Term 2

Expressions and equations definitions

Expanding double brackets

30. Everything in the first bracket must be multiplied by everything in the second

Factorising a quadratic expression

32.	Factorising a quadratic in the form of $a x^{2}+b x+c$	Multiply to 5 Factorise $x^{2}+5 x+6-$ Add to 6 2 and 3 add to 5 2 and 3 multiply to 6 $(x+2)(x+3)$ Check: $(x+2)(x+3)=x^{2}+5 x+6$
33.	Difference of two squares	A special type of quadratic which only has two terms.
		One term is subtracted from the other
		$\begin{aligned} & x^{2}-25=x^{2}-5^{2}=(x+5)(x-5) \\ & y^{2}-49=y^{2}-7^{2}=(y+7)(y-7) \\ & a^{2}-16=a^{2}-4^{2}=(a+4)(a-4) \end{aligned}$

Equations

34. To solve equations we need to use inverse operations
35. What ever you do to one side of the equals sign you must do the same to the other

36.	One step	$\left.\left\|\begin{array}{ccc} x+4 & = & 7 \\ (-4) & (-4) \\ x & = & 11 \end{array}\right\| \begin{array}{ccc} x-5 & =12 \\ (+5) & & (+5) \\ x & =17 \end{array} \right\rvert\,$		$\begin{aligned} & =18 \\ & (\div 3) \\ & = \\ & \hline \end{aligned}\left\|\begin{array}{ccc} \frac{x}{4} & = & 6 \\ (\times 4) & (\times 4) \\ x & = & 24 \end{array}\right\|$
37.	Two step	Requires the use of two inverse operations		$\begin{gathered} 2 x-7=19 \\ 2 x=26 \\ x=13 \end{gathered}$
38.	With brackets	Expand the brackets first $\begin{gathered} 5(2 x+1)=35 \\ 10 x+5=35 \\ 10 x=30 \\ x=3 \end{gathered}$		OR if possible divide by the number outside of the bracket first $\begin{gathered} 4(2 x+4)=20 \\ 2 x+4=5 \\ 2 x=1 \\ x=\frac{1}{2} \end{gathered}$
39.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.		$\begin{gathered} 5 x+2=3 x-8 \\ 2 x+2=-8 \\ 2 x=-10 \\ x=-5 \end{gathered}$
40.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\begin{gathered} \frac{f}{5}+2=8 \\ \frac{f}{5}=6 \\ f=30 \end{gathered}$		If everything is part of the fraction then multiply by the denominator first. $\begin{gathered} \frac{f+2}{5}=8 \\ f+2=40 \\ f=38 \end{gathered}$

Real life graphs			
41.	Steady speed	Travelling the same distance each minute	
42.	Velocity	Speed in a particular direction	
43.	Rate of change	Shows how a variable changes over time	
44.	Acceleration	How fast velocity changes; measured in $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{km} / \mathrm{s}^{2}$ etc	
Distance - Time graphs			
45.	Represent a journey		
46.	Vertical axis represents the distance from the starting point		
47.	Horizontal axis represents the time taken		
48.	Straight lines mean constant speed		
49.	Horizontal lines mean no movement		
50.	Gradient $=$ speed		
51.	$\text { Average speed }==\frac{\text { total distance }}{\text { total time }}$		

11.	Terminating decimal	A decimal that has digits that end.	0.25 (it has two decimal digits) 3.0375 (it has four decimal digits)
12.	Recurring decimal	A decimal with a digit or groups of digits that repeat forever.	$\frac{1}{3}=\underset{\text { Fraction }}{0.333 \ldots=0 . \dot{3}=0 . \overline{3}} \begin{aligned} & \text { Ways to show recurring decimals } \end{aligned}$
13.	Decimal place	The number of digits after the decimal point	
14.	Rounding	Changing a number to a simpler, easy to use value.	
15.	Approximate	An easier figure to use close to the value.	
16.	Significant figure	The digits of a number that express a size to a given degree of accuracy	just to look nice not significant look nice (any zero at start) 0.0560 1st significant digit 2nd significant digit

Rounding to decimal places

17.	- Count the number of decimal places you need - Look at the number directly to the right of that digit to decide if it rounds up or down - 5 or more means it rounds up; 4 or less means it rounds down	
18.	e.g. 256.1873	To 1 d.p. is 256.2
		To 2 d.p. is 256.19
		To 3 d.p. is 256.187
Rounding large numbers to significant figures		
19.	- Count the number of digits you need from the left - Look at the number to the right of the digit to decide if it rounds up or down - 5 or more means it rounds up; 4 or less means it rounds down - Replace remaining digits with zeros as placeholders	

Angle definitions

24.	Angle	A measure of turn, measured in degrees ${ }^{\circ}$
25.	Protractor	Instrument used to measure the size of an angle
26.	Acute angle	An angle less than $90^{\circ}{ }^{\circ}$
27.	Right angle	A 90॰ angle
28.	Obtuse angle	An angle more than 90° but less than $180^{\circ}{ }^{\circ}$
29.	Reflex angle	An angle more than 180°
30.	Parallel lines	Lines that are equal distance apart that will never meet even when extended
31.	Perpendicular lines	Lines that intersect at a right angle
32.	Polygon	A 2D shape with straight lines only
33.	Regular polygon	A polygon where:
All sides are the same length All angles are the same size		
	An angle inside a polygon	

Basic angle rules

35.	Angles on a straight line add to 180°	
36.	Angles around a point add up to 360°	
38.	Vertically opposite angles are equal	
39.	Angles in a triangle add to 180°	

Angles on parallel lines

40.	Alternate angles are equal	
41.	Corresponding angles are equal	
42.	Co-interior angles add up to 180°	

Angles in polygons		
43.	Interior and exterior angles add to give 180	
44.	Sum of interior angles	For a ' n ' sided polygon Sum of interior angles $=180 \times(n-2)$
45.	Size of one interior angle	For a ' n ' sided polygon Interior angle =
46.	Sum of exterior angles	For all polygons, sum of exterior angles $=360^{\circ}$
47.	Regular polygons	Exterior angle $=360 \div$ number of sides
		Number of sides $=360 \div$ exterior angle
		Interior angle = 180 - exterior angle

