Algebra: the basics

Definitions

3a. TABLES

3b. Charts and Graphs

6	Plotting Points	Co-ordinates show an exact position (x, y)	

7	Pictograms		Used to show frequencies Pictures and images used to represent frequency A key at the bottom helps you interpret the diagram
8a	Bar Charts		Frequency on the vertical axis, and categories along the horizontal axis. Used to compare frequencies
8b	Composite Bar Chart		Frequency on the vertical axis, and categories along the horizontal axis. Two shades used to show difference in proportion between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
8c	Comparative Bar Chart		Frequency on the vertical axis, and categories along the horizontal axis. Bars are next to each other and used to show difference in frequency between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
9	Line Graph		A line graph is used to show a change or relationship between two variables. Once the points are plotted, they are joined with straight lines.
10	Time-Series		A time-series graph plots frequencies (vertical) axis against time (horizontal). It is used to spot trends over time. Time could be: weeks, months, quarters (3 months), years

3c. Pie Charts

12	Pie Charts	A pie chart is a chart represented by a circle. It shows the proportion of each group at a glance.				
		People trovelling in v venicle	Frequency	Calculotion	Angle	
		1 person	120	$\frac{120}{180} \times 360^{\circ}$	$240{ }^{\circ}$	
		2 people	40	$\frac{40}{180} \times 360^{\circ}$	80°	
		3 people	13	$\frac{13}{180} \times 360^{\circ}$	24°	
		4 people	5	$\frac{5}{180} \times 360^{\circ}$	10°	
		5 or more	2	$\frac{2}{180} \times 360^{\circ}$	4°	
		Total	180			
		To find the angle: $\frac{\text { frequency }}{\text { total }} \times 360^{\circ}$				

3d. SCATTER GRAPHS

13	Outliers		Outliers don't follow the trend
14	Line of Best Fit		A sensible straight line that goes as centrally as possible through the points plotted. It should also follow the same steepness of the crosses.

15	Interpolate		Using a line of best fit to estimate data WITHIN our range For example: To estimate how many umbrellas are sold with 3 mm rain. - Find where 3 mm of rainfall is on the graph. - Draw a line by going across from 3 mm and then down.	
16	Extrapolate		Continuing a line of best fit to estimate data BEYOND our range (not as reliable as interpolation) For example: To estimate how many umbrellas are sold with 10 mm rain. - Continue the line of best fit. - Find where 10 mm of rainfall is on the graph. - Draw a line by going across from 10 mm and then down.	
17a	Positive Correlation		BOTH variables increase with each other	i.e. Ice creams sold us Temperature
17b	Negative Correlation		ONE variable increases as the other decreases	i.e. Coats sold us temperature
17c	No Correlation		NO relationship between variables	i.e. IQ and House Number
18	Causation	If one variable causes a change in the other. - i.e. an increase temperature WILL cause an increase ice cream sales - i.e. the number of bee stings WILL NOT cause an increase in ice cream sales (although both will increase in hot weather)		

Fractions

		- The remainder becomes the numerator of the fraction part with the same denominator.	
17.	Convert mixed numbers to improper fractions	- Multiply the denominator by th whole number part. - Add the numerator to this. - Put the answer to this back ove the denominator	$7 \frac{1}{6}=\frac{6 \times 7+1}{6}=\frac{43}{6}$
Percentages			
18.	Percentage	Means 'out of 100'	
19.	Multiplier	A decimal you multiply by to represent a percentage	
		To use a multiplier to find a percentage, divide your percentage by 100, then multiply the amount by this value.	
20.	Percentage increase	Calculate the percentage and add onto the original	
		Or use a multiplier	$\text { amount } \times \frac{100+\% \text { increase }}{100}$
21.		Calculate the percentage and subtract from the original	
	Percentage decrease	Or use a multiplier	$\text { amount } \times \frac{100-\% \text { increase }}{100}$
22.	Percentage change	$\frac{\text { Change }}{\text { Original }} \times 100$	
23.	Express one number as a percentage of another	$\frac{\text { Number } 1}{\text { Number } 2} \times 100$	
		Use when asked to find the priginal amount after a percentage increase or decrease.	
24.	Reverse percentage	$\begin{aligned} & \text { Original Value } \times \text { Multiplier }=\text { New Value } \\ & \text { Original Value }=\frac{\text { New Value }}{\text { Multiplier }} \end{aligned}$	
25.	Interest	A fee paid for borrowing money or money earnt through investing.	
26.	Simple interest	Interest that is calculated as a percentage of the original	I = Prt Interest Original amount interest rate time
27.	Compound interest	When interest is calculate on the original amount and any previous interest	

				OR	Origina	$\times \text { Multi }$	$i e r^{\text {time }}$	$\begin{aligned} & \qquad P\left(\mathbf{1}+\frac{\boldsymbol{R}}{\mathbf{1 0 0}}\right)^{n} \\ & \text { P- Original amount } \\ & \mathrm{R} \text { - Interest rate } \\ & \mathrm{n} \text { - the number of interest periods (e.g. yrs) } \end{aligned}$			
28.	Tax		A financial charge placed on sales or savings by the government e.g. VAT								
29.	Loss		Income minus all expenses, resulting in a negative value								
30.	Profit		Income minus all expenses, resulting in a positive value								
31.	Depreciation		A reduction in the value of a product over time								
32.	Annual		Means yearly								
33.	Per annum		Means per year								
34.	Salary		A fixed regular payment, often paid monthly								
FDP Conversions											
35.	Percentage to decimal		Divide by 100								
36.	Decimal to percentage		Multiply by 100								
37.	Fraction to percentage		Find an equivalent fraction with 100 as the denominator								
38.	Percentage to fraction		Write as a fraction over 100 then simplify								
39.	Fraction to decimal		Carry out division or convert to a percentage first								
40.	Decimal to fraction		Use place value to find the denominator and simplify or convert to a percentage first.								
Basics to memorise											
41.	Fraction	$\frac{1}{100}$	$\frac{1}{10}$		$\frac{1}{8}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$
	Decimal	0.01	0.1		0.125	0.2	0.25	$0 . \dot{3}$	0.5	$0 . \dot{6}$	0.75
	Percentage	1\%	10\%		12.5\%	20\%	25\%	33.3\%	50\%	66.7\%	75\%

Equations

1.	Equation	Contains an 'equals' sign			e.g.	$3 y-3=12$
		Has at least one variable				
2.	Linear	Produces a straight line graph				
		No indices above 1				
3.	Term	One part of an expression/equation/formula			e.g.	
		Can involve multiplying and dividing coefficients and variables				$\frac{w}{5}$
		Separated from other terms by addition and subtraction				
4.	Expression	One or a group of terms.			e.g.	$3 y-3$
		Can include variables, constants, operators and grouping symbols.				$3 y^{2}+y^{3}$
		No 'equals' sign				
5.	Formula	A special type of equation that shows the relationship between a set of variables				
6.	Identity	An equation that is true no matter what values are chosen, \equiv			e.g. $3 y \equiv 2 y-y$ for any value of y.	
7.	Unknown	A letter representing a number				
8.	Solve	To find the value of the unknown				
9.	Inverse operations	The operation used to reverse the original operation				
		+ and - are inverse $\quad \times$ and \div			e inve	
		Finding the square root is the inverse of finding the square of a number.				
		Finding the cube root is the inverse of finding the cube of a number.				

Solving equations

10. To solve equations we need to use inverse operations
11. What ever you do to one side of the equals sign you must do the same to the other
12.

14.	With brackets	Expand the brackets first $\begin{gathered} 5(2 x+1)=35 \\ 10 x+5=35 \\ 10 x=30 \\ x=3 \end{gathered}$	OR if possible divide by the number outside of the bracket first $\begin{gathered} 4(2 x+4)=20 \\ 2 x+4=5 \\ 2 x=1 \\ x=\frac{1}{2} \end{gathered}$
15.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.	$\begin{gathered} 5 x+2=3 x-8 \\ 2 x+2=-8 \\ 2 x=-10 \\ x=-5 \end{gathered}$
16.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\begin{gathered} \frac{f}{5}+2=8 \\ \frac{f}{5}=6 \\ f=30 \end{gathered}$	If everything is part of the fraction then multiply by the denominator first. $\begin{gathered} \frac{f+2}{5}=8 \\ f+2=40 \\ f=38 \end{gathered}$
Inequalities			
17.	Inequality	The relationship between two expressions that are not equal	
18.	=	Equal to	
19.	\#	Not equal to	
20.	<	Less than	
21.	>	Greater than	$x>5$
22.	\leq	Less than or equal to	$x \leq 5$
23.	\geq	Greater than or equal to	$x \geq 3$
24.	Inclusive	Gives a finites rnage of solutions	e.g. $\quad 3<x \leq 8$
25.	Exclusive	Gives an infinite range of solutions	e.g. $x>5 \quad-4 \leq x$
26.	Integer	A whole number that can be positive negative or zero	
27.	Solve	Inequalities are solved in the same way as solving equations	

