F”],\

“C”: [“B”,“F”], “D”: [“A”,”E”],\

”E”:[“D”,”B”],”F”:[“B”,”C”]}

Create a list of visited nodes,

set to false to begin with

visited = []

depth_first_traversal(“A”)

Trace Table

Call Node i Visited
[]

1 A

[A]

2 D D [A,D]
A

3 E E [A,D,E]
D

4 B B [A,D,E,B]
A

E

5 C C [A,D,E,B,C]
B

6 F F [A,D,E,B,C,F]

Navigating a maze with depth first traversal
Nodes are placed at the start and end points as well as at locations
where there are alternative paths

Graph representation of maze with
dead ends

Graph representation of maze without
dead ends

Tree-traversal

There are three ways of traversing a binary tree:

• Pre-order tree traversal
• Post-order tree traversal
• In-order tree traversal

When traversing a tree we start at the root node. We can then visit the node (that
is obtain the value of the node), traverse left or traverse right. The order in which
we visit, traverse left or traverse right depends on the traversal method that we
use.

Pre-order
traversal

Post-order
traversal

In-order traversal

Order 1.Visit Node
2.Left Traversal
3.Right Traversal

1.Left Traversal
2.Right Traversal
3.Visit Node

1.Left Traversal
2.Visit Node
3.Right Traversal

Example 10, 1, 17 1, 17, 10 1, 10, 17

Example
Application

Prefix Notation,
Copying a tree

Reverse Polish
Notation

Ordering a
sequence of
numbers, binary
tree search

In-order traversal

in_order_traversal(node):

 if tree_left[node] != -1:

 in_order_traversal(tree_left[node])

 print(values[node])

 if tree_right[node] != -1:

 in_order_traversal(tree_right[node])

node_index[1,2,3,4,5,6,7]

values=[10,4,17,3,5,11,18]

tree_left=[2,4,6,-1,-1,-1,-1]

tree_right=[3,5,7,-1,-1,-1,-1]

in_order_traversal(1)

Sequence output: 3,4,5,10,11,17,18

Trace table

node Value
[node]

Tree_left
[node]

Tree_right
[node]

Output

1 10 2 3

2 4 4 5

4 3 -1 -1 3

2 4

4

5 5 -1 -1 5

1 10

10

3 17 6 7

6 11 -1 -1 11

3 17

17

7 18 -1 -1 18

Pre-order traversal

pre_order_traversal(node):

 print(values[node])

 if tree_left[node] != -1:

 pre_order_traversal(tree_left[node])

 if tree_right[node] != -1:

 pre_order_traversal(tree_right[node])

values=["+","-","*",2,4,6,7]

tree_left=[2,4,6,-1,-1,-1,-1]

tree_right=[3,5,7,-1,-1,-1,-1]

pre_order_traversal(1)

Sequence output: - * 3 5 - 11 18

Trace Table

node Value [node] Tree_right [node] Tree_left [node] Output

1 + 3 2 +

2 - 5 4 -

4 2 -1 -1 2

2 - 5 4

5 4 -1 -1 4

1 + 3 2

3 * 7 6 *

6 6 -1 -1 6

7 7 -1 -1 7

Post-Order Traversal

post_order_traversal(node):

 if tree_left[node] != -1:

 post_order_traversal(tree_left[node])

 if tree_right[node] != -1:

 post_order_traversal(tree_right[node])

 print(values[node])

values=["+","-","*",2,4,6,7]

tree_left=[2,4,6,-1,-1,-1,-1]

tree_right=[3,5,7,-1,-1,-1,-1]

post_order_traversal(1)

Sequence output: 3 5 * 11 18 - -

Trace Table

Call node Value
[node]

Tree_right
[node]

Tree_left
[node]

Output

1 1 + 3 2

2 2 - 5 4

3 4 2 -1 -1 2

2 2 - 5 4

4 5 4 -1 -1 4

2 2 - 5 4 -

5 3 * 7 6

6 6 6 -1 -1 6

5 3 * 7 6

7 7 7 -1 -1 7

5 3 * 7 6 *

1 1 + 3 2 +

Reverse Polish Notation

Infix Notation
we are all familiar infix notation where the operators appear between the
operands (ie the numbers) that you want to apply the operator to.

Reverse Polish Notation (Postfix)
RPN uses postfix notation where the operators follow the operand. Using infix
notation to add two numbers we get:

<operand> <operator> <operand> 3 + 4

In RPN (postfix notation) this becomes

<operand> <operand> <operator> 3 4 +.

Many interpreters and compiler automatically convert between infix notation to
postfix notation, so there is no requirement to write code using the less familiar
postfix notation.

Advantages of Postfix
• Simpler for computer to evaluate
• Do not need brackets
• Operators appear in correct order for computation
• No need for order of precedence of operators, so there are fewer operations

RPN Algorithm
1. Go through each character in the postfix expression from left to right
2. If character is a number then push number onto the stack
3. Otherwise if the character is an operator (+,-,/ ,X) then pop the top 2 numbers

from the stack
4. Evaluate the 2 numbers using the operator
5. Push result back onto the stack

Worked example: Solve the following expression: 5 3 1 + − 6 ×

Stack at each step

Answer is 6
Infix expression (5-(1+3))x6

Convert from Infix to Postfix notation

Step 1 Add Brackets (3 + ((5 x 3) / (7 – 4)))

Step 2 Write out the operands with
spaces

3 5 3 7 4

Step 3 Starting with the inner most
brackets move the operator
to after the operands from
between the operands

3 5 3 x 7 4 – 3 + (15 / 3)
3 5 3 x 7 4 / 3 + 5
3 5 3 x 7 4 /+ 8

Alternative Shunting Yard Algorithm to Convert from Infix to Postfix notation

Worked Example: Convert the following expression to RPN: 2 + (5 x 3) / 2

Symbol Action Output
queue

Operator
stack

2 Push operand onto output queue 2

+ Push operator onto operator stack 2 +

5 Push operand onto output queue 2 5 +

x Push operand onto operator stack, x
has higher precedence than +

2 5 x +

3 Push operand onto output queue 2 5 3 x +

/ Pop stack to output, x has same
precedence as /
Push on operator stack, / has higher
precedence than +

2 5 3 x
2 5 3 x

+
/ +

2 Push operand onto output queue 2 5 3 x 2 / +
Pop whole stack onto output queue 2 5 3 x 2 / +

Searching Algorithms
Linear Search Algorithm
• The purpose of the linear search algorithm is to find a target item within a list.
• Compares each list item one-by-one against the target until the match has

been found and returns the position of the item in the list.
• If all items have been checked and the search item is not in the list then the

program will run through to the end of the list and return a suitable message
indicating that the item is not in the list.

• The algorithm runs in linear time. If n is the length of the list, then at worst the
algorithm will make n comparisons. At best it will make 1 comparison and on
average it will make (n+1)/2 comparisons.

• The performance of the algorithm will be improved if the target item is near
the start of the list.

• The time complexity of the linear search algorithm is O(n).

Example
Find the position of letter “Z” within the following list. Assume we do not have
visibility of the list

Index position 0 1 2 3 4 5 6 7

Value V A S Z X R T G

We compare it with the value in index position 0. We find that the value is ”V” so
we need to move on to the next index position. At index position 1 and 2 we still
have not found Z. However, we get to index position 3 and we compare the target
with the value and we find that they match, so the algorithm returns the index
position and stops.

Pseudocode
 i ← 0

 x ← len(listOfItems)

 pos ← -1

 found ← False

 WHILE i < x AND NOT found

 IF listOfItems[i] == itemSearch THEN

 found ← True

 pos ← i + 1

 ENDIF

 i=i+1

 ENDWHILE

 OUTPUT pos

Worked example: given the following vales for listOfItems and

itemSearch we have the following trace table

listOfItems ←[6,3,9,1,2]

itemSearch ← 1

i x pos found itemSearch listOfItems[i] OUTPUT

0 5 -1 False 1 6

1

3

2

9

3

1

4

4 True

4

Binary Search Algorithm

• The binary search algorithm works on a sorted list by identifying the middle
value in the list and comparing it with the search item.

• If the search item is smaller the mid element becomes the new high value for
the search area.

• If the search item is larger the mid element becomes the low value for the
search area.

• The keeps repeating until the search item is found.
• When the search item is found the index position of the item is returned.
• At each iteration the search are halved in size consequently this is an efficient

algorithm.
• The time complexity of the binary search algorithm is O(log n)

Example: Binary search in operation to find 81

Pseudocode

low ← 1

high ← LENGTH(arr)

mid ← (low + high) DIV 2

WHILE val ≠ A[mid]

 IF A[mid] < val THEN

 low ← mid

 ELIF A[mid] > val THEN

 high ← mid

 ENDIF

 mid ← (low + high) DIV 2

 ENDWHILE

OUTPUT mid

Worked example: given the following vales for arr and val we have the

following trace table

val ← 81

A ← [0,5,13,19,22,41,55,68,72,81,98]

mid high low A[mid] A[high] A[low]

6 11 1 41 98 0

8 11 6 68 98 41

9 11 8 72 98 68

10 11 9 81 98 72

Linear search versus binary search

 Advantages Disadvantages

Linear
Search

• Very simple algorithm
and easy to implement

• No sorting required
• Good for short lists

• slow because it searchers
through the whole list

• very inefficient for long lists

Binary
Search

• much quicker than linear
search, because it halves
the search zone each
step.

• The list need to be ordered

Binary Tree Search
• Binary tree search can be coded using a recursive algorithm or iterative

algorithm. We are going to present the recursive binary tree search algorithm
here.

• The time complexity of the binary tree search algorithm is the same as that for
the binary search algorithm: O(log N).

• It can be applied to any values: number or letters that are ordered in the
binary tree numerically or alphabetically.

Example sorted binary tree

Python implementation using lists

def binaryTreeSearch(node,searchItem)

 path.append(values[node])

 if values[node] == searchItem:

 return "Value in Tree. Path: "+str(path)

 elif values[node] < searchItem:

 if treeRight[node] == -1:

 return "Value not in Tree"

 return binaryTreeSearch(treeRight[node],searchItem)

 elif values[node] > searchItem:

 if treeLeft[node] == -1:

 return "Value not in Tree"

 return binaryTreeSearch(treeLeft[node],searchItem)

path = []

node[0,1,2,3,4,5,6,7,8,9]

values = [10,1,17,4,11,8,14,5,12,16]

treeLeft = [1,-1,4,-1,-1,7,8,-1,-1,-1]

treeRight=[2,3,-1,5,6,-1,9,-1,-1,-1]

print(binaryTreeSearch(0, 5))

Tracing

Call num Call Output Return

1 BinarySearchTree(10,5) 10

2 BinarySearchTree(1,5) 1

3 BinarySearchTree(4,5) 4

4 BinarySearchTree(8,5) 8

5 BinarySearchTree(5,5) 5 5

Sorting Algorithms
Bubble Sort

• The purpose of sorting algorithms is to order an unordered list. Item can be

ordered alphabetically or by number.
• Bubble sort steps through a list and compares pairs of adjacent numbers. The

numbers are swapped if they are in the wrong order. For an ascending list if
the left number is bigger than the right number the items are swapped
otherwise the numbers are not swapped.

• The algorithm repeatedly passes through the list until no more swaps are
needed.

• The time complexity of the algorithm is O(n2)

Example: Sort the following sequence in ascending order using bubble sort:
5,3,4,1,2.

Pass
1

5 3 4 1 2

3 5 4 1 2 Compare 5 and 3 – swap

3 4 5 1 2 Compare 5 and 4 – swap

3 4 1 5 2 Compare 5 and 1 – swap

3 4 1 2 5 Compare 5 and 2 – swap; end of pass 1

Pass
2

3 4 1 2 5 Compare 3 and 4 – no swap

3 1 4 2 5 Compare 4 and 1 – swap

3 1 2 4 5 Compare 4 and 2 – swap

3 1 2 4 5 Compare 4 and 5 – no swap; end of pass
2

Pass
3

1 3 2 4 5 Compare 3 and 1 – swap

1 2 3 4 5 Compare 3 and 2 – swap

1 2 3 4 5 Compare 3 and 4 – no swap

1 2 3 4 5 Compare 4 and 5 – no swap; end of pass
3

1 2 3 4 5

Bubble sort Pseudocode

A ← [5,3,4,1,2]

sorted ← False

WHILE not sorted

 sorted ← True

 FOR i TO LEN(A)-1:

 IF A[i] > A[i+1]:

 temp ← A[i]

 A[i] ← A[i+1]

 A[i+1] ← temp

 sorted ← False

 ENDIF

 ENDFOR

ENDWHILE

OUTPUT A

sorted i A[i] A[i+1] temp A

False 5,3,4,1,2

True 0 5 3 5

False 3 5 3,5,4,1,2
1 5 4 5
 4 5 3,4,5,1,2
2 5 1 5
 1 5 3,4,1,5,2
3 5 2 5
 2 5 3,4,1,2,5

True 0 3 4

False 1 4 1 4

 1 4 3,1,4,2,5

 2 4 2 4

 2 4 3,1,2,4,5

 3 4 5

True 0 3 1 3

 1 3 1,3,2,4,5

False 1 3 2 3

 2 3 1,2,3,4,5

 2 3 4

 3 4 5

True 0 1 2

 2 2 3

 3 3 4

 4 4 5

Merge Sort

• Merge sort is a type of divide and conquer algorithm.
• There are two steps: divide and combine
• Merge sort works by dividing the unsorted list sublists. It keeps on doing

this until there is 1 item in each list.
• Pairs of sublists are combined into an ordered list containing all items in

the two sublists. The algorithm keeps going until there is only 1 ordered
list remaining.

• Merge sort is a recursive function, that calls itself.
• The time complexity of merge sort is O(n log n)

Step 1: Divide

Keep dividing until there is only 1 item in each list

Step2: Combine

1. The first items in the two sublists are compared, and the smallest value is
copied to the parent list.

2. The copied item is then removed from the sublist.
3. When there are no items left in one of the sublists the remaining items in

the other sublist are them copied in order to the parent list.

Merge sort Pseudocode
SUBROUTINE MergeSort(List, Start, End)

 IF Start < End THEN

 Mid (Start + End) DIV 2

 List1 MergeSort(List, Start, Mid)

 List2 MergeSort(List, Mid + 1, End)

 List3 []

 WHILE LEN(List1) > 0 AND LEN(List2) > 0

 IF List1[1] > List2[1] THEN

 APPEND List2[1] TO List3

 POP List2[1] FROM List2

 ELSE

 APPEND List1[1] TO List3

 POP List1[1] FROM List1

 ENDIF

 ENDWHILE

 WHILE LEN(List1) > 0

 APPEND List1[1] TO List3

 POP List1[1] FROM List1

 ENDWHILE

 WHILE LEN(List2) > 0

 APPEND List2[1] TO List3

 POP List2[1] FROM List2

 ENDWHILE

 RETURN List3

 ELSE

 List4 []

 APPEND List[Start] To List4

 RETURN List4

ENDSUBROUTINE

Tracing the code
L=[5,3,4,1,2]

MergeSort(L,1,5)

Call Start End Mid List
returned

1 1 5 3

2 1 3 2

3 1 2 1

4 1 1 [5]

3 1 2 1

5 2 2 [3]

3 1 2 1 [3,5]

2 1 3 2

6 3 3 [4]

2 1 3 2 [3,4,5]

1 1 5 3

7 4 5 4

8 4 4 [1]

7 4 5 4

9 5 5 [2]

7 4 5 4 [1,2]

1 1 5 3 [1,2,3,4,5]

Merge sort Versus Bubble sort

 Advantages Disadvantages

Bubble
sort

Very simple and robust
algorithm

Can be slow particularly for long lists.
As the number of items increases the
time taken for the algorithm to run
increases dramatically.

Merge
sort

Much faster than bubble
sort especially when the
number of elements is large

More complex to understand
Step 1: Divide
Step 2: Combine

Optimisation algorithms

Dijkstra’s shortest path algorithm

• The purpose of Dijkstra's algorithm finds the shortest path between nodes
/ verticies in a weighted graph.

• Selects the unvisited node with the shortest path.
• Calculates the distance to each unvisited neighbor
• Updates the distance of each unvisited neighbor if smaller
• Once all neighbours have been visited mark node as visited

Example graph

Example: find the shortest route between node A and F

Node A B C D E F

A 0A 3A 5A ∞ 8A ∞

B

3A 4B ∞ 8A ∞

C

4B 8C 6C ∞

E

8C 6C 7E

F

8C

7E

D

8C

Start at node A because it is the unvisited node with the shortest distance to node
A. The distance to each unvisited neighbor is 3 and 5 for B and C respectively. B
has the shortest distance to node A so this is the next unvisited node we select. At
B there is only 1 neighbor (C). The distance is updated because the route A-B-C (4)
has less cost that the route A-C (5). E is the next unvisited node with the shortest
distance and is has as neighbours D and F. F has the less cost out the two and is
then selected as the next unvisited node. The shortest route is A-C-E-F.

Dijkstra Pseudocode

Q []

distance []

previous_node []

FOR i 1 TO NUMBER_OF_VERTICIES

 Append i to Q

 Append 100 to distance

 Append -1 to previous_node

ENDFOR

distance[1] 0

WHILE LEN(Q) != 0

 u Q[1]

 Pop u from Q

 FOR v in Q

 IF matrix[u][v] > 0:

 a=distance[u] + matrix[u][v]

 IF a< distance[v]

 distance[0]=a

 previous_node[v]=u

 ENDIF

 ENDIF

 ENDFOR

ENDWHILE

Trace table Given the following matrix

u/v 1 2 3 4

1 0 2 5 3

2 0 0 1 0

3 0 0 0 0

4 0 0 0 0

q u v a Distance Previous_node

1, 2,
3, 4

100 100 100 100 -1 -1 -1 -1

 0

2, 3,
4

1 2 2 2 1

 3 5 5 1

 4 3 3 1

3,4 2 3 3 3 2

4 3

- 4

