
Boolean
Logic Gates

NOT gate - The output is the opposite of the input

NOT truth table

Input Output

0 1

1 0

AND gate - has two inputs and will have a true output if the two inputs are true
otherwise the output will be false

AND truth table

Input A Input B Output

0 0 0

1 0 0

0 1 0

1 1 1

OR gate - has two inputs and will have a true output if either or both the inputs
are true

OR truth table

Input A Input B Output

0 0 0

1 0 1

0 1 1

1 1 1

NOR gate - has two inputs and will have a true output only if either or both the
inputs are false

NOR truth table

Input A Input B Output

0 0 1

1 0 0

0 1 0

1 1 0

NAND gate - has two inputs and will have a true output if either or both the inputs
are false

OR truth table

Input A Input B Output

0 0 1

1 0 1

0 1 1

1 1 0

XOR gate - has two inputs and will have a true output if either the inputs are true
but not both

OR truth table

Input A Input B Output

0 0 0

1 0 1

0 1 1

1 1 0

Boolean Identities

Commutative laws 𝐴 + 𝐵 = 𝐵 + 𝐴
𝐴. 𝐵 = 𝐵. 𝐴

Inverse law 𝐴̅̅ = A
AND laws 𝐴. 𝐴̅ = 0

𝐴. 𝐴 = 𝐴
0. 𝐴 = 0
1. 𝐴 = 𝐴

OR laws 1 + 𝐴 = 1
0 + 𝐴 = 𝐴
𝐴 + 𝐴 = 𝐴
𝐴 + 𝐴̅ = 1

Associative laws

(𝐴. 𝐵). 𝐶 = 𝐴. (𝐵. 𝐶)
(𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)

Distributive law 𝐴. (𝐵 + 𝐶) = 𝐴. 𝐵 + 𝐴. 𝐶
(𝐴 + 𝐵). (𝐴 + 𝐵) = 𝐴. 𝐴 + 𝐵. 𝐵 + 𝐴. 𝐵 + 𝐴. 𝐵

More identities

𝐴 + 𝐴. 𝐵 = 𝐴
𝐴. (𝐴 + 𝐵) = 𝐴

De Morgan’s law 𝐴.̅ 𝐵̅̅̅ ̅̅ ̅̅ = A + B

𝐴̅ +𝐵̅̅̅ ̅̅ ̅̅ = A. B

Applying De Morgan’s Law:

1. Apply NOT operator the whole expression 𝐴̅ .𝐵̅̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅
= 𝐴̅ . 𝐵̅

2. Switch the operator (If the operator is AND

switch to OR operator, If the operator is OR
switch to AND operator)

𝐴̅ +𝐵̅

3. NOT the individual terms

A + B

Order of operation
1. Brackets
2. NOT
3. AND
4. OR
5. XOR

Half adder - A half adder has two bits as inputs (A and B) and adds the two bits
and outputs two bits the sum (S) and the carry (C). It is made up of an AND and an
XOR gate

Input A

Input B

C (carry) S (sum)

0 + 0 = 0 0

1 + 0 = 0 1

0 + 1 = 0 1

1 + 1 = 1 0

Full Adder - A full adder has three bits as inputs one of which is the carry bit. It
adds the three bits and outputs two bits the sum (S) and the carry (C). It is made
up of an AND, XOR and OR gates

A

B

Cin

Cout S D E F

0 + 0 + 0 = 0 0 0 0 0

0 + 0 + 1 = 0 1 0 0 0

0 + 1 + 0 = 0 1 1 0 0

0 + 1 + 1 = 1 0 1 1 0

1 + 0 + 0 = 0 1 1 0 0

1 + 0 + 1 = 1 0 1 1 0

1 + 1 + 0 = 1 0 0 0 1

1 + 1 + 1 = 1 1 0 0 1

D-type flip flops

• A flip-flop can store the value of a bit.

• D (delay)-type flip flops are used to store one bit and flip between two states:
1 and 0.

• The inputs are a control value (0 or 1) and also a clock value (0 or 1) that
changes the state at a regular rate.

• For a positive edge triggered flip-flop the output state can only change when
the clock changes from 0 to 1. If D is in the same state as it was on the
previous edge then the output is unchanged. However, if D has changed
state, the output state will change to the value of D.

D Clock Q

0  0

1  1

