

Knowledge

Organisers

Year 8 PC1 (October Exam)

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to **recall** from a particular topic. That means that it **does not have everything on it** for a unit of study but it does have **the most essential things to learn.**

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that **the more you know** the **more you can learn.** By being able to recall the facts, you are able to understand more complicated ideas because you **already know what the key words mean.** You will also already have a set of ideas in your mind that the new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

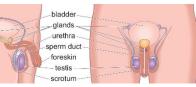
Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!

Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.

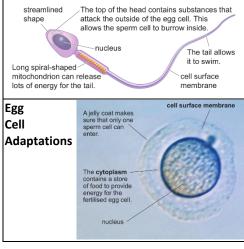


7B Sexual Reproduction in Animals

1. Animal Sexual Reproduction		
Offspring	The new organisms	
p8	produced by reproduction.	
Sexual	Reproduction that needs two	
Reproduction	parents to produce offspring.	
Gametes	Sex cells	
Sperm	Gamete that males make	
Egg	Gamete that females make	
	Sperm enters an egg cell and	
Fertilisation	nuclei fuse forming a	
	fertilised egg cell.	
Futore al	The sperm and egg cell meet	
External Fertilisation	outside of the body.	
Fertilisation	e.g. fish	
Internal	The sperm and egg cell meet	
Fertilisation	inside the body.	
Lleing	Large numbers of eggs are	
Using External	produced because many get	
External Fertilisation	washed away. The parents	
Fertilisation	don't look after their young.	
	Fewer egg cells produced	
Using	because sperm is more likely	
Internal	to reach egg. The parents	
Fertilisation	usually look after their	
	young.	

2. Reproductive Organs		
Testes	Where sperm cells are made.	
Scrotum	Bag of skin containing the	
	testes.	
Sperm Ducts	Sperm travels through here	
	after leaving the testes.	
Glands	Fluids are added to the	
	sperm- it is now called	
	semen.	
Urethra	The tube the semen leaves	
	the body through.	

Ovary	Where the egg cells develop
	and are released from.
Oviduct	Tube lined with cilia (tiny
	hairs).
Uterus	Where the baby will develop
	if the egg is fertilised.
Cervix	Ring of muscle between
	uterus and vagina.
Vagina	Part that leads from the
	cervix to the outside.


Female Reproductive System

sperm cells and egg cells in female start to mature.

Sperm Cell Adaptations

Puberty

3.	Becoming Pregnant		1. con
Sexual	The erect penis is inserted		beg
Intercourse		Stages of	2. am
	Semen is numbed out of the	Giving	3. cer
Ejaculation	urethra.	Birth	
	Vagina → sucked up through		con thre
Route the	$carvix \rightarrow utarus \rightarrow oviduct \rightarrow$		4. Um
sperm take	s meets egg cell		The pla
	If fertilisation occurs the cell	Afterbirt	h the va
	starts to divide forming an		Produc
Implantatio	n embryo which will then sink	Mamma	
•	into the uterus lining. The	Mammaı Glands	ry contai antibo
	woman is now pregnant.	Gianus	diseas
Amniotic	Watery fluid to protect		uiseas
Fluid	growing embryo / foetus.		5. G
• ····· ! · ··	Bag containing the amniotic	Sex	Rele
Amnion	fluid.	Hormone	es ovar
	Allows oxygen, food and	Changes	to Voic
	water to be passed from	Boys Dur	ing wide
	mother's blood into embryo's	Puberty	peni
Placenta	blood. Waste materials (like	Changes	to Brea
	carbon dioxide) pass from	Girls Dur	ing hips
	embryo's blood into mother's	Puberty	relea
	blood.		Days
Umbilical	Carries the embryo's blood to		from
Cord	and from the placenta.		Days
		Menstru	al mate
	Gestation and Birth	Cycle	arou
Gestation	The time from fertilisation until		Days
Period	birth.		towa
	When an embryo develops a		ferti
Foetus	full set of organs we call it a		
	foetus (around 8 weeks).	Lesson	
	Produce images of foetus to		nal Sexua
Scans	check for problems.		
Harm to Alcohol, drugs, cigarette smoke		Reprod	
Baby	and viruses can pass through	2. Reproductive	
placenta and harm foetus.		Organs	
Premature	Baby born small and early.		ming Pre
Labour	The act of giving birth. 4. Gestation & 1		

ages of ving rth	 contractions start and cervix begins to widen. amnion breaks and amniotic fluid leaves vagina. cervix at 10cm, stronger contractions pushes baby through. Umbilical cord cut. 	
terbirth	The placenta is passed out of the vagina- end of labour.	
ammary ands	Produces milk for babies- contains nutrients and antibodies to protect from disease	
	E. Growing Up	
	5. Growing Up	
x	Released by brain, tests &	
ormones	ovaries- start puberty.	
nanges to bys During	Voice deepens, shoulders widen, hair grows, testes/	
iberty	penis grow, sperm produced.	
nanges to	Breasts develop, hair grows,	
rls During		
berty	release eggs.	
	Days 1-5: uterus lining lost	
	from body (menstruation)	
	Days 6-14: egg cell starts to	
enstrual	mature and is released	
/cle	around day 14 (ovulation)	
	Days 14+: egg cell swept	
	towards uterus, if not	
	fertilised cycle starts again.	
esson	Memorised?	

Lesson	Memorised?
1. Animal Sexual	
Reproduction	
2. Reproductive	
Organs	
3. Becoming Pregnant	
4. Gestation & Birth	
5. Growing Up	

7D Ecosystems

	1. Variation		
Habitat	The place where an		
	organism lives.		ack
Variation	The difference between	A	dap
variation	organisms.		
	Type of variation where the	_	
Continuous	measurement can be any	C	om
continuous	value in a given range.	-	
	e.g. height, mass	-	
	Type of variation where the	E	cos
Discontinuous	measurement falls into	-	
Discontinuous	certain categories.		he
	e.g. eye colour, blood group		aria
Offspring	The new organism produced		he
Olispillig	by reproduction.		aria
	Group of organisms that can		etw
Spacios	reproduce to produce		am
Species	offspring that can also	S	pec
	reproduce.	Ic	den
Hybrid	The offspring of two	T	win
	different species. They		
	cannot reproduce.		

2. Adaptations		
Environment	The conditions in a habitat.	
Adaptations	Features that help an organism to survive in the environment where it lives.	
Polar Bear Adaptations	 Thick fur to keep warm small ears to stop heat loss white fur for camouflage rough soles to grip ice large feed to spread out weight / swimming 	

Cactus Adaptations	 Stem stores water 	
	 roots cover large area to 	
	absorb water	
	 no leaves to stop water 	
	loss	
	large ears to allow heat to	
	escape	
Jack Rabbit	• large hind legs to increase	
Adaptations	running speed	
	 gets all its water from 	
	food, doesn't drink	
Community	All the animals and plants	
	that live in a habitat.	
	The community and all the	
Ecosystem	physical environmental	
	factors together.	
Inherited	Variation between features	
Variation	caused by an organism's DNA	
Inherited	Gametes contain different	
Variation	instructions for features. A	
Between	different sperm and egg	
Same	produce each offspring, so	
Species	each has different features.	
Identical	Identical because they	
	develop from one fertilised	
Twins		

3. Effects of the Environment		
Environmental Variation	Variation caused by	
	environmental factors.	
variation	e.g. hairstyle, accent	
Daily Changes	Environmental changes	
	during the day.	
Seasonal	Environmental changes	
Changes	during the year.	
Nocturnal	Animals that are only active	
Nocturnal	at night.	
Nocturnal	Excellent eyesight	
Animal	Nocturnal owls have superb	
Adaptations	hearing as well and can fly.	
Deciduous	Trees that lose their leaves	
	in winter to stop water loss.	

	Trees with tougher leaves
Evergreen	that don't lose much water
Lvergreen	so they keep them all year.
Hibernation	Organisms become inactive
Hipernation	in winter so they don't
	need food.
Migration	Birds fly to warmer places for winter to find food.
	for winter to find food.
4. Effect	s on the Environment
	What an organism needs
Bacaureas	to survive and grow-
Resources	oxygen, food, water, etc.
	for animals.
Population	The numbers of a specific
Population	organism.
	Represents what eats
Food Chain	what in a habitat
	Grass \rightarrow hare \rightarrow lynx
	Organisms compete over
Competition	the resources that they
	need.
	Formed by joining
Food Web	together all food chains in
	an ecosystem.
Food Web Exa	•
great horne	d-owl wolverine wolf
(a predator that is not prey)	M 255
×	lynx 1
Carnivore (consumer and predator)	
Herbivore, consumer (eats other organisms)	snowshoe beetle
Producer (makes its own food)	

InterdependentOrganisms in an
ecosystem all depend on
one another.PredatorEats another animal.PreyEaten by another animal.

5. Tra	nsfers in Food Chains		
Food Chain	Represent energy passed		
Arrows	between organisms.		
	Energy is lost at each stage		
	along a food chain due to		
Energy Flow	being released by respiration		
	for movement etc. and some		
	food remains undigested.		
	Diagram showing number of		
	each organism at each stage		
	of a food chain.		
Pyramid of	fox		
Numbers	TOX		
	rabbits		
	lettuce plants		
	-		
Pesticides	Poison that kills pests.		
Pests	Organisms that cause		
1 0303	problems.		
Persistent	Poisons that are not broken		
reisistent	down in nature.		
Poisons in a	Poisons get more		
Food Chain	concentrated the further		
	along a food chain.		
DDT	Persistent pesticide used in		
	the UK that caused bird shells		
DDT	to become weak and break		
	easily. Banned in 1984.		

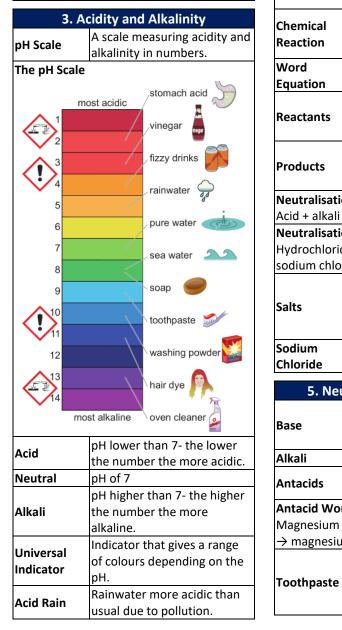
Lesson	Memorised?
1. Variation	
2. Adaptations	
3. Effects of the	
Environment	
4. Effects on the	
Environment	
5. Transfers in Food	
Chains	

7F Acids and Alkalis

	1. Hazards	
Hazard	Something that could cause	
18281 0	harm.	
Risk	The chance that a hazard will	
1131	cause harm.	
lazard	Internationally agreed symbols	
	representing the type of risk	
Symbols	from using a substance.	
$\mathbf{\wedge}$	Dangerous to Environment	
<₩∠	Can cause long term damage to	
∇	animal and plant life.	
	Тохіс	
	Poisonous and can cause death	
$\mathbf{\nabla}$	if taken into the body.	
$\overline{\mathbf{A}}$	Corrosive	
L.F.	Attacks certain substances like	
$\mathbf{\nabla}$	metals, stonework & skin.	
	Explosive	
	Heating may cause an explosion.	
	Flammable	
〈��〉	These substances catch fire	
$\overline{}$	easily.	
•	Caution	
	similar to toxic/corrosive but	
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	less serious- may cause skin	
\mathbf{V}	irritation	
	Dangerous substances are	
Diluted	mixed with water to make them	
	less dangerous.	
	2 Indicators	
	2. Indicators	
	A substance that changes	

colour in solutions of

type of lichen.


different acidity/alkalinity.

An indicator made from a

Indicator

Litmus

Acid Turns litmus indicator red.		
Alkali	Turns litmus indicator blue .	
	A substance that is neither acidic or alkaline.	
Red Cabbage	Can be used as an indicator.	

	. Neutralisation		
4			
	A reaction where an acid		
Neutralisatio	and alkali are mixed		
	together forming a neutral		
	substance.		
Chemical	A change in which one or		
Reaction	more new substance is		
Redetion	formed.		
Word	Used to model chemical		
Equation	reactions.		
	The starting substances-		
Reactants	written on left of word		
	equation.		
	The new substances made-		
Products	written on right of word		
	equation.		
Neutralisatio	n General Word Equation		
Acid + alkali 🕂	-		
Neutralisatio	n Word Equation Example		
	acid + sodium hydroxide →		
sodium chlori	de + water		
	Formed when acids and		
	alkalis react. Different acids		
Salts	and alkalis will form		
	different salts.		
Sodium	The chemical name for		
Chloride	common/table salt.		
5. Neut	ralisation in Daily Life		
	Any substance that		
Base	neutralises an acid forming a		
	salt and water.		
Alkali	A soluble base		
Antosido	Remedy for indigestion that		
Antacids	neutralise the stomach acid		
Antacid Word	Equation Example		
	ydroxide + hydrochloric acid		
	n chloride + water		
→ magnesium			

Contains bases that

eat.

neutralise acids in your

mouth from food that you

Bee Sting	A bee sting, being acidic can
Remedy	be treated with a weak alkali
Kennedy	like baking soda.
Wasa Sting	A wasp sting, being alkali,
Wasp Sting	can be treated with a weak
Remedy	acid like vinegar.
Cleaning	Acids clean the rust off
Cleaning	metals using a neutralisation
Metals	reaction.
	Acidic waste gases from
Wasta Casas	industries are sprayed with
Waste Gases	calcium hydroxide to
	neutralise them.
	•

Lesson	Memorised?
1. Hazards	
2. Indicators	
3. Acidity & Alkalinity	
4. Neutralisation	
5. Neutralisation in Daily Life	

Kettering	7G The Particle Model	Solid Particle Properties	Fixed arrangement of particles held closely together that cannot move over each other but vibrate.	Trace	Used to plot the movement of a particle and used as evidence for Brownian motion.	Straws	you suck, you pressure insid	pecause when reduce the de the straw so are outside the
Academy	ids, Liquids and Gases	Liquid Particle	Held closely together but not in a fixed arrangement and	Molecule	Two or more atoms joined together in a group.		straw is grate is pushed up.	r and the liquid
States of Matter	The three forms that a substance can be in; solid, liquid or gas.	Properties Gas Particle Properties	can move over each other. Far apart from each other and free to move about in all directions.	Nanometre	A unit of measurement. 1 nanometre (nm) is 0.000 000 001 metres (m)	Lesson		Memorised?
	Do not flow Fixed shape Fixed volume Cannot be compressed Can Flow	Solid Particle Diagram		Diffusion	4. Diffusion The movement of particles spreading out and mixing with each other without anything moving them.	1. Solids, Gases 2. Particle	Liquids and es	
iquid Properties	No fixed shape Fixed volume Cannot be compressed				Occurs quickly in gases because they are able to move freely in all directions.	3. Brown 4. Diffusi	ian Motion	
Properties	Can flow No fixed shape No fixed volume Can be compressed To move and change shape	Liquid Particle Diagram		Particle Theory and Diffusion	Diffusion is slower in liquids because the particles are still moving but not as freely as in a gas. Diffusion cannot occur in	4. Diffusi		
/olume	smoothly. The amount room something takes up. Measured in cubic centimetres (cm ³). Squashed into a smaller volume.	Gas Particle Diagram		Small Intestine	solids because the particles are in a fixed positon. Diffusion of particles of essential substances in our food pass through the wall of the small intestine.			
Pressure	The amount of force pushing on a certain area. 2. Particles	Vibrate	To move backwards and	Air Pressure	5. Air Pressure The force on a certain area caused by air molecules			
Particle Theory	A theory used to explain the different properties and observations of solids, liquids and gases.		forwards. Brownian Motion An erratic movement of small	High Air Pressure	hitting it. Makes sure tyres are inflated. Can also affect the weather making it dry and settled.			
Particles	Tiny pieces of matter that everything is made out of. Tiny forces of attraction hold	Brownian Motion	specks of matter caused by being hit by the moving particles that make up liquids	Vacuum	A completely empty space containing no particles (not even air).			
orces	the particles together.		or gases.	L				

Forces

7J Current Electricity

1. Switches and Current			
Component	Something in a circuit.		
Switch Closing a switch completes th circuit allowing the current to flow.			
Bulbs	Electricity flowing through makes the filament glow.		
Current	The amount of electricity flowing around a circuit. Measured in amperes (A).		
Current in a Series	Current is not used up as it goes around the circuit, it is		
Circuit Ammeter	the same everywhere. Used to measure current.		
	Cell circuit symbol		
-	Bulb circuit symbol		
~~	Switch circuit symbol		
	Ammeter circuit symbol		

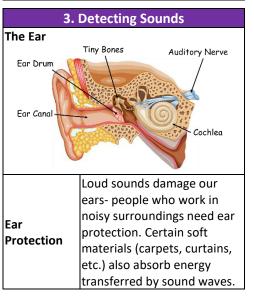
2. Models for Circuits		
Models A way of showing or representing something.		
Advantages of Using Models	Allow us to help think about complicated ideas in science.	
Charges	An electric current is a flow of charges carrying energy from the cells to the components.	
Conductors	Charges can move through them easily (e.g. metals).	
Insulators	Charges cannot move through them easily.	

Model Examp The pipes let the hot water	The boiler transfers energy to the water and the		
flow through them.	pump pushes the water through the pipes.		
In the radiator, energ from the hot water to	y is transferred All the water stays in the pipes. If you measure the room. the amount of water flowing, you will get the		
from the not water to	same reading at X and Y, but the water at Y would be storing less energy than the water at X.		
	•Boiler represents the cell		
N A 1 - 1	•Pipes represent the wires		
Model	•The radiator represents a		
Example Explanation	component		
LAplanation	 Water represents the 		
	current		
3. Serie	es and Parallel Circuits		
	A circuit with all the		
Series Circuit	components in one loop.		
Series Circuit			
Diagram			
Diagrafii	\bigcirc		
Parallel	A circuit with branches that		
Circuit	split apart and join again.		
	└──┤ └── ┘		
Parallel			
Circuit			
Diagram			
	Each bulb/component can be		
Parallel	turned on individually. If one		
Circuit	bulb/component breaks the		
Advantages	components in other		
	branches stay on (unlike a		
	series circuit).		
Current in a	The current splits when it reaches a branch. The		
Parallel	current in all the branches		
Circuit	add up to the current in the		
Should	main part of the circuit.		

Risk

will cause harm.

	If you add bulbs into a series circuit the current gets smaller and the bulbs	Electricity Risks		res, burns to d stop the heart g.
Adding Bulbs	dimmer. In a parallel circuit if you add bulbs on different branches they stay bright.	Reducing	Don't touch parts of plug things into s	bare metal gs, don't poke ockets, keep
4. Cl	A way of saying how much energy is transferred by	Risks	don't plug to	from electricity, oo many things t and never use wire.
Voltage	electricity. The voltage of the cell helps push the charges around the circuit. Measured in volts (V).	Fuse	the circuit.	o high, breaking
Voltmeter	Used to measure voltage.	Circuit		current if it is
Connecting	Voltmeters are connected across a component.	Breaker Plug Wires		u tral wires make e work; earth afety.
a Voltmeter			neutral	earth pin fuse
Voltage in a Series Circuit	The voltage across all the components adds up the voltage across the cell. How difficult it is for	Plug Diagram	neutral pin	live wire The cable grip
Resistance	electricity to flow through something.			stops the wires being pulled from the pins.
Resistor	A component that makes it difficult for electricity to flow- reduces size of current.	Lesson		Memorised?
-V	Voltmeter circuit symbol	1. Switches a Current	and	
	Resistor circuit symbol	2. Models fo	or Circuits	
	Variable resistor circuit symbol	3. Series and Circuits	d Parallel	
5. Hazard	Using Electricity Something that could cause	4. Changing Current	the	
Risk	harm. The chance that a hazard	5. Using Elec	ctricity	



7L Sound

1.	Making Sounds	
Making	ng Sounds are made by	
Sounds	something vibrating.	
Intensity	How loud or soft a sound is-	
	its volume.	
Pitch	How high or low a sound is.	
	The number of vibrations	
Frequency	each second.	
Frequency	The higher the frequency the	
	higher the pitch.	
Hertz (Hz)	The units for measuring	
Hertz (HZ)	frequency.	
	The size of vibrations.	
Amplitude	The bigger the amplitude the	
	louder the note.	
Humans	Two flaps (vocal folds) across	
Making	the windpipe vibrate when	
Sounds	air moves across them.	
Grasshoppers	Male grasshoppers chirp by	
Making	rubbing one leg against a	
Sounds	wing.	
Gorillas	Male gorillas thump their	
Making	chests or thump the ground	
Sounds	to threaten other males.	

2. Moving Sounds Sounds can only travel Moving through a medium (a solid, Sounds liquid or gas). A completely empty space. Vacuum Sound cannot travel through. Tiny pieces of matter that Particles make up everything. Sound Air particles vibrate and cause nearby particles to Moving **Through the** vibrate so the vibrations Air spread through the air.

Sound Wave	Formed by the moving				
Sound wave	vibrations.				
Pressure Wave					
Sound Wave	The number of waves passing				
Frequency	a point per second.				
Sound Wave AmplitudeThe distance moved by air particles as the sound wave passes.					
Energy	Energy is transferred from one place to another by sound waves. They do not transfer particles.				
Speed of Sound	Sound travels faster in solids because the particles are close together.				
Moving Away from A Source	As you move away from a source of sound, the energy carried has spread out further so there is less energy for your ear to detect- it sounds quieter.				

	 sound waves enter the ear canal. the eardrum (a thin 	Echolod
	membrane) vibrates. 3. vibrations pass to the tiny bones which amplify the vibrations.	Sonar
How Ears	4. vibrations pass to the	
Detect	liquid inside the cochlea.	
Sounds	5. tiny hairs inside the	
	cochlea detect vibrations	Longitu
	and create electrical	Waves
	signals (impulses).	Transve
	6. impulses travel along the	Waves
	auditory nerve to the brain.	Transve
	Sounds make a thin sheet of	1
How	materials (a diaphragm)	
Microphones	vibrate and electrical circuits	amplitu
Detect	convert these vibrations into	
Sounds	electrical currents.	
Decibels (dB)	The units for measuring the	Direction
Decibels (dB)	loudness of a sound.	
Auditory	The range of frequencies an	Superp
Range	organism can hear	
	20Hz – 20000Hz in humans	
Infrasound	Sounds below 20Hz	
Ultrasound	Sounds above 20000Hz	Superp
	4. Using Sound	Diagrar
	Sound is often used for	

4. Using Sound				
Using Sound	Sound is often used for			
Using Sound	communication.			
Transmitted	Energy from sound waves			
Transmitteu	goes through some materials.			
Reflected	Energy from sound waves			
Kenecleu	bounces off some materials.			
Using High	 Treat injuries 			
Frequency	 Clean delicate objects by 			
Waves	making tiny bubbles that			
waves	loosen dirt when the burst.			
Echo	A reflected sound			

Echolocation	Used by animals (bats, dolphins, etc.) to find their				
Sonar	way around/find prey. Pulse of ultrasound is given off and reflected by the sea bed. It is then detected by sonar equipment to find the depth.				
5.	Comparing Waves				
Longitudinal Waves	Particles vibrate in same direction wave is moving.				
Transverse Waves	Particles vibrate at right angles to direction wave is moving.				
Transverse Wave Diagram					
birection of Travel					
As waves pass through each Superposition other their effects add up o cancel out.					
Superposition Diagram					
Lesson	Memorised?				

Lesson	Memorised?
1. Making Sounds	
2. Moving Sounds	
3. Detecting Sounds	
4. Using Sound	
5. Comparing Waves	

8F The Periodic Table

1. C	Dalton's Atomic Model	Cons
Matter	All things are made of matter.	Mas
John	(1766-1844)	
Dalton	An English chemist.	
	 all matter is made up of atoms. atoms in an element are identical. Each element has its 	Cher Forn
Dalton's Atomic Theory	 own type of atom. atoms cannot be destroyed or created. In compounds each atom is always joined to a fixed 	Ratio
	number of other atoms.	
	 atoms rearrange during chemical reactions to form new substances. 	Joha Döb
Atoms	Small particles that all matter is made up of.	DOD
Element	A substance made up of one kind of atom.	John
Compound	Contains atoms of two or more different elements chemically joined together.	New
Physical Properties	The properties that describe a substance on its own. (colour, strength, density, etc.)	Dmit
Physical	A change in which no new	Men
Changes	substances are formed.	IVIEII
Symbols	Letters used to represent the elements. e.g. C represents Carbon	
2.	Chemical Properties	Gaps
	How a substance reacts with	

Properties other substances.

	An idea about how something
Hypothesis	works that can be tested using
	experiments.
Prediction	What you think will happen in
Prediction	experiment and why.
Conconding	The mass of the products of a
Conserving	reaction will be the same as the
Mass	mass of the reactants.
	The combination of symbols
	and numbers that shows how
Chemical	many atoms of different
Formulae	element are in a particular
	molecule.
	e.g. water is H₂O
	Comparison of the proportion
_	of two quantities e.g. in water
Ratio	there are 2 hydrogens for every
	oxygen, the ratio is 2:1
3	. Mendeleev's Table
	(1780-1849)
Johann	German chemist who
Döbereiner	highlighted some groups of 3
Dobereniei	elements had similar physical /
	chemical properties.
	(1837-1898)
John	English chemist who ordered
John Newlands	elements by the mass of atoms
Newlands	and noticed every 8 th element
	has similar properties.
	(1834-1907)
	Russian chemist who published
	the first periodic table by
Dmitri	ordering elements by
Mendeleev	increasing masses of their
	atoms forming groups of
	similar properties.
	Mendeleev left gaps in his
	table for undiscovered
Gaps	elements and predicted their
	properties.

	A vertical column in the	
Group	Periodic Table- contains	
	elements with similar	
	properties.	
Alkali Metals	Group 1	
	Very reactive metals, they even	
	react with water.	
	Group 7	
Halogens	React with most metals to form	
	solid compounds.	
Noble	Group 0	
Gases	Unreactive gases	

4. Physical Trends When a substance changes Melting Point from a solid into a liquid Boiling When a substance changes Point from a liquid into a gas. When a substance changes Freezing from a liquid into a solid- the Point same as the melting point. Heating Substances How temperature depends on time (as sulfur is heated) At the melting point, the extra energy being supplied by heating

Temperature (°C)	600- 500- 400- 300- 200- 100-	temperatur particles to	per solution of the constraints	e om their		The temperate liquid stays the boils. The ext being supplier allows the par escape as a g	e same as it ra energy d by heating ticles to	
	0+) 10	20	30 Fime heated	40 (minut	50 les)	60	70
Periods		The horizontal rows in the						
		Periodic table.						
Transition		Block of elements in the middle						
			of the Periodic table- separates					
Metals			the eight main groups.					
Metal Properties		High melting points, strong,						
		flexible, malleable, shiny, good						
		conductors.						
Non-Metal Low melting points, brittle,						_		
Pr	ope	erties	dull, poor conductors.					

5.	5. Chemical Trends			
Alkali Metals & Water	Alkali metals produce metal hydroxides and hydrogen when reacting with water. (sodium + water \rightarrow sodium hydroxide + hydrogen)			
Alkali Metals & Oxygen	Alkali metals produce metal oxides when reacting with oxygen. (<i>lithium + oxygen → lithium</i> oxide)			
Reactivity	How quickly / vigorously something reacts.			
Alkali Metal Reactivity	As you move down the group the reactivity increases.			
Oxides	Formed when elements react with oxygen.			
Oxide Trends	When we dissolve oxides in water there is a trend in their pH. Further to the left of the Periodic table oxides formed are more alkaline. Further to the right they are more acidic.			

Lesson	Memorised?
1. Dalton's Atomic	
Model	
2. Chemical	
Properties	
3. Mendeleev's Table	
4. Physical Trends	
5. Chemical Trends	

Kettering	8J Light	Translucent	Material that lets light through but scatters it. You cannot see things clearly through translucent materials.	diagram	A diagram that represents the path of light using arrows. An imaginary line at right angles to the surface of a mirror or	Lens	A curved piece of glass or other transparent material that can change the direction of rays of light.
	Light on the move	Opaque	Material that does not let light through. It is not possible		other object where a ray of light hits it.	Converging lens	A lens that makes rays of light come together.
Vacuum	A completely empty space, containing no particles.		to see through an opaque substance. Scattering occurs when light	ray	A ray of light going towards the mirror or other object. A ray of light bouncing off a	Angle of refraction	The angle between the normal and a ray of light that has been refracted.
Matter	All things are made of matter. There are three states of matter: solid, liquid, gas.	Scattered	or other energy waves pass through an imperfect medium (such as air filled with	ray Angle of	The angle between an incoming light ray and the normal.	Focal point	The place where parallel rays of light are brought together by a converging lens.
Longitudinal wave	A wave where the particles vibrate in the same direction as the wave is travelling. Iongitudinal		particles of some sort) and are deflected from a straight path.	-	The angle between the normal and the ray of light leaving a mirror.	Focal length	The distance between the centre of the lens and the focal point.
		Reflected ray	A ray of light bouncing off a mirror.		When light is reflected evenly, so that all reflected light goes off in the same direction. Mirrors		Cameras and eyes camera that uses electronics
T	A wave where the vibrations are at right angles to the direction the wave is	Source	Where a sound wave or other wave begins.	Specular reflectio	produce specular reflection.	A	o record an image. In instrument that detects omething. In a digital camera,
Transverse wave	travelling. transverse	Image	A picture that forms in a mirror or on a screen, or is made by a lens. You see an	n	nomai reflected ray mirror glass mirror	sensor t	he sensors detect light and hange it to electrical signals. art of a digital camera that
	A narrow beam of light, or an		image when looking down a microscope.		B specular reflection Reflection from a rough surface,	card s	tores the images.
Ray	arrow on a diagram representing the path of light and the direction in which it is	Pinhole	A piece of apparatus that forms an image of an object on a screen when light rays	Diffuse reflectio	where the reflected light is scattered in all directions.	Aperture h s	hole in a camera that controls ow much light goes to the ensor.
	A material that light can travel	camera	travel through a tiny hole in the front	n		Shutter p	device that shields and rotects the sensor in a digital
Transparent	through without scattering. (Note: transparent substances may be coloured or	Shadow	A place where light cannot get to, because an opaque object is blocking the light.	Law of reflectio	The angle of incidence is equal to the angle of reflection.		amera. It opens when the icture is taken.
Transmit	colourless.) To pass through a substance.	Diana A.	2. Reflection smooth, flat mirror.	n	-		Pupil Cornea Macula
Reflect	To bounce off a surface instead of passing through it or being absorbed.	mirror Ray box A	piece of equipment that oduces a narrow beam of light. method of investigating what	Refraction	3. Refraction The change in direction when light goes from one transparent material to another.	Human eye	Fovea
Absorb	'To soak up' or 'to take in'.	kay tracing ha	appens to light by marking the ath of a light ray.	Interface	The boundary between two materials.		Iris Optic nerve Sclera Retina

	The part at the back of the eye		
Retina	that changes energy transferred		
	by light into nerve impulses.		
Pupil	The hole in the front of the eye		Disper
	that light can pass through.		n
	A cell in the retina that detects		
Rod cell	low levels of light. It cannot		
	detect different colours.		
Cone cell	A cell in the retina that detects		
	different colours of light.		Prism
	The transparent front part of		
Cornea	the eye, which covers the iris		Filter
	and pupil.		(physic
Iris	The coloured part of the eye.		
Optic	The nerve that takes impulses		Lesso
nerve	from the retina to the brain.		1. Lig
	One of three colours that are		0
Primary	detected by the cone cells in our		2. Re
colour	eyes. The primary colours are		3. Re
	red, green and blue.		3. Ke
	A colour made when two		4. Ca
Secondary	primary colours mix.		
colour	The secondary colours are		5. Co
	magenta, cyan and yellow.		

5. Colour				
White	Normal daylight, or the light			
light	from light bulbs, is white light.			
Frequency	The number of vibrations (or			
	the number of waves)			
	per second. Different			
	frequencies of light have			
	different colours.			
Spectrum	The seven colours that make up			
	white light.			

	The separating of the colours ir light, for example when white light passes through a prism.			
ersio	Red			
	White Light Glass Prism			
	A block of clear, colourless glass			

Prismor plastic. Usually triangular.Filter
(physics)Something that only lets certain
colours through and absorbs the
rest.

Lesson	Memorised?
1. Light on the move	
2. Reflection	
3. Refraction	
4. Cameras and eyes	
5. Colour	