Year 9 Mathematics Higher HT 1

Definiti	ons							
Integer		A whole numbers and the negat	A whole numbers and the negative equivalents.					
Positive		Greater than zero.						
Negative		Less than zero.						
Decimal		A number with digits after the decimal point.						
Operatio	nc	Symbols describing how to comb	ine numbers.					
Operatio	115	$\times \rightarrow$ Multiply, $\div \rightarrow$ Divide	, $+ \rightarrow A$	Add,	$- \rightarrow$ Subtract,			
Multiplico	ations terms	<i>Multiplicand:</i> The number being <i>Multiplier</i> : The number that we a <i>Product</i> : The result of the multip	are multiplyir	-	/ L	multiplicand $3 = 6$		
Division t	erms	Divisor: The number we are di	<i>Dividend</i> : The number being divided. <i>Divisor:</i> The number we are dividing by. <i>Quotient:</i> The result of the division operation.			$\begin{array}{c} 6 \leftarrow \text{quotient} \\ 4 \overline{)24} \leftarrow \text{dividend} \\ \downarrow \\ \text{divisor} \end{array}$		
					+ and - are inv	verses		
Inuarca a	perations	The operation used to reverse th	e original		$ imes$ and \div are inv	verses		
inverse o	perations	operation.			Square and square root are inverses			
					Cube and cube root are inverses			
Order of	Operations		В		Brackets			
		The order in which operations			Indices Division & Multiplication			
		should be done.	DM					
	≠	Not equal to.	AS		Addition	n & Subtraction		
Inclusive	+		ncludes the first and last numbers given.					
Index For	rm	A number written as a base to the power of something.			Exponent Power Index			
Prefix		he first part of a word, sometimes separated from the rest of the word by a hyphen.						
Standard	Form	A number written in the form: $A \times 10^n$, where A is between 1 and 10.						
Scientific	Notation	Another name for Standard For	n.					
Surd		An method of writing non square numbers as exact numbers in roc		_		rd because $\sqrt{4} = 2$ it is between 2 and 3		
Fraction		Represents a proportion or part of a whole.			e.g. $\frac{4}{5}$			
Numerat	or	The number or term on top of th	e fraction.			Numerator		
Denomin	ator	The number or term on the bott		ction.		Denominator		
Rationalise the denominator		Eliminate a surd denominator in a fraction.						
1a. Calc	ulations, checl	king and rounding (N2, N3, I	N5, N14, N1	15)				
i)	a. Calculations, checking and rounding (N2, N3, N5, N14, N15) i) Add & subtract decimals Use the column method making sure making sure the decimal points are vertically aligned 3.8 - 1.26 - 1.26 - 1.26 - 2.54				3.80 - 1.26			

	A. D. L		
ii)	Multiply decimals	Multiply the integers and correct place value	Calculate: 4.32 \times 20.8 Use: 432 \times 208 = 89856 So: 4.32 \times 20.8 = 89.856 2 dp 1 dp 3dp
iii)	Divide decimals	<u>Dividing a decimal by an integer</u> : Use short division ensuring that a decimal point is placed vertically above the decimal point in the dividend.	3.7 4 14.8
		<u>Division with a decimal remainder</u> : add a decimal point and additional zero's after the dividend to allow you to continue the short division as above.	Calculate: $57 \div 8$ Use: $8 \sqrt{57 \cdot 0^{\circ}0^{\circ}0}$
		<u>Dividing by a decimal:</u> Multiply dividend and divisor by 10, 100, 1000 so that the divisor becomes an integer then complete short division as above. <u>N.B. Do</u> not place value after the calculation!	Calculate: 6. 488 \div 0. 8 \times 10 \times 10 Use: 64.88 \div 8 = 8.11 So: 6.488 \div 0.8 = 8.11
iv)	Multiply any number between 0 and 1	Use the methods described above in: ii) Multiply decimals <i>N.B.</i> Value of the product will be smaller than the value of the multiplicand if the multiplier is between 0 and 1 and vice-versa.	$12 \times 0.2 = 6$ And: $0.2 \times 12 = 6$
	Divide any number between 0 and 1	Use the methods described above in: iii) Divide decimals <i>N.B.</i> Value of the quotient will be greater than the value of the dividend if the divisor is between 0 and 1.	$12 \div 0.2 = 60$
v)	Use one calculation to find the answer to another	Given: $a \times b = c$ Then: $c \div b = a$ and $c \div a = b$ Adjust place value if necessary.	If: $19 \times 24 = 456$ $456 \div 24 = 19$ $456 \div 19 = 24$ $1.9 \times 24 = 45.6$ $456 \div 190 = 2.4$ $19 \times 240 = 4560$
vi)	Use the product rule for counting: multiple groups	There are <i>n</i> different options available from group A and <i>m</i> different options available from group B. The number of possible combinations that can occur when choosing one option from Group A and one option from Group B is given by: $n \times m$	e.g. A restaurant serves 4 different starter and 5 different main courses. How many combinations of start and main course could you choose? $4 \times 5 = 30$
	Use the product rule for counting: one group with repeats	There are n possible options available from a single group and the same option can be selected multiple times. The number of possible combinations that can occur when choosing m options is given by: n^m	e.g. A combination lock has 3 wheels with the numbers 1 to 8 on each wheel. How many different combinations are possible? $8^3 = 512$
	Use the product rule for counting: one group without repeats	There are n possible options from a single group and each options can be selected once only. The number of possible outcomes that can occur when choosing m options is given by: $n \times (n-1) \times (n-2) \times \dots \times (n-m+1)$	e.g. 12 people run a marathon, how many combinations of gold, silver and bronze medal winners are there? $12 \times 11 \times 10 = 1320$

::)	Dermed to a						
vii)	Round to a given number	 Count the number of decimal places you 	0	\wedge	e.g. 36. 3486343		
	of decimal	need.	8	up	36.3 486343		
	places	 Look at the number to the right of that 	9 8 7 6 5	1.	To 1 d.p. is 36.3		
	places	digit to decide if it rounds up or down.			36.34 86343		
		 5 or more it rounds up, 4 or less it rounds 	down 3		To 2 d.p. is 36.35		
		down.	โ		36.348 6343		
					To 3 d.p. is 36.349		
ii)	Round a	• Count the number of digits you need from			e.g. 324 627 938		
	large number	the left.		•	3 24627938		
	to a given number of	 Look at the number to the right of that digit to decide if it rounds up or down. 	9	ſ	To 1 s.f. is		
	significant	 5 or more it rounds up, 4 or less it rounds 	9 8 7 6 5	up	30000000		
	figures	down.	65		32 4627938		
	ingules	 Replace remaining digits with zeros as 	down 3	-	To 2 s.f. is		
		place holders.	2		32000000		
			\downarrow		324 627938		
					To 3 s.f. is		
	<u> </u>				32500000		
ix)	Round a	• Zeros are not significant until after the first			e.g. 0.0034792		
	small number	non-zero number.	9		0.003 4792		
	to a given	 Find the first non-zero and count the number of digits you need from there. 	98 7 6 5	up	To 1 s.f. is 0.003		
	number of significant	 Look at the number to the right of that 	é		0.0034 792		
	figures	digit to decide if it should round up or	. 4		To 2 s.f. is 0.0035		
	ingules	down.	down 3		0.00347 92		
		• 5 or more it rounds up, 4 or less it rounds	\downarrow 1		To 3 s.f. is 0.00348		
		down.					
x)	Estimating	 Round each number to 1 significant figure b 	efore doing	e.g. Esti			
		any calculations.		_	.91 × 8789.8		
		It is acceptable to round one or more numb		6	520.9×0.492		
		calculation to a greater accuracy than 1 sig. makes the calculation easier.	rig. If this	3.91 x	8789.8 4 × 9000		
		DO NOT round the answer!		620.9	$\frac{1}{\times 0.492} \approx \frac{1}{600 \times 0.5}$		
				020.7	3600		
					$\approx \overline{300}$		
					≈ 120		
1b. Indi	ices, roots, recip	rocals and hierarchy of operations (N2	, N3, N6, N7,	N14)			
X	Use index	• Count how many zero's there are after the 1	and write 10	e.g. 10	$000\ 000 = 10^7$		
i)	notation for	to the power of this number.					
	positive powers	• Write a 1 followed by the same number of z	e.g. 10 ²	$^{2} = 100$			
	of 10	power 10 is raised to. $e.g. 10^{\circ} = 100^{\circ}$					
ii)	Use index	Count how many zero's there are in front of the 1 and					
	notation for	write 10 to the power of the negative of this		e.g. <mark>0</mark> . 0	$00\ 000\ 1=\ 10^{-7}$		
	negative	 Use the positive of the power 10 is raised to 					
	powers of 10	with this number of zero's in front with a de	cimal point	e.g. 10	$^{-2} = 0.01$		
	after the first.						

iii)	Recognise common powers Powers of 2 Powers of 3 Powers of 4 Powers of 5	many times to u	positive power of a m use that number in a $4, 2^3 = 8, 2^4 = 16, 2^5 =$ $3^1 = 3, 3^2 =$ $4^1 = 4, 4^2 = 1$ $5^1 = 5, 5$	e.g. 7^2 = 256. 2 = 243 $5^5 = 102^4$	$2^9 = 512, 2^{10} = 1024$		
iv)	Estimate roots of any given positive number	 Identify the square (or cube) numbers immediately above and below the number we are trying to find the square (or cube) root of. The desired root must lie between the integer roots of the square numbers immediately above and below. 				ween which two does $\sqrt{42}$ lie? square number is 49. ous square number is $\sqrt{36} = 6, \sqrt{49} = 7$ $\overline{42}$ lies between : 6 & 7	
v)	Find the value of calculations involving positive indices	Recall that a positive power of a number tells us how many times to use that number in a multiplication.				e.g. $3^4 = 3 \times 3 \times 3 \times 3$ e.g. $7^2 = 7 \times 7$	
	Find the value of calculations involving negative indices	To calculate a n Calculate the power. Then take the	equivalent positive	$a^{-n} = \frac{1}{a^n}$		e.g. Calculate 4^{-3} . • $4^3 = 64$ • $4^{-3} = \frac{1}{64}$	
	Find the value of calculations involving fractional indices		The denominator of the fractional power gives the type of root to		ļ	e.g. $64^{\frac{1}{2}} = \sqrt{64} = 8$ e.g. $125^{\frac{1}{3}} = 3\sqrt{125} = 5$	
vi)	Use powers of 0 and 1		Anything to the power of $0 = 1$		$a^0 = 1$		
		Anything to the power $1 = $ itself		$a^1 = a$		e.g. 5 ¹ = 5	
vii)	Use index laws to simplify or evaluate	Multiplication • Add the powers		$a^m \times a^n = a^m$	+n	e.g. $2^2 \times 2^3 = 2^5 (= 32)$	
	numerical expressions	Division	Subtract the powers	$a^m \div a^n = a^{m-n}$		e.g. $3^9 \div 3^4 =$ $3^5 (= 243)$	
		Brackets	Multiply the powers	$(a^m)^n = a^{mn}$		e.g. $(7^4)^3 = 7^{12}$	

i)	Factors	A factor is a number that divides into another	e.g. factors of 6:		
		number	1, 2, 3 and 6		
ii)	Multiples	A multiple is a number from the times tables	e.g. multiples of 4: 4, 8, 12, 16, 20,		
iii)	Prime number	A prime number is a number with exactly 2 factor	5		
		2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,	61, 67, 71, 73, 79, 83, 89, 97		
iv)	Product	The answer when two or more numbers are multiplied together.	e.g. Product of 3 & 7: 3 × 7 = 21		
v)	Prime factor decomposition	Writing a number as a <i>product of its prime factors</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
vi)	Highest common factor (HCF)	The highest number that divides exactly into two or more numbers.	e.g. The HCF of 12 & 8: 4		
vii)	Lowest common multiple (LCM)	The smallest positive number that is a multiple of two or more numbers.	e.g. The LCM of 12 & 8: 24		
ld. Sto	andard form (N	9)			
i)	Convert a small number to standard form	 Count the number of zero's in front of the first significant figure (including the one in front of the decimal point). The power of ten is negative followed by this number. 	e.g. 0.0000037 = 3.7×10^{-7}		
ii)	Convert a large number into standard form	 Count the number of place value position there are after the first significant figure. The power of ten is positive followed by this number. 	e.g. 147 100 000 000 $= 1.47 \times 10^{11}$		
iii)	Converting to a small ordinary number	 Look at the digit after the negative in the power of 10. Write this may zero's in front of the first sig. fig. Reposition the decimal place between the first and second zero. 	e.g. 2.4×10^{-6} = 0.0000024		
iv)	Adding or subtracting numbers in standard form	 Convert the numbers to ordinary numbers. Add. Convert the sum to standard form. 	e.g. $(2.3 \times 10^4) + (6.4 \times 10^3)$ = 23000 + 6400 = 29400 = 2.94 × 10 ⁴		

v)	Multiplying numbers in standard form	 Multiply the numbers between one and 10 at the front. Use index law for multiplication for the powers of 10. If necessary increase the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(4.5 \times 10^3) \times (3 \times 10^5)$ = $13.5 \times 10^{3+5}$ = 13.5×10^8 = 1.35×10^9
vi)	Dividing numbers in standard form	 Divide the numbers between one and 10 at the front. Use index law for division for the powers of 10. If necessary decrease the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(2.5 \times 10^{11}) \div (5 \times 10^{13})$ = 0.5×10^{-2} = 5×10^{-3}
1d. Sur	rds (N8)		
i)	Multiply	$\sqrt{a} imes \sqrt{b} = \sqrt{ab}$ and $\sqrt{a} imes \sqrt{a} = a$	e.g. $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ and $\sqrt{3} \times \sqrt{3} = 3$
ii)	Divide	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	e.g. $\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}$
iii)	Add and	$\sqrt{a} + \sqrt{b}$ cannot simplify	e.g. $\sqrt{3} + \sqrt{2} = \sqrt{3} + \sqrt{2}$
	subtract	But $\sqrt{a} + \sqrt{a} = 2\sqrt{a}$	e.g. $5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$
iv)	Simplify	$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$	e.g. $\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$
v)	Rationalise the denominator	Multiply numerator and denominator (use equivalent fractions) by whatever will result in the denominator simplifying to an integer.	e.g. $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{7}{\sqrt{7}}$ e.g. $\frac{1}{5+\sqrt{2}} = \frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}} = \frac{5-\sqrt{2}}{3}$

Algeb	ora: the basics			
Definit	tions			
1.	Variable	A letter representing a varying or ur	ıknown quantity.	
2.	Coefficient	A number which multiplies a variab	le e.g. 4 is the coefficient in 4a	
		One part of an expression/equation/	formula e.g. 4C	
3.	Term	Can involve multiplying and dividing coefficients and variables W		
		subtraction	ition and 5	
4.	Like terms	Terms that have the same variable but have different coefficients	e.g. c + 4c are like terms c ² and c ³ are not like terms	
		A fixed value.	Coefficient Variable	
5.	Constant	A number on its own or sometimes a letter such as a, b or c to represent a fixed number.	$4 \times - 7 = 5$ Operator Constants	
		One or a group of terms.		
6.	Expression	Can include variables, constants, operators and grouping symbols.	e.g. 3y -3	
		No 'equals' sign	3y ² +y ³	
7.	Equation	Contains an 'equals' sign, = Has at least one variable	e.g. 3y – 3 = 12	
8.	Formula	A special type of equation that show variables	s the relationship between a set of	
9.	Formulae	Plural of 'formula'		
10.	Identity	An equation that is true no matter what values are chosen, \equiv	e.g. $3y \equiv 2y - y$ for any value of y.	
11.	Subject	The variable on its own on one side a	of the equals sign.	
12.	Substitute	Replace a variable with a number.	a = 3, b = 2 and c = 5. Find: 1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$	
13.	Simplify	Minimising the size of an expression		
L				

14.	Factorise	Splitting an expression into a prod	uct of factors			
15.	Expand	plication				
16.	Solve	Find the value of an unknown				
Algebr	aic Notation					
17.	Adding like terms	Add the coefficients	b + 2b = 3b			
18.	Subtracting like terms	Subtract the coefficients	5b-4b = b			
19.	Multiplying like terms	If the base is the same, add the powers	$b \times b = b^2$			
20.	Dividing terms	If the base is the same, subtract the powers	$b^5 \div b^2 = b^3$			
21.	Adding different terms	Cannot combine if the terms are different.	b + 2c = b + 2c			
22.	Subtracting different terms	Cannot combine if the terms are different.	3c-4=3c-4			
23.	Multiplying different terms	Combine with no ' \times ' sign	$d \times e = de$			
24.	Multiplying different terms with coefficients	Combine with no '×' sign, multiply the coefficients	$2d \times 3e = d6e$			
25.	Dividing different terms	Write as fractions with no '÷' sign	$3d \div e = \frac{3d}{e}$			
26.	Dividing different terms with coefficients	Write as fractions with no '÷' sign, simplify the coefficients where possible.	$14d \div 7e = \frac{2d}{e}$			
Expar	nding (single brackets)					
27.		the bracket, by the term on the ou	tside.			
28.		3a+12 $x = \frac{2x}{2x} \frac{4x^2}{4x^2}$	-3			
Facto	rising (single brackets)					
29.	new terms inside the	e bracket	x + 4y 2(x + 2y) x - 10xy 5xy(x - 2)			
Expressions						
		Can be represented by a straight line				
30.	Linear	No indices above 1	- e.g. $2x + 2$			
31.	Quadratic	An expression where the highest index is 2	e.g. $2x^2 + 2x + 2$			

Expar	nding double brack	ets				
32.	Everything in the first b	racket must be multiplied by everything in the second				
	Grid me	ethod FOIL method				
	(x+4)(x+1)	7) FIRST: $(x+3)(x-4)$ gives $x \times x = x^2$				
	X x +4	DUTER: $(x+3)(x-4)$ gives $x \times (-4) = -4x$				
33.	x x ² 4x +7 72 28	INNER : $(x+3)(x-4)$ gives $3 \times x = 3x$				
	$= x^{2} + 4x + \frac{1}{2}$ $= x^{2} + \frac{1}{2}$	LAST: $(x+3)(x-4)$ gives $3 \times (-4) = -12$				
Facto	rising a quadratic e	expression				
		Multiply to 5				
		Factorise $x^2 + 5x + 6 \leftarrow \text{Add to } 6$				
	Factorising a					
34.	quadratic in the form	2 and 3 add to 5 2 and 3 multiply to 6				
	of $ax^2 + bx + c$					
		(x+2)(x+3)				
		Check: $(x + 2)(x + 3) = x^2 + 5x + 6$				
		A special type of quadratic which only has two terms.				
	Difference of two	One term is subtracted from the other				
35.	squares	$x^2 - 25 = x^2 - 5^2 = (x + 5)(x - 5)$				
		$y^2 - 49 = y^2 - 7^2 = (y + 7)(y - 7)$				
		$a^2 - 16 = a^2 - 4^2 = (a + 4)(a - 4)$				
Equa	tions					
36.	To solve equations we need to use inverse operations					
37.	What ever you do to one side of the equals sign you must do the same to the other					

38.	One step	x + 4 = (-4) x = 2		x - 5 (+5) x		1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
39.	Two step	Requires the u	se of tw	o inverse	operatior	15	2x - 7 = 19 $2x = 26$ $x = 13$
40.	With brackets	5(2x 10x	Expand the brackets first 5(2x + 1) = 35 $10x + 5 = 35$ $10x = 30$ $x = 3$			OR if possible divide by the number outside of the bracket first $4(2x + 4) = 20$ $2x + 4 = 5$ $2x = 1$ $x = \frac{1}{2}$	
41.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.				5x + 2 = 3x - 82x + 2 = -82x = -10x = -5	
42.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\frac{f}{5} + 2 = 8$ $\frac{f}{5} = 6$ $f = 30$			If everything is part of the fraction then multiply by the denominator first. $\frac{f+2}{5} = 8$ $f+2 = 40$ $f = 38$		
Chang	Always use inve If the letter you	bject of a formula (rearranging) verse operations to isolate the term you have been asked to make the subject bu want as the subject appears twice you will need to factorise the subject: Make u the subject: I = mv - mu I = mv - mu				o factorise Make m the subject: I = mv - mu	
43.	v = u $(-u)$ $v - at$ So $u = v$	ut) t = u	$v^{2} = u^{2} + 2as$ $(-2as)$ $t)$ $v^{2} - 2as = u^{2}$ $(\sqrt{)}$ $\sqrt{v^{2} - 2as} = u$			$(Factorise)$ $I = m(v - u)$ $(\div (v - u))$ $\frac{I}{v - u} = m$ So $m = \frac{I}{v - u}$	

lterat	ion				
44.	Iteration	The act of repeating a process to generate a sequence of outcomes or with the aim of of appraoching a desired result e.g. finding a solution to an equation			
45.	Iterative sequence	The relationship between consecutive terms			
46.	Roots	Solutions to an equation			
47.	Change of sign	Two values with a root between them			
Seque	ences				
48.	Sequence	An order pattern of numbers or diagrams			
49.	Term	One of the numbers or diagrams in a sequence			
50.	Term to term rule	The rule for moving from one term to the next in a sequence			
51.	Formula	A rule written to describe a realtionship between twp quantities			
52.	Arithmetic sequence	A sequence where the term to term rule is to addd or subtract the same amount each time			
	Quadratic	A sequence where the term to term rule is changing by the same amount each time			
53.	sequence	The second difference is a constant amount.			
54.	Geometric sequence	A sequence where the term to term rule is to multiply by the same amount each time			
	Common	The value a geometric sequence is multiplied by from one term to the next			
55.	ratio	Denoted by the letter <i>r</i>			
56.	Series	The sum of the terms in a sequence			
57.	Position to term rule	The rule for finding any value of a sequence			
		The rule to find any term in a sequence of numbers			
58.	nth term rule for an arithmetic sequence	 Find the common difference between the terms This becomes you coefficient of n (this is the times table the sequenc is linked to) The number you need to add or subtract to get to the second term becomes the second term in the nth term rule 6, 10, 14, 18, 22 The sequence increases by 4, so the nth term starts with 4n 			
59.	Nth term for a quadratic sequence	 Find the first difference Find the second difference Halve the second difference and multiply by n² to gain a new sequence of an² Generate the first few term sof this seuence then subtract from the original sequence 			

60.	nth term for a geometric sequence	•						
61.	Finite	Has a f	inal point					
62.	Infinite	Carries	on forever					
63.	Ascending	Increase	25					
64.	Descending	Decrea	ses					
65.	Linear function An aruthmetic sequence that can be represented by a straight line graph							
Special	Sequences							
66.	Square numbers		1, 4, 9, 16, 25, 36, 49, 64, 81, 100					
67.	Cube numbers		1, 8, 27, 64, 125	1 8 27 64 125				
68.	Triangular numbers		1, 3, 6, 10, 15, 21, 28					
	Fibernani com		A sequence where each term is the sur	n of the two previous terms				
69.	Fibonacci sequ	ience	e.g. 1, 1, 2, 3, 5, 8, 13, 21					