Statistics

1.	Qualitative data	Data decribed by words.
2.	Quantitative data	Data that is in number form that can be discrete or continuous.
3.	Discrete data	Data that can be counted and has a finite number of possible values.
4.	Continuous data	Data that can be measured and has an infinite number of possible values within a range.
5.	Bar chart	A chart to display discrete data where the height of the bar shows the frequency.
6.	Dual bar chart	A bar chart used to compare data sets where bars are drawn next to each other to compare heights.
7.	Composite bar chart	A bar chart where bars are split to show the different quantities within each bar.

8.	Coordinates	Written in pairs. The first term is the \boldsymbol{x}-coordinate (movement across). The second term is the y-coordinate (movement up or down) A: $(4,7)$ B: $(-6,-3)$
9.	Linear Graph	Straight line graph. The general equation of a linear graph is $y=m x+c$ where \boldsymbol{m} is the gradient and c is the \boldsymbol{y}-intercept. The equation of a linear graph can contain an x-term, a \mathbf{y}-term and a number. Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
10.	Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.

		Method 2: Gradient-Intercept Method (use when the equation is in the form $y=$ $m x+c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form $a x+b y=c$) 1. Cover the x term and solve the resulting equation. Plot this on the x-axis. 2. Cover the y term and solve the resulting equation. Plot this on the y-axis. 3. Draw a line through the two points plotted. $2 x+4 y=8$
11.	Outlier	A value that 'lies outside' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.
12.	Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data, which is a series of data points spaced over uniform time intervals in time order.

13.	Time-Series graph	A time-series graph plots frequencies (vertical) axis against time (horizontal). It is used to spot trends over time. Time could be: weeks, months, quarters (3 months), years.

Expressions and equations

1.	Expression	A mathematical statement written using symbols, numbers or letters. $3 \mathbf{x}+2$ or $5 \mathbf{y}^{2}$
2.	Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms. $2 x+3 y+4 x-5 y+3=6 x-2 y+3$ $3 x+4-x^{2}+2 x-1=5 x-x^{2}+3$
3.	x times x	The answer is x^{2} not $2 x$. Squaring is multiplying by itself, not by 2.
4.	$p \times p \times p$	The answer is p^{3} not $3 p$ If $\mathbf{p}=2$, then $p^{3}=2 \times 2 \times 2=8$, not $2 \times 3=6$

5.	$p+p+p$	The answer is $3 p$ not p^{3} If $p=2$, then $2+2+2=6$, not $2^{3}=8$
6.	Equation	A statement showing that two expressions are equal $2 y-17=15$
7.	Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket. $3(m+7)=3 x+21$
8.	Solve	To find the answer/value of something Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Solve $2 x-3=7$ Add 3 on both sides $2 x=10$ Divide by 2 on both sides $x=5$
9.	Inverse	Opposite The inverse of addition is subtraction. The inverse of multiplication is division.
10.	Substitution	Replace letters with numbers. Be careful of $5 x^{2}$. You need to square first, then multiply by 5 . $a=3, b=2 \text { and } c=5 \text {. Find: }$ 1. $2 a=2 \times 3=6$ 2. $3 a-2 b=3 \times 3-2 \times 2=5$ 3. $7 b^{2}-5=7 \times 2^{2}-5=23$

Decimal calculations

1.	Addition	To find the sum or total of two or more numbers.
2.	Subtraction	To find the difference between two numbers.
3.	Multiplication	Repeated addition of a number. Also called 'product'
4.	Division	The process of calculating the number of times one number is contained in another.
5.	Ascending order	A set of numbers arranged from smallest to biggest.
6.	Descending order	A set of numbers arranged from biggest to smallest.
7.	Decimal	A number with a decimal point in it. Can be positive or negative. $3.7,0.94,-24.07$
8.	Recurring Decimal	A decimal number that has digits that repeat forever. The part that repeats is usually shown by placing a dot above the digit that repeats, or dots over the first and last digit of the repeating pattern. $\begin{gathered} \frac{1}{3}=0.333 \ldots=0 . \dot{3} \\ \frac{1}{7}=0.142857142857 \ldots=0 . \dot{1} 4285 \dot{7} \\ \frac{77}{600}=0.128333 \ldots=0.128 \dot{3} \end{gathered}$
9.	Rounding	To make a number simpler but keep its value close to what it was. If the digit to the right of the rounding digit is less than 5, round down. If the digit to the right of the rounding digit is 5 or more, round up.

		74 rounded to the nearest ten is 70 , because 74 is closer to 70 than 80. 152,879 rounded to the nearest thousand is 153,000 .
10.	Decimal Place	The position of a digit to the right of a decimal point. In the number 0.372 , the 7 is in the second decimal place. 0.372 rounded to two decimal places is 0.37 , because the 2 tells us to round down. Careful with money - don’t write £27.4, instead write £27.40
11.	Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number. The first significant figure of a number cannot be zero. In a number with a decimal, trailing zeros are not significant. In the number 0.00821 , the first significant figure is the 8. In the number 2.740, the 0 is not a significant figure. 0.00821 rounded to 2 significant figures is 0.0082 . 19357 rounded to 3 significant figures is 19400 . We need to include the two zeros at the end to keep the digits in the same place value columns.
Angles		
1.	Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.
2.	Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. $B A C$

| 3. | | |
| :--- | :--- | :--- | :--- |
| Angles at a | | |
| Point | | |

8.	Co-Interior Angles	Co-Interior angles add up to $\mathbf{1 8 0}{ }^{\circ}$. They look like C angles, but never say this in the exam.
9.	Angles in a Triangle	Angles in a triangle add up to $\mathbf{1 8 0}^{\circ}$.
10.	Types of Triangles	Right Angle Triangles have a 90° angle in. Isosceles Triangles have $\mathbf{2}$ equal sides and $\mathbf{2}$ equal base angles. Equilateral Triangles have $\mathbf{3}$ equal sides and $\mathbf{3}$ equal angles (60°). scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. Right Angled Isosceles Equilateral
11.	Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.

12.	Congruent Triangles	4 ways of proving that two triangles are congruent: 1. 858 (Side, Side, Side) 2. RH\$ (Right angle, Hypotenuse, Side) 3. \$As (Side, Angle, Side) 4. AsA (Angle, Side, Angle) or AAs ASS does not prove congruency. $\begin{aligned} & B C=D F \\ & \angle A B C=\angle E D F \\ & \angle A C B=\angle E F D \end{aligned}$ \therefore The two triangles are congruent by AAS.

