$\frac{\pi}{5}$

Algebra -definitions

15.	Expand	Removing brackets by using multiplication	
16.	Solve	Find the value of an unknown	
Algebraic Notation			
17.	Adding like terms	Add the coefficients	$b+2 b=3 b$
18.	Subtracting like terms	Subtract the coefficients	$5 b-4 b=b$
19.	Multiplying like terms	If the base is the same, add the powers	$b \times b=b^{2}$
20.	Dividing terms	If the base is the same, subtract the powers	$b^{5} \div b^{2}=b^{3}$
21.	Adding different terms	Cannot combine if the terms are different.	$b+2 c=b+2 c$
22.	Subtracting different terms	Cannot combine if the terms are different.	$3 c-4=3 c-4$
23.	Multiplying different terms	Combine with no ' \times ' sign	$d \times e=d e$
24.	Multiplying different terms with coefficients	Combine with no ' \times ' sign, multiply the coefficients	$2 d \times 3 e=d 6 e$
25.	Dividing different terms	Write as fractions with no ' \div ' sign	$3 d \div e=\frac{3 d}{e}$
26.	Dividing different terms with coefficients	Write as fractions with no ' \div ' sign, simplify the coefficients where possible.	$14 d \div 7 e=\frac{2 d}{e}$

Expanding (single brackets)

27. Multiply all the terms inside the bracket, by the term on the outside.
28.

$$
\begin{equation*}
3(a+4)=3 a+12 \tag{2}
\end{equation*}
$$

$2 x$| $4 x^{2}$ | $-6 x$ |
| :---: | :---: |

Factorising (single brackets)

29.	- Find the highest common factor of the terms - This goes outside the bracket - Divide each term by the factor to get the new terms inside the bracket - Always check by expanding your bracket		$5 x^{2}$	$\begin{aligned} & -4 y \\ & -10 x y \end{aligned}$	
Expressions					
30.	Linear	Can be represented line	traight	e.g. $2 x+2$	
		No indices above 1			
31.	Quadratic	An expression where the highest index is 2		e.g. $2 x^{2}+2 x+2$	

Expanding double brackets

32. Everything in the first bracket must be multiplied by everything in the second
33.

Grid method	FOIL method			
$(x+4)(x+7)$	FIRST :	$(x+3)(x-4)$	gives	$x \times x=x^{2}$
$\times\|x\|+4$ x x	JUTER:	$(\widetilde{x+3)(x-4)}$	gives	$x \times(-4)=-4 x$
x x^{2} $4 x$ 7	INNER:	$(x+3)(x-4)$		$3 \times x=3 x$
+7 7×28				
$\begin{aligned} & =x^{2}+4 x+7 x+28 \\ & =x^{2}+11 x+28 \end{aligned}$	LAST :	$(x+3)(x-4)$		$3 \times(-4)=-12$

Fractions

Angle definitions

Basic angle rules

12.	Angles on a straight line add to 180°	
13.	Angles around a point add up to 360°	
14.	Vertically opposite angles are equal	
16.	Angles in a triangle add to 180°	

Angles on parallel lines

17. | Alternate angles are equal | |
| :---: | :---: |
| 18. | Corresponding angles are equal |
| Co-interior angles add up to 180 | |

Angles in polygons		
20.	Interior and exterior angles add to give 180 ${ }^{\circ}$	
21	Sum of interior angles	For a ' n ' sided polygon Sum of interior angles $=180 \times(n-2)$
22.	Size of one interior angle	For a ' n ' sided polygon $\text { Interior angle }=\frac{180 \times(n-2)}{n}$
23.	Sum of exterior angles	For all polygons, sum of exterior angles $=360$ -
24.	Regular polygons	Exterior angle $=360 \div$ number of sides
		Number of sides $=360 \div$ exterior angle
		Interior angle = 180 - exterior angle

Decimals

25.	Ascending order	A set of numbers arranged from smallest to biggest.	
26.	Descending order	A set of numbers arranged from biggest to smallest.	
27.	Decimal	A number with a decimal point in it, which can be negative or positive.	
28.	Terminating decimal	A decimal that has digits that end.	0.25 (it has two decimal digits) 3.0375 (it has four decimal digits)
29.	Recurring decimal	A decimal with a digit or groups of digits that repeat forever.	$\frac{1}{3}=\quad \underset{\text { Fraction }}{0.333 \ldots=0 . \dot{3}=0 . \overline{3}} \text { Ways to show recurring decimals }$
30.	Decimal place	The number of digits after the decimal point	
31.	Rounding	Changing a number to a simpler, easy to use value.	
32.	Approximate	An easier figure to use close to the value.	
33.	Significant figure	The digits of a number that express a size to a given degree of accuracy	look nice not significant (any zero at start) 0.0560 1st significant digit 2nd significant digit $\overbrace{\text { digit }}^{\uparrow \text { rignificant }}$

Rounding to decimal places

34.		Count the Look at th decide if it 5 or more down	ces you nee e right of t less mean	$\begin{array}{r} \\ 4 \\ \text { down } \\ \begin{array}{r}9 \\ 7 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ 2 \\ 1\end{array} \\ \hline\end{array}$
35.	e.g	256.1873	256.1 \| 873	To 1 d.p. is 256.2
			256.18 \| 73	To 2 d.p. is 256.19
			256.187 \| 3	To 3 d.p. is 256.187

Rounding large numbers to significant figures			
36.	- Count the number of digits you need from the left - Look at the number to the right of the digit to decide if it rounds up or down - 5 or more means it rounds up; 4 or less means it rounds down - Replace remaining digits with zeros as placeholders		
37.	e.g. 256. 1873	2 \| 56.1873	To 1 s.f. is 300
		25 \| 6.1873	To 2 s.f. is 260
		256\|. 1873	To 3 s.f. is 256
Rounding small numbers to significant figures			
38.	- Zeros are not significant until after the first non-zero term - Find the first non-zero term and count the number of digits you need from there - Look at the number directly to the right of that digit to decide if it rounds up or down - 5 or more means it rounds up; 4 or less means it rounds down		
39.	e.g. 0.0023681	$0.002 \mid 3681$	To 1 s.f. is 0.002
		0.0023 \| 681	To 2 s.f. is 0.0024
		0.00236 \| 81	To 3 s.f. is 0.00237

