Definitions and processes

10.	Triangle law	$\overrightarrow{O A}+\overrightarrow{A P}=\overrightarrow{O P}$	
11.	Parallel vectors	Any vector parallel to the vector a may be written as λa, where λ is a non-zero scalar	
12.	$\binom{p}{q}$	Can also be written as $p \mathbf{i}+q \mathbf{j}$	e.g. $\quad 5 \mathbf{i}+2 \mathbf{j}=\binom{5}{2}$
13.	Zero vector	$\overrightarrow{O A}+\overrightarrow{A O}=0$	
14.	Vectors and ratios	If P is A point on $A B$, dividing $A B$ in the ratio $\lambda: \mu$	$\overrightarrow{O P}=\overrightarrow{O A}+\frac{\lambda}{\lambda+\mu} \overrightarrow{A B}$

Proportion

1.	Constant of proportionality	Represented by k	
		Its value stays the same	
2.	Direct proportion	Two quantities increase at the same rate	e.g. y is directly proportional to x^{\prime} $\begin{gathered} y \propto x \\ y=k x \end{gathered}$
3.	Inverse proportion	One variable increases at a constant rate while the other variable decreases	e.g. ' y is inversely proportional to x ' $\begin{aligned} & y \propto \frac{1}{x} \\ & y=\frac{k}{x} \end{aligned}$

Graph transformations

4.	$y=-f(x)$	Reflection in the x axis	y coordinates are multiplied by -1
5.	$y=f(-x)$	Reflection in the y axis	x coordinates are divided by -1
6.	$y=-f(-x)$	Reflection in the x axis and then in the y axis	Equivalent to rotation of $180 \circ$ about the origin
7.	$y=f(x)+a$	Translation by the vector $\binom{0}{a}$	
coordinates are divided by -1			

Rates of change

11.	Gradient	The gradient of the tangent to a curve can be used to calcuakte the gradient of a curve at any point	
		The area under the graph represents the product of the units on the y and x axes	If the graph is a curve then split up into shapes such as trapezia and triangles to find an estimate for the area
12.	Area under graph	e.g. for a velocity time graph the area represents the distance travelled	

