Year 8 Mathematics Extending HT 1

Factors and Powers

1.	Factor	A number that divides into another number without a remainder			
2.	Multiple	The result of multiplying a number by an integer			
3.	Prime number	A number with exactly two factors; 1 and itself			
4.	Prime numbers	2, 3, 5, 7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97			
5.	Product	The answer when two or more numbers are multiplied together			
6.	Prime factor decomposition	Writing a number as a product of its prime factors.		$\begin{aligned} & 60=2 \times 2 \times 3 \times 5 \\ & 60=2^{2} \times 3 \times 5 \end{aligned}$	
7.	Highest common factor	HCF	The highest number that divides exactly into two or more numbers e.g. the HCF of 12 and 14 is 12		
8.	Lowest Common Multiple	LCF	The smallest po integer that is a of two or more	e.g. the LCM	and 24 is 24
9.	Combination	Apple, Banana Apple, Cherry Banana, Cherry 3 combinations			

10.	Permutation	A collection of things, where the order does matter. You want to visit the homes of three friends, Alex (A), Betty (B) and Chandra (C) but haven't decided the order. What choices do you have? ABC ACB BAC BCA CAB CBA
11.	Permutations with Repetition	When something has n different types, there are \boldsymbol{n} choices each time. Choosing r of something that has n different types, the permutations are: $n \times n \times \ldots(r \text { times })=\boldsymbol{n}^{r}$ How many permutations are there for a three-number combination lock? 10 numbers to choose from $\{1,2, \ldots .10\}$ and we choose 3 of them \rightarrow $10 \times 10 \times 10=10^{3}=1000$ permutations.
12.	Permutations without Repetition	We have to reduce the number of available choices each time. One you have chosen something, you cannot choose it again. How many ways can you order 4 numbered balls? $4 \times 3 \times 2 \times 1=24$
13.	Reciprocal	The reciprocal of a number is $\mathbf{1}$ divided by the number. The reciprocal of x is $\frac{1}{x}$ When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'. The reciprocal of 5 is $\frac{1}{5}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because $\frac{2}{3} \times \frac{3}{2}=1$

14.	Square Number	The number you get when you multiply a number by itself. $\begin{array}{r} 1,4,9,16,25,36,49,64,81,100,121,144,169,196,225 \ldots \\ 9^{2}=9 \times 9=81 \end{array}$
15.	Square Root	The number you multiply by itself to get another number. The reverse process of squaring a number. $\sqrt{36}=6$ because $6 \times 6=36$
16.	Solutions to $x^{2}=\ldots$	Equations involving squares have two solutions, one positive and one negative. Solve $x^{2}=25$ $x=5 \text { or } x=-5$ This can also be written as $x= \pm 5$
17.	Cube Number	The number you get when you multiply a number by itself and itself again. $1,8,27,64,125 . .$. $2^{3}=2 \times 2 \times 2=8$
18.	Cube Root	The number you multiply by itself and itself again to get another number. The reverse process of cubing a number. $\sqrt[3]{125}=5$ because $5 \times 5 \times 5=125$
19.	Powers of...	The powers of a number are that number raised to various powers. The powers of 3 are: $\begin{aligned} & 3^{1}=3 \\ & 3^{2}=9 \\ & 3^{3}=27 \\ & 3^{4}=81 \text { etc. } \end{aligned}$

20.	Multiplication Index Law	When multiplying with the same base (number or letter), add the powers. $\begin{gathered} \boldsymbol{a}^{\boldsymbol{m}} \times \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m}+\boldsymbol{n}} \\ 7^{5} \times 7^{3}=7^{8} \\ a^{12} \times a=a^{13} \\ 4 x^{5} \times 2 x^{8}=8 x^{13} \end{gathered}$
21.	Division Index Law	When dividing with the same base (number or letter), subtract the powers. $\begin{gathered} \boldsymbol{a}^{\boldsymbol{m}} \div \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m}-\boldsymbol{n}} \\ 15^{7} \div 15^{4}=15^{3} \\ x^{9} \div x^{2}=x^{7} \\ 20 a^{11} \div 5 a^{3}=4 a^{8} \end{gathered}$
22.	Brackets Index Laws	When raising a power to another power, multiply the powers together. $\left(a^{m}\right)^{n}=a^{m n}$ $\begin{gathered} \left(y^{2}\right)^{5}=y^{10} \\ \left(6^{3}\right)^{4}=6^{12} \\ \left(5 x^{6}\right)^{3}=125 x^{18} \end{gathered}$
23.	Fractional indices	A fractional indice like $1 / \mathrm{n}$ means to take the nth root: $x^{\frac{1}{n}}=\sqrt[n]{x}$
24.	Negative indices	A negative power is often referred to as a reciprocal $x^{-n}=\frac{1}{x^{n}}$
25.	Notable Powers	$\begin{gathered} p=p^{1} \\ p^{0}=1 \end{gathered}$
26.	Lower bound	The smallest value that would round up the estimate value
27.	Upper bound	The smallest value that would round up to the next estimated value

Plans and elevations

1.	Plan	The view from above a solid	$\downarrow^{\text {pan }}$	Plan
2.	Front elevation	The view from the front of a solid		Side
3.	Side elevation	The view from a side of the solid		

Circles - definitions and formulae

4.	Diameter	A straight line from edge to edge passing through the centre	
		Double the size of the radius	
5.	Radius	A straight line from the centre to the edge	
		Half the size of the diameter	
6.	Radii	The plural of radius	
7.	Circumference	Distance around the outside of the circle	
8.	Arc	Part of the circumference	
9.	Chord	A line within a circle where each end touches the edge	
10.	Sector	The region created by two radii and an arc	

11.	Segment	The region created by a chord and an arc	
12.	Tangent	A line outside the circle which only touches the circumference at one point	
13.	Semi -circle	Half a full circle	

Area and circumference of circles formulae

14.	$\mathrm{Pi}(\pi)$	Constant ratio linking the circumference and diameter of a circle	
		3.14159265...	
15.	Circumference of a circle	$C=\pi d$	Alternatively, using relationship between r and d $C=2 \pi r$

Cylinders, pyramids, cones and spheres

16.	Volume of a cylinder	$V=\pi r^{2} h$	
17.	Surface area of a cylinder	Total surface area $=2 \pi r^{2}+\pi d h$	
18.	Volume of a pyramid	$V=\frac{1}{3} \times$ area of base \times perpendicular height	
19.	Volume of a cone	$V=\frac{1}{3} \times \pi r^{2} h$	
20.	Surface area of a cone	Curved surface area $=\pi r l$	
		Total surface area $=\pi r^{2}+\pi r l$	
21.	Volume of a sphere	$V=\frac{4}{3} \times \pi r^{3}$	

Pythagoras' Theorem

Real life graphs

27.	Steady speed	Travelling the same distance each minute
28.	Velocity	Speed in a particular direction
29.	Rate of change	Shows how a variable changes over time
30.	Acceleration	How fast velocity changes; measured in $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{km} / \mathrm{s}^{2}$ etc

Distance - Time graphs		
31.	Represent a journey	A = steady speed, $\mathrm{B}=$ no movement, steady speed back to start
32.	Vertical axis represents the distance from the starting point	
33.	Horizontal axis represents the time taken	
34.	Straight lines mean constant speed	
35.	Horizontal lines mean no movement	
36.	Gradient $=$ speed	
37.	$\text { Average speed }==\frac{\text { total distance }}{\text { total time }}$	

