Expressions, functions and formulae

1.	Solve	To find the answer/value of something Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Solve $2 x-3=7$ Add 3 on both sides $2 x=10$ Divide by 2 on both sides $x=5$
2.	Inverse	Opposite The inverse of addition is subtraction. The inverse of multiplication is division.
3.	Substitution	Replace letters with numbers. Be careful of $5 \boldsymbol{x}^{2}$. You need to square first, then multiply by 5 . $a=3, b=2 \text { and } c=5 . \text { Find: }$ 1. $2 a=2 \times 3=6$ 2. $3 a-2 b=3 \times 3-2 \times 2=5$ 3. $7 b^{2}-5=7 \times 2^{2}-5=23$
4.	Writing Formulae	Substitute letters for words in the question. Replace letters with numbers. Be careful of $5 x^{2}$. You need to square first, then multiply by 5 . $a=3, b=2$ and $c=5$. Find: 1. $2 a=2 \times 3=6$ 2. $3 a-2 b=3 \times 3-2 \times 2=5$ 3. $7 b^{2}-5=7 \times 2^{2}-5=23$
5.	Function Machine	Takes an input value, performs some operations and produces an output value.

		INPUT $\times 3$ $+4$ OUTPUT
Graphs		
1.	Coordinates	Written in pairs. The first term is the \boldsymbol{x}-coordinate (movement across). The second term is the y-coordinate (movement up or down) A: $(4,7)$ B: $(-6,-3)$
2.	Linear Graph	Straight line graph. The equation of a linear graph can contain an \mathbf{x}-term, a \mathbf{y}-term and a number. Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
3.	Real Life Graphs	Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The \boldsymbol{y}-intercept might have a contextual meaning. The area under the graph might have a contextual meaning.

Year 7 Mathematics Developing Term 3

Factors and multiples

15.	Prime factor decomposition	Writing a number as a product of its prime factors.		$\begin{aligned} & 60=2 \times 2 \times 3 \times 5 \\ & 60=2^{2} \times 3 \times 5 \end{aligned}$	
16.	Highest common factor	HCF	The highest number that divides exactky into two or more numbers.	e.g. the HCF of 1	
17.	Lowest common multiple	LCM	The smallest positive integer that is a multiple of two or more numbers.	e.g. the LCM of 1	
Decimals and measures					
1.	Decimal	A number with a decimal point in it. Can be positive or negative.$3.7,0.94,-24.07$			
2.	Recurring Decimal	A decimal number that has digits that repeat forever. The part that repeats is usually shown by placing a dot above the digit that repeats, or dots over the first and last digit of the repeating pattern. $\begin{gathered} \frac{1}{3}=0.333 \ldots=0 . \dot{3} \\ \frac{1}{7}=0.142857142857 \ldots=0 . \dot{1} 4285 \dot{7} \\ \frac{77}{600}=0.128333 \ldots=0.128 \dot{3} \end{gathered}$			
3.	Ascending order	A set of numbers arranged from smallest to biggest.			
4.	Descending order	A set of numbers arranged from biggest to smallest.			

5.	Metric System	A system of measures based on: - the metre for length - the kilogram for mass - the second for time Lengths mm, cm, m, km Massz mg, g, leg Volumes ml, cl, I 1 kilometres $=1000$ metres 1 metre $=100$ centimetres 1 centimetre $=10$ millimetres 1 kilogram $=1000 \mathrm{grams}$
6.	Imperial System	A system of weights and measures originally developed in England, usually based on human quantities Lengths inch, foot, yard, miles Masss lb, ounce, stone Volumes pint, gallon $\begin{aligned} & 1 \mathrm{lb}=16 \text { ounces } \\ & 1 \text { foot }=12 \text { inches } \\ & 1 \text { gallon }=8 \text { pints } \end{aligned}$
7.	Metric and Imperial Units	Use the unitary method to convert between metric and imperial units. 5 miles ≈ 8 kilometres 1 gallon ≈ 4.5 litres 2.2 pounds ≈ 1 kilogram 1 inch $=2.5$ centimetres

