Backus Naur Form (BNF)

A language is regular if it can be represented by a regular expression and an FSM.
However, some languages cannot be expressed using regular expressions.

A context-free language like Backus-Naur form (BNF) is necessary whenever an
infinite number of elements need to be counted.

All regular languages can be represented by context-free languages.

Production Rules
BNF is expressed using production rules. For instance, a bit is defined with the
following production rule.

<bit> ::= 0 | 1
This means that a bit can take on the value 0 or 1.

e < >isanon-terminal symbol. In this example <bit> is a non-terminal symbol
and 0 and 1 are terminal symbols.

e :=states that the right-hand side is defined by the left hand side

e | means a choice (OR) between two symbols

Non-Terminal Symbols
If there is a non-terminal symbol on the right hand side there should be another
production rule with the non-terminal symbol on the left.

This is demonstrated in the following example of three production rules where the
non-terminal symbols <month> and <year> appear on both the left and right-hand
side.

<date> ::= <month>/<year>
<year> = 2018 | 2019 | 2020
<month> ::=1 | 2 | 3 | 4 | 5| 6 | 7] 8] 9 | 11 | 12

Valid expressions include 2/2020 or 12/2019

Recursion
Recursion allows us to have one or more of a symbol. Consider the following
example:

<integer>::=<digit>|<digit><digit>|<digit><digit><digit>
<digit> ::=0 | 1 | 2 | 3 | 4| 51 6 |71 8] 9

These pair of production rules only allow us to express a maximum value for an
integer 999. Of course integers can have an infinite number of digits. We
represent this using recursive BNF production rules.

<integer> ::= <digit> | <digit><integer>

As we know with recursive functions we need a base case and general case. The
base case is <digit> on its own and the general case is <digit><integer>

Parse Tree
We are going to extend our rules so that we can define real numbers and negative
numbers.

<signed> ::= <number> | +<number> |-<number>
<number> = <real> | <integer>

<real> ::= <integer> . <integer>

<integer> ::= <digit> | <digit><integer>

<digit> ::=0 | 1 | 2 | 3 | 4 | 5 6 |71 8] 9

Let us check that -27.01 is a valid expression for these production rules by using a
parse tree.

<signed>

<number>

<real>

/“—-__‘

<integer> <integer>
| |
<integer> <integer>
| |
<digit> <digit> <digit> <digit>

Syntax diagrams
Syntax diagrams are another way of expressing the syntax of a language. The
symbols for the syntax diagram are:

Base element
Element defined in another syntax diagram

II Element that can be used repeatedly

The syntax diagram for the BNF production rules that we have look at is given as:

digit integer number

— e L
©

signed
number
number

€D
O e

2999009900

