$\underbrace{\substack{0}}_{\text {Kettering }}$		Year 8 Mathematics Core HT 1	
Number			
1.	Addition	To find the sum or total of two or more numbers.	
2.	Subtraction	To find the difference between two numbers.	
3.	Multiplication	Repeated addition of a number. Also called 'product'	
4.	Division	The process of calculating the number of times one number is contained in another.	
5.	Divisible	Can be divided by a number without a remainder.	
Multiplication methods			
6.	Lattice		
7.	Grid	Eg) 574×29	
8.	Column	$\begin{aligned} & 36 \quad 30 \\ & \times 15 \\ & \hline 30 \times 5 \\ & \hline 60(6 \times 5) \\ & 60(60 \times 5) \\ & \frac{300(30 \times 10)}{540}\left(\begin{array}{l} 6 \end{array}\right. \\ & \hline 50 \end{aligned}$	
Division Methods			
9.	Short		

14.	Order of operations	The order in which operations should be done.	$\begin{gathered} \text { B } \\ \text { I } \\ \text { DM } \\ \text { AS } \end{gathered}$	Bra In Divide a Add an
15.	Negative number	A number that is less tha		-1012
16.	Ascending order	A set of numbers arranged from smallest to biggest.		
17.	Descending order	A set of numbers arranged from biggest to smallest.		
18.	Factor	A number that divides exactly into another number without a remainder. It is useful to write factors in pairs. The factors of 18 are: $1,2,3,6,9,18$ The factor pairs of 18 are: $\begin{gathered} 1,18 \\ 2,9 \\ 3,6 \end{gathered}$		
19.	Lowest Common Multiple (LCM)	The smallest number that is in the times tables of each of the numbers given. The LCM of 3,4 and 5 is 60 because it is the smallest number in the 3,4 and 5 times tables.		
20.	Highest Common Factor (HCF)	The biggest number that divides exactly into two or more numbers. The HCF of 6 and 9 is 3 because it is the biggest number that divides into 6 and 9 exactly.		
21.	Prime Number	A number with exactly two factors. A number that can only be divided by itself and one. The number 1 is not prime, as it only has one factor, not two. The first ten prime numbers are:		

		$2,3,5,7,11,13,17,19,23,29$
22.	Prime Factor	A factor which is a prime number. The prime factors of 18 are:
23.	Product of Prime Factors	Finding out which prime numbers multiply together to make the original number. Use a prime factor tree. Also known as 'prime factorisation'.
24.	Square Number	The number you get when you multiply a number by itself. $\begin{array}{r} 1,4,9,16,25,36,49,64,81,100,121,144,169,196,225 \ldots \\ 9^{2}=9 \times 9=81 \end{array}$
25.	Square Root	The number you multiply by itself to get another number. The reverse process of squaring a number. $\sqrt{36}=6$ because $6 \times 6=36$
26.	Solutions to $x^{2}=\ldots$	Equations involving squares have two solutions, one positive and one negative. Solve $x^{2}=25$ $x=5 \text { or } x=-5$ This can also be written as $x= \pm 5$

27.	Cube Number	The number you get when you multiply a number by itself and itself again. $1,8,27,64,125 . .$. $2^{3}=2 \times 2 \times 2=8$
28.	Cube Root	The number you multiply by itself and itself again to get another number. The reverse process of cubing a number. $\sqrt[3]{125}=5$ because $5 \times 5 \times 5=125$
29.	Powers of...	The powers of a number are that number raised to various powers. The powers of 3 are: $\begin{aligned} & 3^{1}=3 \\ & 3^{2}=9 \\ & 3^{3}=27 \\ & 3^{4}=81 \text { etc. } \end{aligned}$
30.	Multiplication Index Law	When multiplying with the same base (number or letter), add the powers. $\begin{gathered} \boldsymbol{a}^{\boldsymbol{m}} \times \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m}+\boldsymbol{n}} \\ 7^{5} \times 7^{3}=7^{8} \\ a^{12} \times a=a^{13} \\ 4 x^{5} \times 2 x^{8}=8 x^{13} \end{gathered}$
31.	Division Index Law	When dividing with the same base (number or letter), subtract the powers. $\begin{gathered} \boldsymbol{a}^{\boldsymbol{m}} \div \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m}-\boldsymbol{n}} \\ 15^{7} \div 15^{4}=15^{3} \\ x^{9} \div x^{2}=x^{7} \\ 20 a^{11} \div 5 a^{3}=4 a^{8} \end{gathered}$
32.	Brackets Index Laws	When raising a power to another power, multiply the powers together. $\left(a^{m}\right)^{n}=a^{m n}$

37.	Permutations without Repetition	We have to reduce the number of available choices each time. One you have chosen something, you cannot choose it again. How many ways can you order 4 numbered balls? $4 \times 3 \times 2 \times 1=24$
38.	Reciprocal	The reciprocal of a number is $\mathbf{1}$ divided by the number. The reciprocal of x is $\frac{1}{x}$ When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'. The reciprocal of 5 is $\frac{1}{5}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because $\frac{2}{3} \times \frac{3}{2}=1$
Area and volume		
1.	Area	The amount of space inside a shape. Units include: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$
2.	Area of a Rec	Length x Width
3.	Area of a Tria	gle \quad Base \times Height $\div 2$

4.	Area of a Parallelogram	Base x Perpendicular Height Not the slant height. $A=21 \mathrm{~cm}^{2}$
5.	Area of a Trapezium	$\frac{(a+b)}{2} \times h$ "Half the sum of the parallel side, times the height between them. That is how you calculate the area of a trapezium"
6.	Volume	Volume is a measure of the amount of space inside a solid shape. Units: $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$ etc.
7.	Volume of a Cube/Cuboid	$\begin{gathered} V=\text { Length } \times \text { Width } \times \text { Height } \\ V=L \times W \times H \end{gathered}$ You can also use the Volume of a Prism formula for a cube/cuboid.

8.	Prism	A prism is a 3D shape whose cross section is the same throughout.
9.	Net	A pattern that you can cut and fold to make a model of a 3D shape.
10.	Properties of Solids	Faces = flat surfaces Edges = sides/lengths Vertices = corners A cube has 6 faces, 12 edges and 8 vertices.
11.	Plans and Elevations	This takes 3D drawings and produces 2D drawings.

		Plan View: from above side Elevation: from the side Front Eleuation: from the front
12.	Isometric Drawing	A method for visually representing 3D objects in 2D.
13.	Units of time	Standard units of time are seconds, minutes, hours, days, years $\begin{aligned} & 60 \text { seconds }=1 \text { minute } \\ & 60 \text { minutes }=1 \text { hour } \\ & 24 \text { hours }=1 \text { day } \\ & 365 \text { days }=1 \text { year } \end{aligned}$
14.	Units of mass	Metric units of mass are milligrams, grams, kilograms and tonnes $\begin{aligned} & 1000 \mathrm{mg}=1 \mathrm{~g} \\ & 1000 \mathrm{~g}=1 \mathrm{~kg} \\ & 1000 \mathrm{~kg}=1 \text { tonne } \end{aligned}$
15.	Units of length	Metric units of length are millimetres, centimetres, metres and kilometres $\begin{aligned} & 10 \mathrm{~mm}=1 \mathrm{~cm} \\ & 100 \mathrm{~cm}=1 \mathrm{~m} \\ & 1000 \mathrm{~m}=1 \mathrm{~km} \end{aligned}$
16.	Units of area	Metric units of length are millimetres ${ }^{2}$, centimetres ${ }^{2}$, metres 2 and kilometres ${ }^{2}$

		$\begin{aligned} & 1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2} \\ & 1 \mathrm{~m}^{2}=1000 \mathrm{~cm}^{2} \end{aligned}$
17.	Units of volume	Metric units of length are millimetres ${ }^{3}$, centimetres ${ }^{3}$, metres 3 and kilometres ${ }^{3}$ $\begin{aligned} & 1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3} \\ & 1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3} \end{aligned}$
18.	Units of capacity	Metric units of capacity are millilitres, centilitres and litres $\begin{aligned} & 10 \mathrm{ml}=1 \mathrm{cl} \\ & 1000 \mathrm{ml}=100 \mathrm{cl}=1 \mathrm{l} \end{aligned}$
19.	Capacity and volume conversions	$\begin{aligned} & 1 \mathrm{~cm}^{3}=1 \mathrm{ml} \\ & 1000 \mathrm{~cm}^{3}=11 \end{aligned}$
20.	Metric System	A system of measures based on: - the metre for length - the kilogram for mass - the second for time Lengths mm, cm, m, hm Massz mg, g, leg Volumes ml, cl, I 1 kilometres $=1000$ metres 1 metre $=100$ centimetres 1 centimetre $=10$ millimetres 1 kilogram $=1000$ grams
21.	Imperial System	A system of weights and measures originally developed in England, usually based on human quantities Lengths inch, foot, yard, miles Masss lb, ounce, stone Volumes pint, gallon $\begin{aligned} & 1 \mathrm{lb}=16 \text { ounces } \\ & 1 \text { foot }=12 \text { inches } \\ & 1 \text { gallon }=8 \text { pints } \end{aligned}$

22.	Metric and Imperial Units	Use the unitary method to convert between metric and imperial units. 5 miles ≈ 8 kilometres 1 gallon ≈ 4.5 litres 2.2 pounds ≈ 1 kilogram 1 inch $=2.5$ centimetres
23.	Speed, Distance, Time	speed = Distance - Time Distance $=$ Speed \times Time Time $=$ Distance $\boldsymbol{*}$ speed Remember the correct units. Speed $=4 \mathrm{mph}$ Time $=2$ hours Find the Distance. $D=S \times T=4 \times 2=8 \text { miles }$
24.	Density, Mass, Volume	Density = Mass : Volume Mass = Density x Volume Volume = Mass : Density Remember the correct units. Density $=8 \mathrm{~kg} / \mathrm{m}^{3}$ Mass $=2000 \mathrm{~g}$ Find the Volume.

		$V=M \div D=2 \div 8=0.25 \mathrm{~m}^{3}$
25.	Pressure, Force, Area	Pressure = Force - Area Force $=$ Pressure \times Area Area = Force - Pressure Remember the correct units. Pressure $=10$ Pascals Area $=6 \mathrm{~cm}^{2}$ Find the Force $F=P \times A=10 \times 6=60 \mathrm{~N}$

Expressions and equations definitions

Expanding double brackets

30. Everything in the first bracket must be multiplied by everything in the second

Factorising a quadratic expression

32.	Factorising a quadratic in the form of $a x^{2}+b x+c$	Multiply to 5 Factorise $x^{2}+5 x+6-$ Add to 6 2 and 3 add to 5 2 and 3 multiply to 6 $(x+2)(x+3)$ Check: $(x+2)(x+3)=x^{2}+5 x+6$
33.	Difference of two squares	A special type of quadratic which only has two terms.
		One term is subtracted from the other
		$\begin{aligned} & x^{2}-25=x^{2}-5^{2}=(x+5)(x-5) \\ & y^{2}-49=y^{2}-7^{2}=(y+7)(y-7) \\ & a^{2}-16=a^{2}-4^{2}=(a+4)(a-4) \end{aligned}$

Equations

34. To solve equations we need to use inverse operations
35. What ever you do to one side of the equals sign you must do the same to the other

36.	One step	$\left.\left\|\begin{array}{ccc} x+4 & = & 7 \\ (-4) & (-4) \\ x & = & 11 \end{array}\right\| \begin{array}{ccc} x-5 & =12 \\ (+5) & & (+5) \\ x & =17 \end{array} \right\rvert\,$		$\begin{aligned} & =18 \\ & (\div 3) \\ & = \\ & \hline \end{aligned}\left\|\begin{array}{ccc} \frac{x}{4} & = & 6 \\ (\times 4) & (\times 4) \\ x & = & 24 \end{array}\right\|$
37.	Two step	Requires the use of two inverse operations		$\begin{gathered} 2 x-7=19 \\ 2 x=26 \\ x=13 \end{gathered}$
38.	With brackets	Expand the brackets first $\begin{gathered} 5(2 x+1)=35 \\ 10 x+5=35 \\ 10 x=30 \\ x=3 \end{gathered}$		OR if possible divide by the number outside of the bracket first $\begin{gathered} 4(2 x+4)=20 \\ 2 x+4=5 \\ 2 x=1 \\ x=\frac{1}{2} \end{gathered}$
39.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.		$\begin{gathered} 5 x+2=3 x-8 \\ 2 x+2=-8 \\ 2 x=-10 \\ x=-5 \end{gathered}$
40.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\begin{gathered} \frac{f}{5}+2=8 \\ \frac{f}{5}=6 \\ f=30 \end{gathered}$		If everything is part of the fraction then multiply by the denominator first. $\begin{gathered} \frac{f+2}{5}=8 \\ f+2=40 \\ f=38 \end{gathered}$

Real life graphs			
41.	Steady speed	Travelling the same distance each minute	
42.	Velocity	Speed in a particular direction	
43.	Rate of change	Shows how a variable changes over time	
44.	Acceleration	How fast velocity changes; measured in $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{km} / \mathrm{s}^{2}$ etc	
Distance - Time graphs			
45.	Represent a journey		
46.	Vertical axis represents the distance from the starting point		
47.	Horizontal axis represents the time taken		
48.	Straight lines mean constant speed		
49.	Horizontal lines mean no movement		
50.	Gradient $=$ speed		
51.	$\text { Average speed }==\frac{\text { total distance }}{\text { total time }}$		

