

Knowledge

Organisers

Year 9 PC1 (October Exam)

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to **recall** from a particular topic. That means that it **does not have everything on it** for a unit of study but it does have **the most essential things to learn.**

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that **the more you know** the **more you can learn.** By being able to recall the facts, you are able to understand more complicated ideas because you **already know what the key words mean.** You will also already have a set of ideas in your mind that the new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!

Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.

7E Mixtures and Separation

	1. Mixtures
Mixture	Two or more substances jumbled together but not
winkture	joined together.
	A mixture of a solid and liquid,
Suspension	where the solid bits are heavy
Suspension	enough to settle out if the
	mixture is left to stand.
	A mixture of a solid, liquid or
Colloid	gas in a solid, liquid or gas
conola	where the substances do not
	settle out if left to stand.
	Spread out without settling
Dispersed	out, such as the bits in a
	colloid.
Opaque	Cannot be seen through-
Opaque	colloids are opaque / cloudy.
Solution	When a substance has
Solution	dissolved in a liquid.
	Light can pass through and it
Transparent	can be seen through- solutions
	are transparent.
	Something through which a
Filter	liquid is passed to remove
	suspended pieces of solid.

	2. Solutions
	The liquid in which a
Solvent	substance dissolves to make
	a solution.
	The substance that has
Solute	dissolved in a liquid to make
	a solution.
	When a substance breaks up
Dissolve	into such tiny pieces in a
Dissolve	liquid that it can no longer be
	seen and forms a solution.

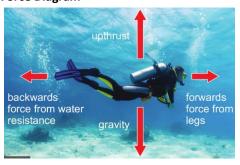
Soluble	Describes a substance that
	can dissolve in a liquid. The total mass of a solution is
Conservation of Mass	the same as the mass of the dissolved substance plus the mass of the liquid at the
	start.
Saturated	A solution that contains so much dissolved solute that no more solute can dissolve in it.
Solubility	The amount of a substance that dissolves in a particular solvent at a particular temperature to make a saturated solution.
	3. Evaporation
Evaporation	When a liquid changes into a gas. Can be used to separate a liquid from the solid dissolved in it.
Sodium Chloride	The scientific name for table salt that we use on our food.
Rock Salt	When sodium chloride is found in thick layers of rock underground.
Extracting Rock Salt	Can be dug up or mined. Water can be pumped into layers of salt underground, dissolving the sodium chloride which is then pumped to the surface and heated to evaporate the water, leaving behind sodium chloride.
Boiling	When there is liquid turning into a gas in all parts of a liquid- creates bubbles of gas in the liquid.
Boiling Point	The temperature at which a liquid boils.

4.	Chr	omatography
		Used to separate
Chromatography		
		mixture.
		A concentrated dot of a
		mixtures is placed at the
		bottom of special
Paper Chromatography		chromatography paper.
		The bottom of the paper
		(such as water). As the
		solvent moves up the
		paper is carries the
		dissolved substances.
		A solution that contains a
		large amount of solute
oncentrated	I	dissolved in a small
		amount of solvent.
		The results of
		chromatography such as
		a dried piece of paper for
hromatogra	m	paper chromatography
in officiato gra		showing when the
		dissolved solids have
		been separated.
		Different substances in a
		mixture are carried at
low		different speeds,
hromatogra	ohv	depending on how
orks		soluble they are, which
		separates them out from
		each other.
		Distillation
	Sep	arating water from the
Desalination		s in salty/sea water to
	•	duce fresh drinking water.
		process of separating a
	•	id from a mixture by
oistillation		porating the liquid and
	the	n condensing it to be
	coll	ected.
-		

Water as a gas.

Steam

Condenses	When a substance changes from its gas state into its liquid state.
Pure	A single substance that does not have anything else in it. (Pure water only contains water and no dissolved solutes)
Distillation Apparatus	The staam rises and then goes downed by the staam rises and the staam rises and then goes downed by the staam rises and the staam rises and the staam rises and the staam rises and the st
Solar Still	Energy from the Sun is used to evaporate salty/dirty water which is then condensed, forming pure/clean water.


Lesson	Memorised?
1. Mixtures	
2. Solutions	
3. Evaporation	
4. Chromatography	
5. Distillation	

7K Forces

1.	Different Forces
Force	A push or a pull.
	The thing providing the force
Contact Forces	needs to touch an object to
	affect it.
	Friction, air resistance, water
	resistance, upthrust
Upthrust	The force that makes things
optillust	float.
Air	A force acting on objects
Resistance	moving through the air.
Water	A force acting on objects
Resistance	moving through water.
	Forces that can affect an
Non-Contact	object from a distance.
Forces	Gravity, static electricity,
	magnetism
Gravity	A force that pulls objects
Gravity	downwards.
Static	A force that attracts things.
Electricity	
	A force that attracts objects
Magnetism	made of iron, nickel or
	cobalt.
Newton (N)	The units for measuring
(-)	forces.
	The force of gravity pulling
Weight	on something- measured in
	Newtons (N)
	The amount of matter that
Mass	makes up something-
	measured in kilograms (kg)
	We draw arrows on force
	diagrams to show the
Forces	direction of a force; a bigger
	arrow shows a bigger force.

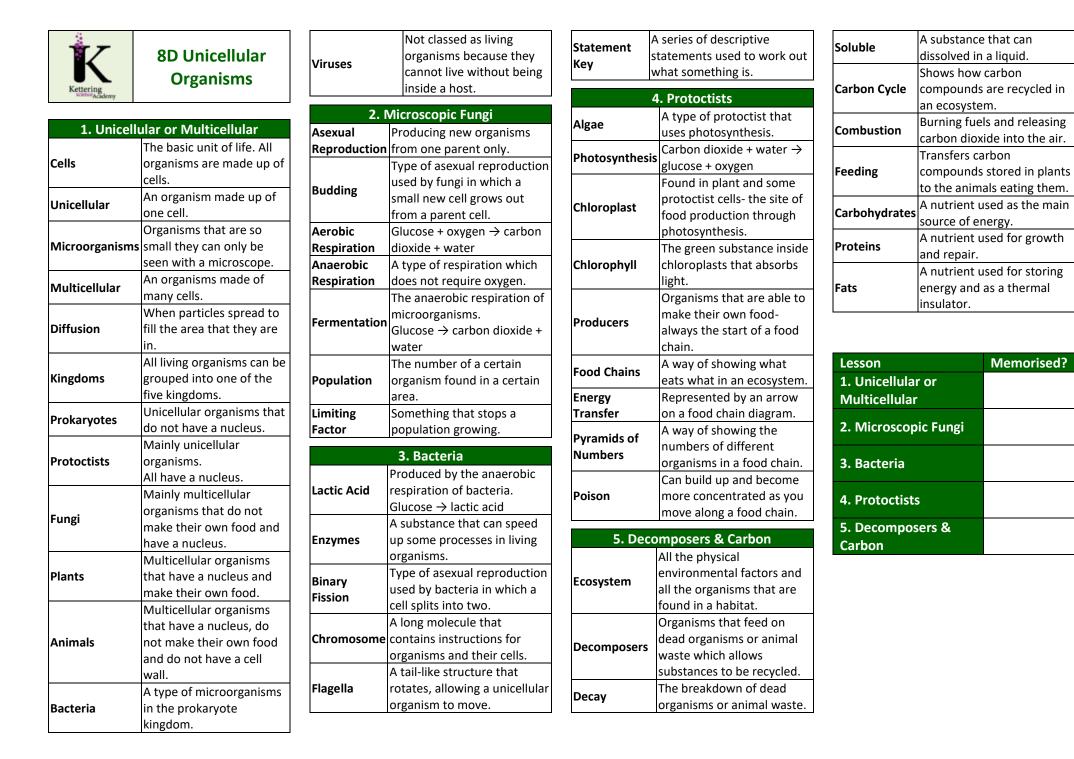
Force Diagram

	2. Springs	
Stretched	Made longer	
Compressed	Made shorter	
Spring	Made from coils of wire,	
Extension	The difference between	
	the original length and the	
	stretched length.	
	An object that returns to	
Elastic	its original length when the	
	force is removed.	
	Hang a spring from a clamp	
Investigating	and measure its length.	
Extension	Add increasing numbers of	
Extension	masses and measure the	
	extension each time.	
Hooke's Law	Extension is proportional	
HOOKE S Law	to the force applied.	
	A relationship between	
Proportional	two variables where if one	
Proportional	doubles, the other will	
	double.	
Limit of	The point at which the	
Proportionality	extension and force are no	
Proportionality	longer proportional.	
	The point at which the	
Elastic Limit	spring cannot return to its	
	original length.	
Force Meter	Springs are used inside to	
Force wieter	measure the force.	

How Extens Depends or Force	.0 Limit of	У
	3. Friction	
Friction	Force between two touching objects.	
Increasing Friction	Using certain materials like rubber (used on racing cars to stop them from sliding off the road).	
Reducing Friction	Make surfaces smooth or by using lubricants such as oil or grease.	
Lubrication	Adding a lubricant	
Friction Damage	Friction can wear things away like brake pads on a bike. Friction between parts of a ca can cause it to overheat and stop working.	
	4. Pressure	
Pressure	The amount of force pushin on a certain area.	g
The Size of Pressure	Depends upon the size of th force and the size of the are it is pushing on.	
Pressure in Sport	Snowshoes spread out weight, reduce pressure and stop people sinking into sof snow.	
Pressure in Everyday Life	It is easier to cut something with a sharp knife because i has a smaller edge so the force is concentrated over a smaller area.	t
Pressure formula	$pressure = \frac{force}{area}$	

	The units for measuring	
Pascal (Pa)	pressure.	
	$1Pa = 1N/m^{3}$	
•		
5. Balance	ed and Unbalanced Forces	
	Two forces of the same size	
	acting upon an object in	
Balanced	opposite directions.	
Forces	Balanced forces will not	
	change the speed of a	
	moving object.	
	When one of the forces	
	acting upon an object is	
Unbalanced	larger than the other. If	
Forces	acting on a moving object	
	unbalanced forces will	
	change its speed.	
	Not moving- stationary	
Stationary	objects have balanced	
	forces acting on them.	
Force Diagra	m	
friction force from pedalt speeding up	steady speed slowing down	

Lesson	Memorised?
1. Different Forces	
2. Springs	
3. Friction	
4. Pressure	
5. Balanced and Unbalanced Forces	


8C Breathing and Respiration

1. A	erobic Respiration
Robert Boyle	(1627-1691) placed a burning candle in a jar and sucked out all the air- the candle went out. Repeated with a mouse and the mouse died.
Joh Mayow	(1641-1679) did experiments to discover that only a certain part of the air was needed to keep candle burning and mouse
Joseph Priestly & Antoine Lavoisier	alive. (1733-1804) (1743-1794) Showed that oxygen was the part of air needed for the candle to burn and mouse to
Aerobic Respiration	live- makes up 21% of air. Using oxygen to release energy from glucose.
	iration Word Equation
•	ygen \rightarrow carbon dioxide + water
Combustion	The word equation for combustion (burning) of glucose is the same as above but occurs in a different way.
Reactants	The starting substances- written on left of word equation.
Products	The new substances made- written on right of word equation.
2 6	as Exchange System
Breathing	Muscle movement allowing the lungs to expand/contract.

the lungs to expand/contract.

	Movement of air into / out of				
Ventilation					
	the lungs.				
D'	Organ below the lungs that				
Diaphragm	contracts / relaxes changing				
	the size of the lungs.				
Inhalation breathing in	Pressure in the lungs is reduced, so atmospheric pushes air in. The muscles in the diaphragm contract, moving it downwards.				
	Sticky liquid that traps dirt,				
Mucus	dust and microorganisms.				
	Tiny hairs on cells that sweep				
Cilia	mucus from the lungs into				
	the gullet to be swallowed.				
	The swapping of gases				
Gas	between the lungs and the				
Exchange	blood.				
	Movement of particles from a				
Diffusion	high concentration to low.				
Alveoli	Little pockets on the lungs.				
	They increase the surface				
Adaptations	area for faster diffusion.				
of Alveoli	The walls are one cell thick				
OI AIVEOII	for faster diffusion.				
3	. Getting Oxygen				
Red Blood	Take in oxygen when it gets				
Cells	into the blood.				
	Where the oxygen binds to in				
Haemoglobin	red blood cells.				
	Blood vessels that carry				
Arteries	blood from the heart to the				
	body.				
	Tiny blood vessels that the				
	arteries divide into. oxygen				
Capillaries	leaves red blood cells here				
· •	and dissolves into the				
	plasma.				
L	II				

	Liquid part of the blood that		Tiny holes in le	aves that allow	
Plasma	leaks out of the capillaries	Stomata	gas exchange.		
	into the tissue fluid.		, o		
	Carries the oxygen to the	5. A	naerobic Resp	iration	
Tissue Fluid	cells.		Respiration that	at occurs in the	
	Carry blood back towards the	Anaerobic	cytoplasm of c	ells when	
Veins	heart.	Respiration	oxygen isn't pr	esent during	
	Your muscles must release		strenuous exer		
	more energy so need more		espiration Word	l Equation	
Exercise	oxygen and glucose- your	Glucose \rightarrow la			
	breathing and heart rates		Anaerobic resp		
	increase.	Energy	releases less ei	nergy than	
	Blood vessels in skin narrow		aerobic.		
	to avoid heat loss and less	Anaerobic	Allows for a qu	iick, sudden	
Frostbite	blood reaches cell. If the cells	Advantages	burst of energy	<i>.</i>	
	die this causes frostbite.	After	Lactic acid ente	ers the blood,	
	Fatty substances build up	Strenuous	is carried to th	e liver and	
	inside blood vessels reducing	Exercise	converted back to glucose.		
Heart Attack	blood flow causing cells to		Excess post-exercise oxygen		
	die.		consumption (or oxygen	
	Poisonous gas found in		debt). Extra oxygen is needed		
Carbon	cigarette smoke- sticks to	EPOC	after strenuous exercise to		
Monoxide	haemoglobin so red blood			lost oxygen from	
	cells carry less oxygen.		blood / muscles and convert		
	In tobacco smoke- irritates		lactic acid to glucose.		
L	alveoli and causes them to	Effect of exe	rcise on oxygen		
Tar	break apart leading to		oxygen demand greater than sup	is ply	
	emphysema.	mption			
	Tiny tubes in lungs become	oxygen supply EPOC			
	narrow and fill with mucus				
Asthma	meaning less air gets into	Ň		resting level	
	and out of the lungs.	perio			
	·		CISE		
4. Con	nparing Gas Exchange	Lesson		Memorised?	
Limewater	Turns cloudy in the presence	1. Aerobic R	ospiration		
	of carbon dioxide.	- I. Aerobic R			
Hydrogen	Turns from pink to yellow as	2. Gas Exchange System			
Carbonate	carbon dioxide increases and	3. Getting Oxygen			
Indicator	the pH drops.				
	Water flows over feathery	4. Comparir	ng Gas		
Gills	strands where oxygen	Exchange			
	diffuses into the blood and	5. Anaerobi	c Respiration		
	carbon dioxide out.				

			Instruments that measure	Solar	Painted black because dark	5 <mark>.</mark> P	aying for Energy
	8K Energy	Thermal	infrared radiation and	and Panels	colours absorb and emit		The amount of energy
	Transfers	Images	convert into maps of		infrared radiation well.	Kilowatt-hour	transferred in 1 hour by an
Kettering scienceAcademy			temperatures.		Designed to reduce energy	(kWh)	appliance.
			When a solid is heated the		transfers and keep contents	(,	Used by energy companies
1. Tem	perature Changes	Conduction	particles vibrate more and		hot:		to measure energy use.
	How hot or cold an	Conduction	these vibrations are passed through the solid transferring		 Plastic stopper to stop convection (and it is an 	Energy Use For	
Tomporatura	object is.		energy.	Vacuum	insulator).	energy use =	= power rating \times time
Temperature	Measured in degrees	Thermal	Energy is transferred easily	Flask	 Glass walls with silver 	(kWh)	(kW) (hours)
	Celsius (°C)	Conductors		FIGSK	coating reflect radiation		Not using as much energy
Internal /	The energy stored in the		Energy is not transferred		back in.	Saving Money	will save money. Insulating
Thermal Energy	movement of particles.	Thermal	through them easily- wood /		Vacuum between walls so	on Electricity	houses and using more
-	Neasured in Joules (J)	Insulators	plastic.		no conduction or convection	/ Gas Bills	efficient appliances will help
Factors Affectin	• temperature		In fluids (liquids and gases)		can occur.		with this.
Amount of	material		when part of it is heated it				How long it will take you to
Internal Energy	• mass		become less dense and rises	4.	Power and Efficiency	Payback Time	save the money that an
Stored		Convection	Cooler fluid moves in to take		The amount of energy		efficiency measure costs.
Energy Transfe	r Always from a hotter		its place and a convection	Power	transferred by an appliance		
07	object to a cooler one.		current forms.		per second.	Payback Time	payback time = $\frac{\text{cost of change}}{\text{saving per year}}$
F	When a liquid turns into	Convection	Diagram		The units for measuring	Formula	saving per year
Evaporation	a gas. A way of		Cools down at the surface/top by transferring heat to surroundings	Watts (W)	power.		
	transferring energy. The fastest moving			_	1000W = 1kW (kilowatt)		
	particles escape a liquid	Cool air/water	Warm air/water	Power	Tell us how much energy an	Lesson	Memorised?
	to form a gas. The	sinks because it	rises because it	Ratings	appliance transfers.	1. Temperat	ure
Cooling by	particles left are storing	becomes denser	expands		The amount of useful energy	Changes	
Evaporation	less energy so the		becomes less dense	Efficiency	transferred by a device	2. Transferri	
Luporation	temperature of the		Warmed up again		compared with the amount of energy supplied to it.	2. manstern	
l	remaining liquid is		Warmed up again	Sankey	A diagram that represents	3. Controllin	g
l	lower.	3.	Controlling Transfers	Diagram	energy transfers.	Transfers	
			Houses are kept warm by		gram Example	4. Power and	d
	ansferring Energy	Cold	burning fuel for heating and	Surney Dia	4 J transferred	Efficiency	
	nergy can be transferred by	Climates	insulating houses to keep		by light		
-	eating via evaporation,		warmth inside.	40 J supplied each		5. Paying for	Energy
	onduction, convection and	Good	Brick, wood, carpet, feathers,	second by electricity			
	adiation.	Insulators	wool.		Synouthy		
	way of transferring Energy	Air	A very poor conductor because				
	y heating through waves (it	AII	the particles are far apart	Efficiency F	ormula		
	oes not need a medium).		Houses are kept cool by		useful energy transferred		
Emitting	Il things give out (emit) Infrared radiation, the hotter	Hot	painting them white (light and	efficiency =	$= \frac{\text{useful energy transferred}}{\text{total energy supplied}} \times 100\%$		
Radiation	is the more it emits.	Climates	shiny surfaces reflect infrared				
i i i	is the more it emits.	1	radiation)				

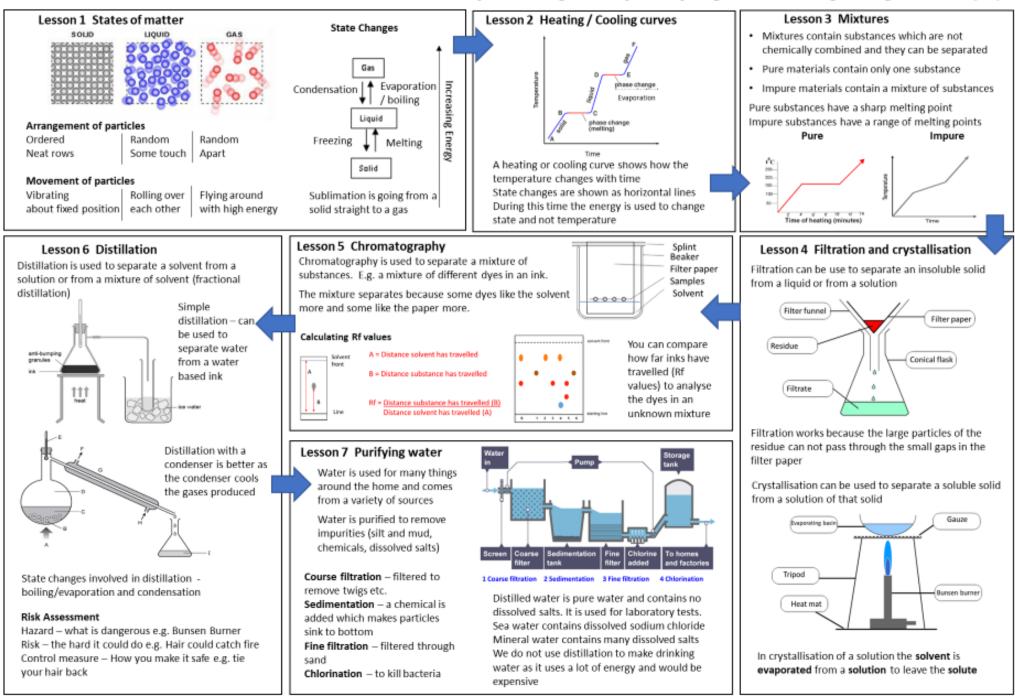
radiation).

9F Reactivity

1	. Types of Explosion
	Sudden increase in volume of
Explosion	gas and huge transfer of energy
	to the surroundings.
Physical	Changes where no new
Changes	substances were made.
Chemical	Changes where one or more
Reaction	new substances are made.
Flammable	A substance that catches fire
Fiammable	easily.
Reactants	The starting substances-
	written on left of word
	equation.
	The new substances made-
Products	written on right of word
	equation.
Car	The force gas particles exert by
Gas	hitting the walls of the
Pressure	container they are in.
Increasing	 Increasing number of particles
Gas	• Decreasing size of container
Pressure	 Increasing temperature

2. Reactivity					
Reactivity	List of metals in order of				
Series	reactivity				
	React to form metal				
Metals &	hydroxides and hydrogen.				
Water	sodium + water $ ightarrow$ sodium				
	hydroxide + hydrogen				
Metals & Acids Word Equation					
metal + acid → salt + hydrogen					
magnesium + sulfuric acid $ ightarrow$ magnesium					
sulfate + hydi	sulfate + hydrogen				
Naming	The first word in the salt is				
Naming	the metal the second				
Salts	depends on the acid used.				

Hydrochle Acid	oric	Forms salts ending in chloride						
Sulfuric A	cid	Forms salts ending in sulfate						
Nitric Aci	d				ending			
Metals &	-			-	rm meta			
Oxygen		Zind	c + ox	va	$en \rightarrow zil$	nc	oxid	e
					which a			
Oxidation)		ns oxy					
Reactivity	/ Se			10	-			
	Rea	ction	Reacti	on	Reaction			
Metal	oxyg	ith Jen in	with co wate	bld	with dilute acid			
potassium		ir N	A	-				
sodium		N,	11.	/		4		
lithium		Ny.	11		111			
calcium		<u>b</u>	11		111			
magnesium		<u>b</u>	1		11			
aluminium		//	•••	•	11		Increasing reactivity	
zinc	1	1	•••	•	11		reac	
iron	1	1	•••		1		Ising	
tin	,	/	•••		1		Icrea	
lead		/	• • •		1		-	
copper		/	X		×			
mercury	•	••	×		×			
silver	•	•• X X X X X			×			
gold					×			
platinum					×			
Key								
www explosi	ve	👌 ca	n catch	11	reacts ver quickly	Ŋ		
V reacts quickly			acts	••	slow or pa reaction	artial		
× no reactio	n							
Durat		For	med	by	the cor	ros	ion	of
Rust		iron and steel.						
		Use a barrier such as paint/						
Preventin	g	plastic/oil to keep away						
Rust		air/water						
		More reactive metals are						
Sacrificial								ter
Protection		attached to react with water & oxygen instead of the iron.						
3	. Ei	nerg	gy an	d	Reactio	ns		
	(Ofte	n nee	ede	ed in ma	ny		
Oxygen d		chemical reactions that cause						
Oxygen			nical osion		actions t	ha	t ca	use


			<u> </u>		
Oxidising	A substance that provides			Thermite reaction needs an	
Agent	oxygen to oxidise another substance.	Energy	input of ener fuse.	rgy by lighting a	
	Oxidising	Thermite	Used on a la	rge scale to join	
	The hazard symbols for	Reaction	two sections of railway track		
	substances which are	Uses	as molten irc	on runs into the	
`	oxidising.	Uses	gap and solid	difies.	
Potassium	Oxidising agent mixed with		Displacemen	t reactions also	
Nitrate	powdered charcoal to make	Solutions	occur in solu	tions.	
Millale	gunpowder.		e.g. zinc in copper sulfate		
Oxygen	Oxygen will relight a glowing		F 1		
Test	splint.	5.	Extracting M		
	Small pieces of solid have a	Native State		l is found in the	
	greater surface area over		Earth as an el		
Surface	which a chemical reaction can			ntains enough of	
Area	occur. Explosives react more	Ore		al compound to	
	quickly if the solid fuel is		be worth mining.		
	broken into tiny pieces.	Extracting	Iron is found as iron oxide.		
	Cannot be created or	Iron	Oxygen is removed by		
Energy	destroyed only transferred and		heating with carbon.		
	stored.	-	on Word Equat		
	Energy stored in the reactants	Iron oxide + o		+ carbon dioxide	
Exothermic	is transferred to the	Reduced	When a subst	ance has lost	
Reactions	surroundings.		oxygen.		
	e.g. combustion, neutralisation		Used to extract reactive		
	Energy is transferred from the	Electrolysis	metals (e.g. aluminium) from		
Endothermic Reactions	surroundings to the reactants		their ores using electricity.		
Reactions	e.g. thermal decomposition	Extracting Aluminium Word Equation			
	Compound containing only		Aluminium oxide \rightarrow aluminium + oxygen		
Hydrocarbon	hydrogen and carbon.		Extracted thro	ough	
	e.g. methane (CH₄)	Aluminium	electrolysis		
	4. Displacement	Zinc - Coppei	Extracted by I carbon.	neating with	
	Reaction where a more	Silver-			
Displaceme	nt reactive metal displaces	Platinum	Found in nativ	ve state.	
Reaction	(takes the place of) a less				
	reactive one.	Lesson		Memorised?	
Displaceme	nt Reaction Word Equation	1. Types of	Explosion		
Aluminium + i	ron oxide→aluminium oxide + iron	2. Reactivit	ty		
Thermite	Displacement reaction		- <u>-</u>		
Reaction	between aluminium and iron	3. Energy & Reactions			
Neaction	oxide.	4. Displacement			
		5. Extractin	ng Metals		

41		Kinetic	Stared in anything that is		Dependent on		Momente are measured in
* 7	OI Foreas and		Stored in anything that is		Dependent on	Units	Moments are measured in
	9I Forces and	Energy	moving.	Units	measurements taken <i>e.g.</i>		newton metres (N m)
	Motion		Fuels formed by remains of		miles per hour, metres per	Moment F	ormula e = force × perpendicular distance
Kettering scienceAcademy		Fossil Fuel	plants / animals that store		second	force (N m)	(N) from the pivot (m)
			large amounts of energy. <i>e.g.</i>	Speed	speed = $\frac{\text{distance}}{1}$. ,	
1. F	orces and Movement		coal, oil, natural gas	Formula	time	Equilibriun	n Opposing forces are balanced.
	Force between two surfaces	Non-	Resources that will run out		Total distance travelled,		5. More Machines
Friction	sliding across each other.	Renewable	one day like fossil fuels.	Mean Speed	d divided by the total time		
Reducing	Using rollers or wheels / sleds		Energy stored in oil and		taken.	Machine	Anything that helps us work
-	-		natural gas is used for		Used to show how fast		with forces.
Friction	in snowy countries	Using Fossil	transport.	Distance-	someone travelled during a		A simple machine that mean
L	When a force acting on an	Fuels	Energy released by burning	Time Graph	journey. Also called a	Ramp	less force is needed to push
Balanced	object is the same size as the		fuels is transferred by heating		displacement-time graph		an object up a slope
	force in the opposite direction.		for cooking or keeping warm		Distance in a straight line		compared to lifting.
Constant	Caused by balanced forces	Gravitational	Energy stored in raised	Displaceme	nt between an object and its	Pulleys	Makes lifting a load easier by
Speed	acting on an object.	Potential	objects.		starting point.	r une ys	pulling down a rope.
Unbalanced	Forces acting in opposite	Elastic	Energy stored in stretched or	Horizontal	Shows an object isn't moving		Amount of energy
	directions are not equal.	Potential	squashed objects.	Line	on the distance-time graph.	Work	transferred when a force
Resultant	The difference between the		Energy stored in the		Shows an object is moving		moves something.
Resultant	forward and backward force.		movement of particles.	Steep Line	quickly		Work is measured in Joules
Assolanata	Get faster- caused by	Thermal	Transferred from hot objects		Looking speed compared to	Units	(L)
Accelerate	unbalanced forces.		to cooler ones by heating.	Relative	another object which may be	Work Done	e Formula
				Relative		work done	= force × distance moved in the
		Renewable	Resources that will not run		moving.	(J)	(N) direction of the force (m)
	upthrust		out. e.g. wind, moving water		4. Turning Forces		If a smaller force is needed to
Boat Force	force from wind pushing on sails	Nuclear	Non-renewable resource used		Long bar used to life heavy	Conservati	on move something, the force
Diagram		Energy	to generate electricity.	Lever	objects.	of Energy	has to move through a
	water resistance		Cannot be stored, has to be	Pivot /	Point that the lever turns		greater distance.
	weight	Electricity	generated by renewable or	Fulcrum	around.		
	Acts to slow down objects		non-renewable resources.	Effort	Force applied down on lever.	Lesson	Memorised?
	moving through fluids (liquids/		Energy cannot be created or			1. Forces	and
Drag	gases) e.g. water resistance	of Energy	destroyed, only transferred.	Load	The object being lifted.	Moveme	nt
	and air resistance		The useful energy transferred			2. Energy	
		Efficiency	compared to the total energy	Lever	effort	Moveme	
	Dependent on the maximum		transferred by a device.	Diagram	effort load	woverne	n
Top Speed	force a vehicle can move	Dissipated	Energy that spreads out.		distance distance	3. Speed	
	forwards an on the friction/		Energy is often transferred by		Effort distance is greater than		
	drag acting to slow it down.	Transfers	heating or sound.	Force	the load distance meaning that	A	
2 F	nergy For Movement		·	Multiplier	the effort force is smaller than	4. Turnin	gForces
- <u>2</u> , L	Supplies humans the energy		3. Speed		the force lifting the load.		
Food	they need.	C no n-l	How far something can	Distores	Large effort force moves a	5. More I	Machines
		Speed	travel in a certain time.	Distance	small distance and the load is		
Solar	Energy stored in food	·		Multiplier	moved a greater distance.		
Energy	originally came from the Sun.			Momont	The turning offect of a force		

Moment

The turning effect of a force.

CC1-SC2: States of matter, separating and purifying knowledge organiser (H)

Disease

Anaemia

Kwashiorkor

B5: Health, Disease & the Development of Medicines

1. H	ealth and Disease
Health	A state of complete physical, social and mental wellbeing.
	Being free from disease, active,
Physical Health	fit, sleeping well and no substance abuse.
Mental Health	
iviental Health	How you feel about yourself.
C	Having healthy relationships
Social Health	and how your surroundings
	affect you.
	An illness that prevents the
Disease	body from functioning
	normally.
Communicable	Diseases caused by pathogens,
Disease	can be spread from one person
Biocube	to another.
Non-	Diseases caused by genes or
Communicable	lifestyle. Cannot be spread
Disease	from one person to another.
	Getting one disease increases
Correlated	your chance of another due to
Diseases	diseases weakening organ
Diseases	systems, damaged immune
	system, and weaker defences.
Pathogen	A microorganisms that causes
raulogen	disease.
	ommunicable Diseases
Genetic	Diseases caused by inheriting
Disorders	faulty genes from parents.
Malnutrition	Getting too little or too much of
wanuunuon	a particular nutrient.
Deficiency	Disease caused by the lack of a

certain nutrient.

energy.

Lack of iron. Causes fewer and

smaller red blood cells and low

Lack of protein. Swollen belly,

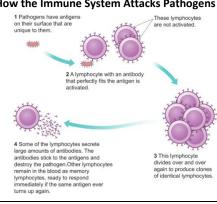
small muscles, stunted growth.

	Lack of calcium or vitamin D.
Rickets	Causes weak bones leading to
	bowed legs.
	Lack of vitamin C. Swollen
Scurvy	bleeding gums, muscle and joint
	pain, lack of energy.
	Chemical that changes the way
Drug	o <i>i</i>
	the body works.
	Fatal liver disease caused by
Cirrhosis	drinking too much alcohol over
	a long period of time.
	Fifth largest causes of death in
Impact of Liver	the UK, increasing 450% in the
Disease /	last 30 years. Costs £500 million
Alcohol	each year to treat.
3. Car	diovascular Disease
	A condition in which someone is
Obesity	overweight for their height and
	large amounts of fat builds up
	around major organs.
Cardiovascular	Disease in which the heart or
Disease	circulatory system is affected.
	When the heart stops pumping
Heart Attack	due to a lack of oxygen reaching
	it.
	Body mass Index
вмі	BMI = (weight in kilograms)
Divin	height in meters ²
	DNAL aver 20 is share
	BMI over 30 is obese
	Waist measurement ÷ hip
Waist:hip	measurement
Ratio	Better method of measuring
	abdominal fat which is linked
	with cardiovascular disease.
	Harmful substances from smoke
	can damage blood vessels,
Smoking	increase blood pressure, make
	blood vessels narrower and
	incrosco rick of blood clote
	increase risk of blood clots.
	A small mesh tube that is
Stent	A small mesh tube that is inserted into a narrowed artery
Stent	A small mesh tube that is inserted into a narrowed artery and opened up to widen it.
Stent Treating Heart	A small mesh tube that is inserted into a narrowed artery
	A small mesh tube that is inserted into a narrowed artery and opened up to widen it.
Treating Heart	A small mesh tube that is inserted into a narrowed artery and opened up to widen it. More exercise and a better diet

	4. Pathogens	
Types of Pathogen	Bacteria, virus, protist, fungi.	Bodily Flui
	Bacteria. Damages lungs causing	Hygiene
Tuberculosis	bloody cough, fever and weight	nygiene
	loss.	
Charles and	Bacteria. Sever life-threatening	Epidemic
Cholera	diarrhoea.	
Chalara Ash	Fungi. Kills the leaves of ash	6. P
Dieback	trees, killing the tree.	0. P
	Protist. Multiplies inside red	Chemical
Malaria	blood cells and liver cells and	Defences
	causes fever and weakness.	
Haemorrhagic	Virus, e.g. Ebola. Liver and kidney	Lycozymo
Fever	damage, internal bleeding and	Lysozyme
Tever	fever.	Hydrochlo
	Human immunodeficiency virus	Hydrochlo Acid
HIV	attacks white blood cells, causing	Aciu
	AIDS.	Physical B
	Acquired Immunodeficiency	
AIDS	Syndrome. Weakened immune	Mucus
	system making simple infections	Macas
	deadly. Caused by HIV.	
	Many types of bacteria live in our	Ciliated Ce
	bodies. Some are essential for	
Hidden	health, others may not affect us	
Pathogens	most of the time. <i>Helicobacter</i>	Skin
	pylori can cause stomach ulcers	
	some of the time.	STIs
5. S	preading Pathogens	
	Spread through the air.	
	Colds/flus/TB by infected droplets	Preventing
	in saliva being passed into the air	
Airborne	by coughing or sneezing.	
	Chalara ash dieback by fungal	Concenting
	spores carried by wind.	Screening
	Spread through contaminated	
Waterborne	water. Cholera	
o 15 i	Pathogen enters body through	
Oral Route	the mouth by eating/drinking.	Immune
	Organisms that carry a pathogen	System
Vectors	from one person to the next.	
Vectors	Mosquitos are vectors for	Antigens
	malaria.	

	Spreading through contact with
Bodily Fluids	bodily fluids such as blood or
	semen. HIV
	Keeping things clean to remove
Hygiene	or kill pathogens.
	When many people over a large
	area are infected with the same
	pathogen at the same time.
	pathogen at the same time.
6. Physi	cal & Chemical Barriers
Chemical	Kill pathogens or make them
	inactive before they can infect
Defences	us.
	Enzyme found in mucus, tears
Lysozyme	and sweat that kills some
	bacteria.
Hydrochloric	Found in the stomach, reducing
Acid	pH to 2, killing most pathogens.
	Block or trap pathogens so they
Physical Barrie	cannot enter the body.
	Sticky secretion that traps
Mucus	pathogens- found in most body
	openings (nose, mouth, etc.).
	Specialised cells with hair like
Ciliated Cells	cells that sweep mucus out of
	the body.
Skin	Blocks pathogens from entering
U	the body.
	Sexually transmitted infections
STIs	 pathogens spread via sexual
	activity.
	Use barrier contraception (such
Preventing STI	
_	of fluids.
	Large scale testing of people to
- ·	check if they have an STI so
Screening	they can be treated. This helps
	to reduce the spread of STIs.
7. T	he Immune System
Immune	Destroys pathogens that
System	manage to infect us.

Chemical markers on the


surface of pathogens that

Unique to each pathogen.

identify them as a pathogen.

Lymphocyte	White blood cells that produce	
	antibodies. Each lymphocyte	
	produces a different antibody.	Antibi
Antibodies	Molecules with a specific shape	
	that can attach to a specific	
	antigen on a pathogen and kill	Penici
	it.	
Activated Lymphocyte	When an antigen sticks to an	
	antibody, it activates the	Resista
	lymphocyte causing it to make	
	many copies of itself that make	
	the same antibodies.	
Memory Lymphocyte	Lymphocytes left over after an	Drug
	infection that retain the ability	Develo
	to fight the pathogen.	
Immune	The body has memory	Phase
	lymphocytes to fight the	Thase
	pathogen if it returns so it can't	Pre-Cli
	be harmed by it.	Phase
Primary Respor	se vs. Secondary Response	Small

Primary Respon	ise vs. secondary Response			
Antbody numbers	primary			
0 10 first infection with pathogen) 20 100 110 Time (days) second infection with the same pathogen			
Vaccine	A weakened or inactive version of a pathogen.			
How vaccines work Work Work Without any risk of disease.				
How the Immune System Attacks Pathogens				

8. Antibiotics				
Antibiotics	Substances that kill bacteria or inhibit their processes without harming human cells.			
Penicillin	The first antibiotic discovered by Alexander Fleming. Produced by a mould.			
Resistance	Widespread use of antibiotics has led to resistance, meaning many antibiotics don't work as well as they once did.			
Drug Development	Developing new medicines involves many stages that take a lot time and money.			
Discovery Phase	Developing new chemicals that might work as medicines.			
Pre-Clinical Phase	Testing on cells grown in the lab, or on animals, to see if the chemical has any useful effect.			
Small Clinical Trial	Testing on a few healthy people to check for safety.			
Large Clinical Trial	Testing on many patients to discover how effective the drug is and determine the dose.			
Side Effects	Unwanted effects of the medication that can be quite harmful.			
Dose	The correct amount of the medicine that needs to be given to the patient.			

Lesson	Memorised?
1. Health and Disease	
2. Non-Communicable Diseases	
3. Cardiovascular Disease	
4. Pathogens	
5. Spreading Pathogens	
6. Physical & Chemical Barriers	
7. The Immune System	
8. Antibiotics	