Boolean Logic Gates

NOT gate - The output is the opposite of the input

Input $A->0-$ Outpu	NOT truth table	
	Input	Output
	0	1
	1	0

AND gate - has two inputs and will have a true output if the two inputs are true otherwise the output will be false

Input A -	AND truth table		
-	Input A	Input B	Output
	0	0	0
	1	0	0
	0	1	0
	1	1	1

OR gate - has two inputs and will have a true output if either or both the inputs are true

	OR truth table		
Input A	Input A	Input B	Output
Input B	0	0	0
	1	0	1
	0	1	1
	1	1	

NOR gate - has two inputs and will have a true output only if either or both the inputs are false

Input A Input B	NOR truth table		
	Input A	Input B	Output
	0	0	1
	1	0	0
	0	1	0
	1	1	0

NAND gate - has two inputs and will have a true output if either or both the inputs are false

Input A -	OR truth table		
O-OutputQ	Input A	Input B	Output
B	0	0	1
	1	0	1
	0	1	1
	1	1	0

XOR gate - has two inputs and will have a true output if either the inputs are true but not both

OR truth table		
Input A	Input B	Output
0	0	0
1	0	1
0	1	1
1	1	0

Boolean Identities

Commutative laws	$\begin{aligned} & A+B=B+A \\ & A \cdot B=B \cdot A \end{aligned}$
Inverse law	$\overline{\bar{A}}=\mathrm{A}$
AND laws	A. $\bar{A}=0$ A. $A=A$ 0. $A=0$ 1. $A=A$
OR laws	$\begin{aligned} & 1+A=1 \\ & 0+A=A \\ & A+A=A \\ & A+\bar{A}=1 \end{aligned}$
Associative laws	$\begin{aligned} & (A \cdot B) \cdot C=A \cdot(B \cdot C) \\ & (A+B)+C=A+(B+C) \end{aligned}$
Distributive law	$\begin{aligned} & A \cdot(B+C)=A \cdot B+A \cdot C \\ & (A+B) \cdot(A+B)=A \cdot A+B \cdot B+A \cdot B+A \cdot B \end{aligned}$
More identities	$\begin{aligned} & A+A \cdot B=A \\ & A \cdot(A+B)=A \end{aligned}$
De Morgan's law	$\begin{aligned} & \overline{\bar{A} \cdot \bar{B}}=\mathrm{A}+\mathrm{B} \\ & \bar{A}+\bar{B}=\mathrm{A} . \mathrm{B} \end{aligned}$

Applying De Morgan's Law:

1. Apply NOT operator the whole expression

$$
\overline{\overline{\bar{A} \cdot \bar{B}}}=\bar{A} \cdot \bar{B}
$$

Switch the operator (If the operator is AND

$$
\bar{A}+\bar{B}
$$ switch to OR operator, If the operator is OR switch to AND operator)

3. NOT the individual terms

Order of operation

1. Brackets
2. NOT
3. AND
4. $O R$
5. XOR

Half adder - A half adder has two bits as inputs (A and B) and adds the two bits and outputs two bits the sum (S) and the carry (C). It is made up of an AND and an XOR gate

Input \boldsymbol{A}		Input B		\boldsymbol{C} (carry)	\boldsymbol{S} (sum)
0	+	0	$=$	0	0
1	+	0	$=$	0	1
0	+	$=$	0	1	
1	+	$=$	1	0	

Full Adder - A full adder has three bits as inputs one of which is the carry bit. It adds the three bits and outputs two bits the sum (S) and the carry (C). It is made up of an AND, XOR and OR gates

\boldsymbol{A}		B		Cin		Cout	S	\boldsymbol{D}	\boldsymbol{E}	F
$\mathbf{0}$	+	0	+	0	$=$	0	0	0	0	0
0	+	0	+	1	$=$	0	1	0	0	0
0	+	1	+	0	$=$	0	1	1	0	0
0	+	1	+	1	$=$	1	0	1	1	0
1	+	0	+	0	$=$	0	1	1	0	0
1	+	0	+	1	$=$	1	0	1	1	0
1	+	1	+	0	$=$	1	0	0	0	1
1	+	1	+	1	$=$	1	1	0	0	1

D-type flip flop

- A flip-flop can store the value of a bit.
- D (delay)-type flip flops are used to store one bit and flip between two states: 1 and 0 .
- The inputs are a control value (0 or 1) and also a clock value (0 or 1) that changes the state at a regular rate
- For a positive edge triggered flip-flop the output state can only change when the clock changes from 0 to 1 . If D is in the same state as it was on the previous edge then the output is unchanged. However, if D has changed state, the output state will change to the value of D.

