		Year 8 Mathematics Developing HT 1	
Number properties and calculations			
1.	Addition	To find the sum or total of two or more numbers.	
2.	Subtraction	To find the difference between two numbers.	
3.	Multiplication	Repeated addition of a number. Also called 'product'	
4.	Division	The process of calculating the number of times one number is contained in another.	
5.	Divisible	Can be divided by a number without a remainder.	
Multiplication methods			
6.	Lattice		
7.	Grid	Eg) 574×29	
8.	Column	$\begin{gathered} 36 \quad 30 \\ \times 15 \\ \hline 30(6 \times 5) \\ \hline 60(6 \times 10) \\ 50(30 \times 5) \\ \frac{300(30 \times 10)}{540}\left(\begin{array}{l} 6 \end{array}\right. \\ \hline 100 \end{gathered}$	
Division Methods			
9.	Short		

2.	Properties of Solids	Faces = flat surfaces Edges = sides/lengths Vertices = corners A cube has 6 faces, 12 edges and 8 vertices.
3.	Plans and Elevations	This takes 3D drawings and produces 2D drawings. Plan View: from above side Elevation: from the side Front Elevation: from the front
4.	Isometric Drawing	A method for visually representing 3D objects in 2D.
5.	Volume	Volume is a measure of the amount of space inside a solid shape. Units: $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$ etc.

6. | Volume of a |
| :--- | :--- | :--- |
| Cube/Cuboid |

10.	Speed, Distance, Time	Speed $=$ Distance \div Time Distance = speed \times Time Time $=$ Distance \div Speed Remember the correct units. Speed $=4 \mathrm{mph}$ Time $=2$ hours Find the Distance. $D=S \times T=4 \times 2=8 \text { miles }$
11.	Density, Mass, Volume	Density = Mass : Volume Mass = Density x Volume Volume = Mass : Density Remember the correct units. $\text { Density }=8 \mathrm{~kg} / \mathrm{m}^{3}$ Mass $=2000 \mathrm{~g}$ Find the Volume. $V=M \div D=2 \div 8=0.25 \mathrm{~m}^{3}$
12.	Pressure, Force, Area	Pressure $=$ Force \div Area

	Force $=$ Pressure \times Area Area $=$ Force \div Pressure
Remember the correct units.	
Pressure $=10$ Pascals	
Area $=6 \mathrm{~cm}^{2}$	
Find the Force	

Statistics		
1.	Qualitative data	Data decribed by words.
2.	Quantitative data	Data that is in number form that can be discrete or continuous.
3.	Discrete data	Data that can be counted and has a finite number of possible values.
4.	Continuous data	Data that can be measured and has an infinite number of possible values within a range.
5.	Bar chart	A chart to display discrete data where the height of the bar shows the frequency.
6.	Dual bar chart	A bar chart used to compare data sets where bars are drawn next to each other to compare heights.
7.	Composite bar chart	A bar chart where bars are split to show the different quantities within each bar.

8.	Coordinates	Written in pairs. The first term is the \boldsymbol{x}-coordinate (movement across). The second term is the y-coordinate (movement up or down) A: $(4,7)$ B: $(-6,-3)$
9.	Linear Graph	Straight line graph. The general equation of a linear graph is $y=m x+c$ where \boldsymbol{m} is the gradient and c is the \boldsymbol{y}-intercept. The equation of a linear graph can contain an x-term, a \mathbf{y}-term and a number. Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
10.	Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.

		Method 2: Gradient-Intercept Method (use when the equation is in the form $y=$ $m x+c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form $a x+b y=c$) 1. Cover the x term and solve the resulting equation. Plot this on the x-axis. 2. Cover the y term and solve the resulting equation. Plot this on the y-axis. 3. Draw a line through the two points plotted. $2 x+4 y=8$
11.	Outlier	A value that 'lies outside' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.
12.	Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data, which is a series of data points spaced over uniform time intervals in time order.

13.	Time-Series graph	A time-series graph plots frequencies (vertical) axis against time (horizontal). It is used to spot trends over time. Time could be: weeks, months, quarters (3 months), years.

Expressions and equations

1.	Expression	A mathematical statement written using symbols, numbers or letters. $3 \mathbf{x}+2$ or $5 \mathbf{y}^{2}$
2.	Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms. $2 x+3 y+4 x-5 y+3=6 x-2 y+3$ $3 x+4-x^{2}+2 x-1=5 x-x^{2}+3$
3.	x times x	The answer is x^{2} not $2 x$. Squaring is multiplying by itself, not by 2.
4.	$p \times p \times p$	The answer is p^{3} not $3 p$ If $\mathbf{p}=2$, then $p^{3}=2 \times 2 \times 2=8$, not $2 \times 3=6$

5.	$p+p+p$	The answer is $3 p$ not p^{3} If $p=2$, then $2+2+2=6$, not $2^{3}=8$
6.	Equation	A statement showing that two expressions are equal $2 y-17=15$
7.	Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket. $3(m+7)=3 x+21$
8.	Solve	To find the answer/value of something Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Solve $2 x-3=7$ Add 3 on both sides $2 x=10$ Divide by 2 on both sides $x=5$
9.	Inverse	Opposite The inverse of addition is subtraction. The inverse of multiplication is division.
10.	Substitution	Replace letters with numbers. Be careful of $5 x^{2}$. You need to square first, then multiply by 5 . $a=3, b=2 \text { and } c=5 \text {. Find: }$ 1. $2 a=2 \times 3=6$ 2. $3 a-2 b=3 \times 3-2 \times 2=5$ 3. $7 b^{2}-5=7 \times 2^{2}-5=23$

