
Functional Programming

Functional languages are declarative which means they are concerned with what
needs to be performed as opposed to how it should be performed as is the case
with procedural imperative languages.

Functional languages rely on recursion (the function calling itself) and not
iteration.

Functional programs are shorter than codes written in procedural languages. This
results in code that is likely to contain fewer errors because there are fewer lines
of source code and opportunities to introduce errors.

Properties of Functional Programs

Immutability

Mutable objects can have their values changed.

Immutable objects cannot have their values changed. More strictly when changing
the value of an object, we copy to another location in memory and reference that
value.

In Python variables are immutable whereas lists are mutable. This can be
demonstrated using the id function which returns the unique ID of an object. For

an immutable object a reference is made to a copy of the object and is shown by
different IDs.

Mutable

> x=[0]

> id(x)

64531472

> x[0]=1

> id(x)

64531472

Immutable

> x=0

> id(x)

1428804032

> x=1

> id(x)

1428804048

Example: Immutability in Haskell

> let f x = x * 5
> f 5
25
> let g x = (f x) * 2
> g 2
20

Redefine f

> let f x = x * 2

> f 5

10

> g 2

20

Our result from g 2 remains the same because the original definition of f has not
been changed (mutated). g was defined in an earlier scope when f had a different
value.

No let us do:

> let g x = f x * 2

> g 2

8

Our result from g 2 has now changed.

No Side effects

Functional programs have no side effects. Side effects occur when a function
changes the values outside its own scope.

Side effects Python

def addOne(x):

 x[0]=x[0]+1

x=[1]

print(x)

addOne(x)

print(x)

Output

[1]

[2]

No side effects:
Python

def addOne(x):

 x=x+1

x=1

print(x)

addOne(x)

print(x)

Output

1

1

No side effects: Haskell

addOne x = x + 1

addOne 1

2

addOne 1

2

Statelessness
Given the same input to a function you will always have the same output. The
local state is independent of the global state.

Therefore functions can be called in any order without affecting the outcome.

Functional: Stateless

add x y = x + y

add 2 1

> 3

add 2 1

> 3

Procedural: Not stateless

def add(x):

 global y

 return x+y

y=2

print(add(1))

y=3

print(add(1))

Output:

3

4

Functions

Domain - the set of values from which the input is taken

Codomain – the set of values which can be output

Functions map a set of inputs from the domain to a set of output values in the co-
domain.

Function Type - Functions have argument data types and a result data types

F : A -> B

A is the argument type

B is the result type

Example
double x = x * 2

double :: integer -> integer

First class object
In procedural programming Integers, characters and other data types are
examples of first class objects. This means they can be:

assigned to variables

X=5

passed as arguments to other functions Subroutine double(x)

 return x = x * 2

returned from other functions

fx = double(2)

stored in data structures b = [1,2,3,4]

Functions as First class objects
In functional programming functions can be first class objects.

assigned to variables

passed as arguments to other functions double x = x * 2

sum x y = x + y

sum 2 double 3

returned from other functions add x y = x + y

addThree = add 3

stored in data structures sum x y = x + y

a = [sum,1,2,3,4]

Function application

Function applied to its arguments

Example
sum x y = x y

sum 3 4

The type of the function is:
Add: integer x integer -> integer

Where integer x integer is the Cartesian product

Partial function application

A function that takes multiple parameters is a sequence of single parameter
functions.

Example:
add :: integer -> integer -> integer

is equivalent to
add :: integer -> (integer -> integer)

add x y = x + y

add 3 4

is equivalent to
(add 3) 4

Partial function application occurs when a function is applied to fewer than the
total number of parameters.

Domain:

Input

x=4

Function:

f(x)=x*x

Co-domain:

Output

f(x)=16

Example:
add :: integer -> integer -> integer

add x y = x + y
add3 = add 3

add3 4

7

This function is applied to an integer that returns a function that is applied to
another integer and returns the sum of the two integers.

Composition of functions
Functions can be combined to create a new function

Example:
f x = x * 5
g x = 3 + x^2
f (g 4)
95

g is applied to the argument x first and the f is applied to the result of g

f o g x and f(g(x)) are equivalent

Codomain type of g must be the same as the domain type of f

Example:
h: float -> integer

k: boolean -> float

Thus:
h o k: boolean -> float

g o f is invalid

Higher order functions

Higher-order functions are function that can take a function as an argument
and/or return a function as a result.

Map works recursively by applying a function to each element of a list and returns

the results in a list. It works by applying the function to the head of the list and
makes recursive calls to each element in the tail until the list is empty.

Example: Multiply all values in a list by 2
map (x2) [1,2,3,4,5] → [2,4,5,6,10]

Example: Square all values in a list
square x = x * x

map square [1,2,3,4,5] → [1,4,9,16,25]

Filter applies a function to select items from a list.

Example: select values greater than2 from a list
filter (>2) [1,2,3,4,5] → [3,4,5]

Fold reduces a list to single value using recursion.

Example: Add the numbers in a list
fold (+) 6 [1,2,3,4,5] → 21

List processing

Returns the first element
in a list

head [3,6,9,1,2] → 3

head [“The”,”cat”] → The

Returns all but the first
element in a list

tail[3,6,9,1,2] → [6,9,1,2]

Return the length of a list

length[3,6,9,1,2] → 5

Set up an empty list

xs = []

Check to see if a list is
empty

null xs → True

Append to a list [1,2,3,4] ++ [5] → [1,2,3,4,5]

 Prepend to a list

[1] ++ [2,3,4,5] or 1:[2,3,4,5] →

[1,2,3,4,5]

Big Data

Big data are voluminous and are often unstructured and come in huge variety of
forms making storage in conventional relational databases very difficult or
impossible. Multiple machines are required to store, analyse and process the data
so distributed processing is important.

Big data have 3 characteristics:

Volume – Huge quantities of data

Velocity – Data are continuously being added to an already huge dataset so
greater spare and future capacity is needed

Variety – There is a high range of data types so that data are unstructured

Fact based model for representing data

• Facts are recorded with timestamps
• The are immutable, they cannot be deleted
• Data stored as atomic facts
• Immutable and always true using timestamps
• Each fact uniquely identifiable
• Raw – The rawer the data the better, because one can ask more questions.
• Immutable – Cannot change the data. e.g a record of someone’s address does

not change.
• Perpetuity – Data will always be true. Although some one moved to a new

address, it will always be true that that person lived at another address at a
given time.

Example: Friends on Social Media

Friends change list
Add James 3/2
Add Bart 9/10
Add Reggie 17/11
Add Grace 18/11
Remove Reggie 12/12
Add Oliver 1/3
Remove Grace 17/12

Current friends list
James
Bart
Oliver

Current friends count
3

Graph Schemas

Graph schemas are used to represent huge datasets of connected data where
nodes (verticies) are the entities and the edges are the relations between facts.
Nodes can have properties.

Example:

Why is functional programming good for processing big data?

Because the quantity of data are so large, the data need to be processed in
parallel (at the same time) over multiple machines. This means that programs
have to be designed with concurrency in mind that is they need to be thread-safe.
This is where functional programming comes in.

Functional programming is good from parallel processing because it uses
immutable data structures, has statelessness, there are no side effects and uses
higher-order functions.

Immutable objects are considered more thread safe than mutable objects.
That is processing on one thread will not interfere or be interfered by the
processing on another thread. This is because for immutable objects there is no
danger that other parallel threads will unintentionally change the values of the
objects.

