Fractions

1.	Improper fraction	A fraction where the numerator is larger than the denominator.	e.g. $\quad \frac{4}{3}$
2.	Mixed number	A number made from integer and fraction parts.	e.g. $2 \frac{2}{3}$
3.	Unit fraction	A fraction that has a numerator of 1	
4.	Reciprocal	The reciprocal of a number is 1 divided by the number. e.g. the r	e.g. the reciprocal of 3 is $\frac{1}{3}$
		Dividing by a number is the same as multiplying by its reciprocal e.g. \times by	e.g. \times by $\frac{1}{3}$ is the same as \div by 3
5.	Convert improper fractions to mixed numbers	- Divide the numerator by the denominator - The answer gives the whole number part. - The remainder becomes the numerator of the fraction part with the same denominator.	$\frac{43}{6}=7 \frac{1}{6}$
6.	Convert mixed numbers to improper fractions	- Multiply the denominator by the whole number part. - Add the numerator to this. - Put the answer to this back over the denominator	$7 \frac{1}{6}=\frac{6 \times 7+1}{6}=\frac{43}{6}$
7.	Adding and subtracting mixed numbers	- Convert mixed numbers to improper - Transform both fractions so they have - Add or subtract the numerators Convert back to mixed number if app	actions the same denominator cable
8.	Multiplying mixed numbers	- Convert mixed numbers to improper - Multiply numerators and multiply the Convert back to mixed number if app	actions denominators icable
9.	Dividing mixed numbers	- Convert mixed numbers to improper - Flip the second fraction (find the recip - Change the divide sign to a multiply - Multiply the fractions Convert back to mixed number if app	actions ocal) cable

Index laws

10.	Index	A small number to the upper right of a base number that shows how many times the base number is multiplied by itself.
11.	Power	Another word for an index.
12.	Indices	The plural of index.

13.	Index form	A number written to the power of an index.	
14.	Multiplying	Add the powers	$x^{7} \times x^{6}=x^{13}$
15.	Dividing	Subtract the powers	$x^{5} \div x^{6}=x^{-1}$
16.	Brackets	Multiply the powers	$\left(x^{2}\right)^{3}=x^{6}$
17.	Power of 0	Always = 1	$x^{0}=1$
18.	Negative	Means "1 over"	$x^{-n}=\frac{1}{x^{n}}$
19.	Unit Fraction	Means root	$x^{\frac{1}{n}}=\sqrt[n]{x}$
20.	Fractional	Means root and bracket	$x^{\frac{a}{n}}=(\sqrt[n]{x})^{a}$
Standard form			
21.	Standard form	A number written in the form: $A \times 10^{n}$, where A is between 1 and 10 .	
22.	Scientific notation	Another name for standard form	
23.	Convert a small number to standard form	- Count the number of zero's in front of the first significant figure (including the one in front of the decimal point). - The power of ten is negative followed by this number.	$\begin{aligned} \text { e.g. } & 0.00000037 \\ =3.7 & \times 10^{-7} \end{aligned}$
24.	Convert a large number into standard form	- Count the number of place value position there are after the first significant figure. - The power of ten is positive followed by this number.	$\begin{aligned} & \text { e.g. } 147100000000 \\ & =1.47 \times 10^{11} \end{aligned}$
25.	Converting to a small ordinary number	- Look at the digit after the negative in the power of 10. Write this may zero's in front of the first sig. fig. - Reposition the decimal place between the first and second zero.	$\begin{aligned} \text { e.g. } \quad 2.4 & \times 10^{-6} \\ = & 0.0000024 \end{aligned}$
26.	Adding or subtracting numbers in standard form	- Convert the numbers to ordinary numbers. - Add. - Convert the sum to standard form.	$\text { e.g. } \begin{gathered} \left(\mathbf{2 . 3} \times \mathbf{1 0}^{\mathbf{4}}\right)+\left(\mathbf{6 . 4} \times \mathbf{1 0}^{\mathbf{3}}\right) \\ =23000+6400 \\ =29400 \\ =2.94 \times \mathbf{1 0}^{4} \end{gathered}$

27.	Multiplying numbers in standard form	- Multiply the numbers between one and 10 at the front. - Use index law for multiplication for the powers of 10. - If necessary increase the power of ten by one to ensure the initial number is between 1 and 10 .	$\text { e.g. } \begin{aligned} (\mathbf{4 . 5} & \left.\times \mathbf{1 0}^{\mathbf{3}}\right) \times\left(\mathbf{3} \times \mathbf{1 0}^{\mathbf{5}}\right) \\ & =13.5 \times 10^{3+5} \\ & =13.5 \times 10^{8} \\ & =\mathbf{1 . 3 5} \times \mathbf{1 0}^{\mathbf{9}} \end{aligned}$
28.	Dividing numbers in standard form	- Divide the numbers between one and 10 at the front. - Use index law for division for the powers of 10. - If necessary, decrease the power of ten by one to ensure the initial number is between 1 and 10 .	$\text { e.g. }\left(\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{1 1}}\right) \div\left(5 \times \mathbf{1 0}^{13}\right)$

Similarity and Congruence in 2D

| 1. | Congruent | Exactly the same shape and size | |
| :---: | :--- | :--- | :--- | :--- |
| 2. | Similar | Two shapes where one is an enlargement of another | |
| | | Corresponding angles are equal | Corresponding sides are in the same ratio |
| 3. | Scale factor | The proportion by which the dimensions of an object will increase or decrease by | |
| 4. | Linear scale
 factor (LSF) | The scale factor/ratio of sides of two
 similar shapes | LSF $=\frac{\text { length from large shape }}{\text { length from small shape }}$ |
| 5. | Area scale
 factor (ASF) | The scale factor ratio of areas/surface
 areas of two similar shapes | ASF $=\frac{\text { Area of large shape }}{\text { lArea of small shape }}$ |
| 6. | Volume scale
 factor (VSF) | The scale factor/ratio of volumes of two
 similar shapes | $V S F=\frac{\text { volume of large shape }}{\text { volume of small shape }}$ |

Two triangles are congruent if...

7.	SSS	All 3 sides are equal	
8.	SAS	2 sides and the included angle are equal	
9.	ASA	2 angles and the corresponding side are equal	
10.	RHS	The right angle, hypotenuse and one other side are equal	
Vectors			
11.	Magnitude	Size	

Year 11 Mathematics
Foundation
HT 2

Algebra definitions

| 1. | Equation | A mathematical statement containing an equals sign (=) to show that two
 expressions are equal |
| :---: | :--- | :--- | :--- |
| 2. | Formula | A rule describing the relationship between different variables |
| 3. | Formulae | The plural of formula |
| 4. | Function | A relation involving one or more variables |
| 5. | Roots | Solutions to an equation |
| | | |
| 6. | Identity | An equation that is true for any value of x |
| 7. | Substitute | Renoted using \equiv |
| 8. | Subject | The variable on its own on one side of the equals sign is said to be the 'subject' of a
 formula |
| 9. | Rearrange | Change positons of terms using inverse operations |

Changing the subject of a formula (rearranging)

Always use inverse operations to isolate the term you have been asked to make the subject
10.

$$
\begin{gathered}
\text { Make } u \text { the subject: } \\
\begin{array}{c}
v=u+a t \\
(-\boldsymbol{a t}) \\
v-a t=u \\
\text { So } \\
u=v-a t
\end{array}
\end{gathered}
$$

Types of graphs/functions

Simultaneous equations

16.

Simultaneous equations

Two equations where there are two unknown which have the same value in each

Solving simultaneous equations

17.	Elimination	Add or subtract one equation from another to eliminate a variable	
		If the matching coeefieicents have the same sign then subtract the equations \checkmark Same \checkmark Subtract \checkmark Substitute	If the matching coefficients have different signs then add the equations \checkmark Different \checkmark Add \checkmark Substitute
18.	Substitution	Rearrange so the subject of one equation is a single variable	
		Substitute this into the second equation	
19.	Graphically	The points of intersection of two graphs are the solutions to the simultaneous equations	

