

Definitions							
Integer		A whole numbers and the negat	A whole numbers and the negative equivalents.				
Positive		Greater than zero.					
Negative)	Less than zero.					
Decimal		A number with digits after the decimal point.					
Onoratio	n	Symbols describing how to comb	ine numbers.				
Operatio		$\times \rightarrow$ Multiply, $\div \rightarrow$ Divide	$, + \rightarrow A$	dd,	$- \rightarrow $	Subtract,	
Multiplico	ations terms	Multiplicand: The number being multiplied.Image: Comparison of the multiplication operation.Multiplier: The number that we are multiplying by.2 ×Product: The result of the multiplication operation.multiplier			3 = 6		
Division t	erms	<i>Dividend</i> : The number being divided. <i>Divisor:</i> The number we are dividing by. <i>Quotient:</i> The result of the division operation.		end ÷ 8 = 5 r	Quotient	$\begin{array}{c} 6 \leftarrow \text{quotient} \\ 4 \overline{) 24} \leftarrow \text{dividend} \\ \stackrel{\uparrow}{\underset{\text{divisor}}{}} \end{array}$	
					+ and	– are inve	erses
Inuoreo o	norations	The operation used to reverse the original operation.		$ imes$ and \div are inverses		erses	
inverse o	perations			Square and square root are inverses			
				Cube and cube root are inverses			
Order of	Operations	В		Brackets			
		The order in which operations	I				ndices
		should be done. DM				Division &	& Multiplication
		N	AS			Addition	& Subtraction
	<i>≠</i>	Not equal to.					
Inclusive		Includes the first and last numbe	rs given.		_		Furnant
Index For	rm	A number written as a base to th something.	ne power of		Base	27	Power Index
Prefix		The first part of a word, sometimes separated from the rest of the word by a hyphen.					
Standard	l Form	A number written in the form: $A \times 10^n$, where A is between 1 and 10.					
Scientific	Notation	Another name for Standard For	n.				
Surd		An method of writing non square or cube e.g. $\sqrt{4}$ is NOT a surd because		d because $\sqrt{4} = 2$			
Fraction	Fraction Represents a proportion or part of a whole.				e.g. $\frac{4}{5}$		
Numerator		The number or term on top of th	e fraction.				Numerator
Denomin	ator	The number or term on the bott	om of the frac	tion.			Denominator
Rationalise the Eliminate a surd denominator in a fraction.							
1a. Calc	1a. Calculations, checking and rounding (N2, N3, N5, N14, N15)						
i)	Add & subtract decimals	Use the column method maki decimal points are vertically c	ng sure maki Iligned	ing sure	e the	3.8 - 1	$ \begin{array}{c} .26 \longrightarrow & 7 \\ 3.80 \\ - 1.26 \\ 2.54 \end{array} $

ii)	Multiply decimals	Multiply the integers and correct place value	Calculate:4.32 \times 20.8Use:432 \times 208= 89856So:4.32 \times 20.8= 89.8562 dp1 dp3 dp
iii)	Divide decimals	<u>Dividing a decimal by an integer</u> : Use short division ensuring that a decimal point is placed vertically above the decimal point in the dividend.	3.7 4 14.8
		<u>Division with a decimal remainder</u> : add a decimal point and additional zero's after the dividend to allow you to continue the short division as above.	Calculate: $57 \div 8$ Use: $8\sqrt{57 \cdot 0^{\circ}0^{\circ}0}$
		<u>Dividing by a decimal</u> : Multiply dividend and divisor by 10, 100, 1000 so that the divisor becomes an integer then complete short division as above. <u>N.B. Do</u> not place value after the calculation!	Calculate: 6. 488 ÷ 0. 8 × 10 × 10 Use: 64.88 ÷ 8 = 8.11 So: 6.488 ÷ 0.8 = 8.11
iv)	Multiply any number between 0 and 1	Use the methods described above in: ii) Multiply decimals <i>N.B.</i> Value of the product will be smaller than the value of the multiplicand if the multiplier is between 0 and 1 and vice-versa.	$12 \times 0.2 = 6$ And: $0.2 \times 12 = 6$
	Divide any number between 0 and 1	Use the methods described above in: iii) Divide decimals <i>N.B.</i> Value of the quotient will be greater than the value of the dividend if the divisor is between 0 and 1.	$12 \div 0.2 = 60$
v)	Use one calculation to find the answer to another	Given: $a \times b = c$ Then: $c \div b = a$ and $c \div a = b$ Adjust place value if necessary.	If: $19 \times 24 = 456$ $456 \div 24 = 19$ $456 \div 19 = 24$ $1.9 \times 24 = 45.6$ $456 \div 190 = 2.4$ $19 \times 240 = 4560$
vi)	Use the product rule for counting: multiple groups	There are n different options available from group A and m different options available from group B. The number of possible combinations that can occur when choosing one option from Group A <u>and</u> one option from Group B is given by: $n \times m$	e.g. A restaurant serves 4 different starter and 5 different main courses. How many combinations of start and main course could you choose? $4 \times 5 = 30$
	Use the product rule for counting: one group with repeats	There are n possible options available from a single group and the same option can be selected multiple times. The number of possible combinations that can occur when choosing m options is given by: n^m	e.g. A combination lock has 3 wheels with the numbers 1 to 8 on each wheel. How many different combinations are possible? $8^3 = 512$
	Use the product rule for counting: one group without repeats	There are n possible options from a single group and each options can be selected once only. The number of possible outcomes that can occur when choosing m options is given by: $n \times (n-1) \times (n-2) \times \dots \times (n-m+1)$	e.g. 12 people run a marathon, how many combinations of gold, silver and bronze medal winners are there? $12 \times 11 \times 10 = 1320$

vii)	Round to a				e.a. 36, 3486343
	given number	 Count the number of decimal places you 	9	<u>^</u>	36 3 486343
	of decimal	need.	87	up	To 1 dn is 36 3
	places	 Look at the number to the right of that 	é		26 34 86343
		digit to decide if it rounds up or down.	. 4	1	JU.J4[00343
		 5 or more it rounds up, 4 or less it rounds 	down 3		10 2 a.p. 18 30. 35
		down.	1		36.348 6343
					10 3 d.p. is 36. 349
ii)	Round a	Count the number of digits you need from			e.g. 324 627 938
	large number	the left.			3 24627938
	to a given	 Look at the number to the right of that 	9	<u>^</u>	To 1 s.f. is
	number of	aigit to decide if it rounds up or down.	87	up	30000000
	significant	• 5 or more it rounds up, 4 or less it rounds	é		32 4627938
	figures	down.	. 4	1	To 2 s.f. is
		Replace remaining digits with zeros as	down 3		32000000
		place holders.	1		324 627938
					To 3 s.f. is
					325000000
ix)	Round a	• Zeros are not significant until after the first			e.g. 0.0034792
	small number	non-zero number.	. 1	×	0.003 4792
	to a given	 Find the first non-zero and count the 	8	up	To 1 s.f. is 0.003
	number of	number of digits you need from there.	7	- 12	0.0034 792
	significant	 Look at the number to the right of that 	5		To 2 s.f. is 0, 0035
	figures	digit to decide if it should round up or	down 3		0.00347192
		down.	2		To 3 s.f. is 0.00348
		 5 or more it rounds up, 4 or less it rounds down. 			
x)	Estimating	 Round each number to 1 significant figure be 	efore doing	e.g. Esti	mate:
		any calculations.		3	.91 × 8789.8
		 It is acceptable to round one or more number 	ers in the	6	20.9 × 0.492
		calculation to a greater accuracy than 1 sig.	fig. if this	201 🗸	0700 0 1 × 0000
		makes the calculation easier.		3.91 ×	$\frac{0709.0}{0.000} \approx \frac{4 \times 9000}{0.0000}$
		• DO NOT round the answer:		620.9	× 0.492 600 × 0.5 3600
					$\approx \frac{3000}{200}$
					≈ 120
1b. Indices, roots, reciprocals and hierarchy of operations (N2, N3, N6, N7, N14)					
X	Use index	• Count how many zero's there are after the 1	and write 10	e.g. 1 <mark>0</mark> ($000\ 000 = 10^7$
i)	notation for	to the power of this number.			
	positive powers	• Write a 1 followed by the same number of zero's as the			² = 100
	of 10	power 10 is raised to.			
ii)	Use index	• Count how many zero's there are in front of the 1 and			00 000 1 10-7
	notation for	write 10 to the power of the negative of this	number.	e.g. U. U	000001 = 10'
	negative	• Use the positive of the power 10 is raised to a	and write a 1		
	powers of 10	with this number of zero's in front with a dec	cimal point	e.g. 10	$^{-2} = 0.01$
		atter the first.			

iii)	Recognise common powers	Recall that the positive power of a number tells us how many times to use that number in a multiplication.				$= 3 \times 3 \times 3 \times 3$ $= 7 \times 7$
	Powers of 2	$2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5 = 32, 2^6 = 64, 2^7 = 128, 2^4$			$3^{3} = 256.2$	$9^{9} = 512, 2^{10} = 1024$
	Powers of 3		$3^1 = 3, 3^2 =$	$9, 3^3 = 27, 3^4 = 81, 3^5$	= 243	
	Powers of 4		$4^1 = 4, 4^2 = 1$	$16, 4^3 = 64, 4^4 = 256, 4^4$	5 = 1024	ŀ
	Powers of 5		5 ¹ = 5 , 5	$b^2 = 25, 5^3 = 125, 5^4 =$	625	
iv)	Estimate roots of any given positive number	 Identify the square (or cube) numbers immediately above and below the number we are trying to find the square (or cube) root of. The desired root must lie between the integer roots of the square numbers immediately above and below. 			e.g. Betw integers • Next s • Previc 36. • √ • So: √4	ween which two does $\sqrt{42}$ lie? quare number is 49. ous square number is $\overline{36} = 6, \sqrt{49} = 7$ $\overline{52}$ lies between : 6 & 7
v)	Find the value of calculations involving positive indices	Recall that a positive power of a number tells us how many times to use that number in a multiplication.			e.g. 3 ⁴ = e.g. 7 ² =	= 3 × 3 × 3 × 3 = 7 × 7
	Find the value of calculations involving negative indices	To calculate a n • Calculate the power. • Then take the	egative power: equivalent positive reciprocal.	$a^{-n} = \frac{1}{a^n}$		e.g. Calculate 4^{-3} . • $4^3 = 64$ • $4^{-3} = \frac{1}{64}$
	Find the value of calculations involving fractional indices	The denominato power gives the evaluate.	or of the fractional type of root to	$a^{\frac{1}{n}} = \sqrt[n]{a}$	ļ	e.g. $64^{\frac{1}{2}} = \sqrt{64} = 8$ e.g. $125^{\frac{1}{3}} = \frac{3}{\sqrt{125}} = 5$
vi)	Use powers of 0 and 1	Anything to the	power of $0 = 1$	$a^0 = 1$		e.g. $5^0 = 1$
		Anything to th	e power $1 = itself$	$a^1 = a$		e.g. $5^1 = 5$
vii)	Use index laws to simplify or evaluate	Multiplication	Add the powers	$a^m \times a^n = a^m$	+n	e.g. $2^2 \times 2^3 = 2^5 (= 32)$
numerical expressions		Division	 Subtract the powers 	$a^m \div a^n = a^m$	-n	e.g. $3^9 \div 3^4 =$ $3^5 (= 243)$
		Brackets	 Multiply the powers 	$(a^m)^n = a^{mn}$	ı	e.g. $(7^4)^3 = 7^{12}$

1c. Fac	tors, multiples c	and primes (N3, N4)		
i)	Factors	A factor is a number that divides into another number	e.g. factors a	of 6: 1, 2, 3 and 6
ii)	Multiples	A multiple is a number from the times tables	e.g. multiple 4	s of 4:
iii)	Prime number	A prime number is a number with exactly 2 factor	'S	· · · · · · · · · · · · · · · · · · ·
		2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,	61, 67, 71, 73, 7	79, 83, 89, 97
iv)	Product	The answer when two or more numbers are multiplied together.	e.g. Product	of 3 & 7: 3 × 7 = 21
v)	Prime factor decomposition	Writing a number as a <i>product of its prime factors</i>	60 6 2 3 2 Either way, the re 2 x 2 x 3 x 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
vi)	Highest common factor (HCF)	The highest number that divides exactly into two or more numbers.	\bigcirc	e.g. The HCF of 12 & 8: 4
vii)	Lowest common multiple (LCM)	The smallest positive number that is a multiple of two or more numbers.	\bigcirc	e.g. The LCM of 12 & 8: 24
1d. Sta	ndard form (N	9)		
i)	Convert a small number to standard form	 Count the number of zero's in front of the first significant figure (including the one in front of the decimal point). The power of ten is negative followed by this number. 	e.g. 0.00	$0000037 = 3.7 \times 10^{-7}$
ii)	Convert a large number into standard form	 Count the number of place value position there are after the first significant figure. The power of ten is positive followed by this number. 	e.g. 147 1($00\ 000\ 000 = 1.47 \times 10^{11}$
iii)	Converting to a small ordinary number	 Look at the digit after the negative in the power of 10. Write this may zero's in front of the first sig. fig. Reposition the decimal place between the first and second zero. 	e.g. 2.4	$\times 10^{-6}$ = 0.0000024
iv)	Adding or subtracting numbers in standard form	 Convert the numbers to ordinary numbers. Add. Convert the sum to standard form. 	e.g. (2.3)	$ \begin{array}{r} \times \ \mathbf{10^4} \) \ + \ (6.4 \ \times \ \mathbf{10^3} \) \\ 23000 \ + \ 6400 \\ = \ 29400 \\ = \ 2.94 \ \times \ \mathbf{10^4} \end{array} $

v)	Multiplying numbers in standard form	 Multiply the numbers between one and 10 at the front. Use index law for multiplication for the powers of 10. If necessary increase the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(4.5 \times 10^3) \times (3 \times 10^5)$ = $13.5 \times 10^{3+5}$ = 13.5×10^8 = 1.35×10^9
vi)	Dividing numbers in standard form	 Divide the numbers between one and 10 at the front. Use index law for division for the powers of 10. If necessary decrease the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(2.5 \times 10^{11}) \div (5 \times 10^{13})$ = 0.5×10^{-2} = 5×10^{-3}
1d. Sur	ds (N8)		
i)	Multiply	$\sqrt{a} imes \sqrt{b} = \sqrt{ab}$ and $\sqrt{a} imes \sqrt{a} = a$	e.g. $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ and $\sqrt{3} \times \sqrt{3} = 3$
ii)	Divide	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	e.g. $\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}$
	Add and	$\sqrt{a} + \sqrt{b}$ cannot simplify	e.g. $\sqrt{3} + \sqrt{2} = \sqrt{3} + \sqrt{2}$
	subtract	But $\sqrt{a} + \sqrt{a} = 2\sqrt{a}$	e.g. $5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$
iv)	Simplify	$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$	e.g. $\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$
v)	Rationalise the denominator	Multiply numerator and denominator (use equivalent fractions) by whatever will result	e.g. $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{7}{\sqrt{7}}$
		in the denominator simplifying to an integer.	e.g. $\frac{1}{5+\sqrt{2}} = \frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}} = \frac{5-\sqrt{2}}{3}$

Algeb	ora: the basics			
1.	Variable	A letter representing a varying or ur	iknown quantity.	
2.	Coefficient	A number which multiplies a variable e.g. 4 is the coefficient in 4a		
		One part of an expression/equation/	formula	
З.	3. Term Can involve multiplying and dividing coefficient and variables		g coefficients W	
		Separated from other terms by add subtraction	tion and 5	
4.	Like terms	Terms that have the same variable but have different coefficients	e.g. c + 4c are like terms c ² and c ³ are not like terms	
		A fixed value.	Coefficient Variable	
5.	Constant	A number on its own or sometimes a letter such as a, b or c to represent a fixed number.	4x - / = 5 Operator Constants	
		One or a group of terms.		
6.	Expression	Can include variables, constants, operators and grouping symbols.	e.g. 3y -3	
		No 'equals' sign	3y ² +y ³	
7.	Equation	Contains an 'equals' sign, = Has at least one variable	e.g. 3y – 3 = 12	
8.	Formula	A special type of equation that show variables	s the relationship between a set of	
9.	Formulae	Plural of 'formula'		
10.	Identity	An equation that is true no matter what values are chosen, \equiv	e.g. $3y \equiv 2y - y$ for any value of y.	
11.	Subject	The variable on its own on one side o	of the equals sign.	
12.	Substitute	Replace a variable with a number.	a = 3, b = 2 and c = 5. Find: 1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$	
13.	Simplify	Minimising the size of an expression		

14.	Factorise	Splitting an expression into a product of factors				
15.	Expand	Removing brackets by using multipli	cation			
16.	Solve	Find the value of an unknown				
Algebro	aic Notation					
17.	Adding like terms	Add the coefficients	b + 2b = 3b			
18.	Subtracting like terms	Subtract the coefficients	5b-4b = b			
19.	Multiplying like terms	If the base is the same, add the powers	$b \times b = b^2$			
20.	Dividing terms	If the base is the same, subtract the powers	$b^5 \div b^2 = b^3$			
21.	Adding different terms	Cannot combine if the terms are different.	b + 2c = b + 2c			
22.	Subtracting different terms	Cannot combine if the terms are different.	3c - 4 = 3c - 4			
23.	Multiplying different terms	Combine with no '×' sign	$d \times e = de$			
24.	Multiplying different terms with coefficients	Combine with no '×' sign, multiply the coefficients	$2d \times 3e = d6e$			
25.	Dividing different terms	Write as fractions with no '÷' sign	$3d \div e = \frac{3d}{e}$			
26.	Dividing different terms with coefficients	Write as fractions with no '÷' sign, simplify the coefficients where possible.	$14d \div 7e = \frac{2d}{e}$			
Expan	ding (single brackets)					
27.	Multiply all the terms inside	the bracket, by the term on the outsid	de.			
28.	$\frac{2x^{2x} - 3}{3(a + 4)} = 3a + 12$					
Factor	ising (single brackets)					
29.	 Find the highest com terms This goes outside the Divide each term by new terms inside the Always check by exp 	$\begin{array}{c} \text{2x} \\ 2x \\ \text{2x} \\ $	+ 4y 2(x + 2y) - 10xy 5xy(x - 2)			
Europe						
		Can be represented by a straight				
30.	Linear	line	e.g. 2 <i>x</i> + 2			
		No indices above 1				
31.	Quadratic	An expression where the highest index is 2	e.g. $2x^2 + 2x + 2$			

Expan	xpanding double brackets					
32.	Everything in the first bracket must be multiplied by everything in the second					
	Grid me	thod FOIL method				
	(x+4)(x+1)	FIRST: $(x+3)(x-4)$ gives $x \times x = x^2$				
	X x +4	DUTER: $(x+3)(x-4)$ gives $x \times (-4) = -4x$				
33.	x x2 4x +7 7x 28	INNER: $(x+3)(x-4)$ gives $3 \times x = 3x$				
	$= x^2 + 4x + 7$	LAST: $(x+3)(x-4)$ gives $3 \times (-4) = -12$				
Factorising a quadratic expression						
		Multiply to 5				
		Factorise $x^2 + 5x + 6 - \text{Add to } 6$				
	Factorising a	2 and 3 add to 5				
34.	quadratic in the form of $ax^2 + hx + c$	2 and 3 multiply to 6				
		(x+2)(x+3)				
		Check: $(x + 2)(x + 3) = x^2 + 5x + 6$				
		A special type of quadratic which only has two terms.				
	Difference of two	One term is subtracted from the other				
35.	squares	$x^2 - 25 = x^2 - 5^2 = (x + 5)(x - 5)$				
		$y^2 - 49 = y^2 - 7^2 = (y + 7)(y - 7)$				
		$a^2 - 16 = a^2 - 4^2 = (a + 4)(a - 4)$				
Equat	ions					
36.	To solve equations we need to use inverse operations					
37.	What ever you do to one side of the equals sign you must do the same to the other					

38.	One step	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
39.	Two step	Requires the use of two inverse operations	2x - 7 = 19 $2x = 26$ $x = 13$
40.	With brackets	Expand the brackets first 5(2x + 1) = 35 $10x + 5 = 35$ $10x = 30$ $x = 3$	OR if possible divide by the number outside of the bracket first $4(2x + 4) = 20$ $2x + 4 = 5$ $2x = 1$ $x = \frac{1}{2}$
41.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.	5x + 2 = 3x - 82x + 2 = -82x = -10x = -5
		Eliminate any terms that are being added or	If everything is part of the fraction
42.	With fractions	subtracted separate from the fraction first. $\frac{f}{5} + 2 = 8$ $\frac{f}{5} = 6$ $f = 30$	then multiply by the denominator first. $\frac{f+2}{5} = 8$ $f+2 = 40$ $f = 38$
42. Chang	With fractions Jing the subje	subtracted separate from the fraction first. $\frac{f}{5} + 2 = 8$ $\frac{f}{5} = 6$ $f = 30$ ect of a formula (rearranging)	then multiply by the denominator first. $\frac{f+2}{5} = 8$ $f+2 = 40$ $f = 38$
42. Chang	With fractions Jing the subj e Always use inve	subtracted separate from the fraction first. $\frac{f}{5} + 2 = 8$ $\frac{f}{5} = 6$ $f = 30$ ect of a formula (rearranging) erse operations to isolate the term you have been	then multiply by the denominator first. $\frac{f+2}{5} = 8$ $f+2 = 40$ $f = 38$ asked to make the subject

Iteratio	on			
44.	Iteration	The act of repeating a process to generate a sequence of outcomes or with the aim of of appraoching a desired result e.g. finding a solution to an equation		
45.	Iterative sequence	The relationship between consecutive terms		
46.	Roots	Solutions to an equation		
47.	Change of sign	Two values with a root between them		
Sequences				
48.	Sequence	An order pattern of numbers or diagrams		
49.	Term	One of the numbers or diagrams in a sequence		
50.	Term to term rule	The rule for moving from one term to the next in a sequence		
51.	Formula	A rule written to describe a realtionship between twp quantities		
52.	Arithmetic sequence	A sequence where the term to term rule is to addd or subtract the same amount each time		
52	Quadratic	A sequence where the term to term rule is changing by the same amount each time		
55.	sequence	The second difference is a constant amount.		
54.	Geometric sequence	A sequence where the term to term rule is to multiply by the same amount each time		
EE	Common	The value a geometric sequence is multiplied by from one term to the next		
55.	ratio	Denoted by the letter <i>r</i>		
56.	Series	The sum of the terms in a sequence		
57.	Position to term rule	The rule for finding any value of a sequence		
		The rule to find any term in a sequence of numbers		
58.	nth term rule for an arithmetic sequence	 Find the common difference between the terms This becomes you coefficient of n (this is the times table the sequenc is linked to) The number you need to add or subtract to get to the second term becomes the second term in the nth term rule 6, 10, 14, 18, 22 The sequence increases by 4, so the inth term is 		
		r_{4} +4 +4 +4 nth term starts with 4n 4, 8, 12, 16, 20 4n + 2		
59.	Nth term for a quadratic sequence	 Find the first difference Find the second difference Halve the second difference and multiply by n² to gain a new sequence of an² Generate the first few term sof this seuence then subtract from the original sequence 		

		•	 Find the nth term of the remianing sequence bn + c The entire nth term is then an² + bn + c 			
60.	nth term for a geometric sequence	•	 Divide the second sequence by the first to find the common ratio, r The nth term is arⁿ⁻¹ where a is the first term and n is the term position in the sequence 			
61.	Finite	Has a f	inal point			
62.	Infinite	Carries	on forever			
63.	Ascending	Increase	25			
64.	Descending	Decrea	ses			
65.	Linear function An aruthmetic sequence that can be represented by a straight line graph			ed by a straight line graph		
Special Sequences						
66.	Square numbers		1, 4, 9, 16, 25, 36, 49, 64, 81, 100			
67.	Cube numbers		1, 8, 27, 64, 125	1 8 27 64 125		
68.	Triangular numbers		1, 3, 6, 10, 15, 21, 28			
	Fiberarei com		A sequence where each term is the sur	n of the two previous terms		
69.	Fibonacci sequence		e.g. 1, 1, 2, 3, 5, 8, 13, 21			

Definit	ions					
1.	Qualitative Data	Non-numerical data i.e. Colour of car				
2.	Quantitative Data	Numerical data	i.e. House number			
3.	Discrete Data	Numerical data that <u>CANNOT</u> be shown in decimals	n i.e. Number of children in a class			
4.	Continuous Data	Numerical data that <u>CAN</u> be shown in decimals	i.e. The heights of children in a class			
5.	Grouped Data	Numerical data given in intervals	i.e. Year group ranges: Year 7-9 Year 10-11 Year 12-13			
Avera	ges					
6.	Measure of location	A single value that describes a position in a	a data set			
7.	Measure of central tendency	A single value that describes the centre of the data				
		A measure of how spread out the data is				
8.	Measure of spread	Also known as 'measures or dispersion' or 'measures of variation'				
		Two simple measures of spread are range and interquartile range (IQR)				
9.	Mode (modal class)	The value that occurs most often				
10.	Range	The difference between the largest and sm	allest values in the data set			
11.	Median	The middle value when the data values are put in ascending order				
		Found by adding all number sin the data s in the set	set and dividing by the number of values			
		Can be calculate using the formula $\bar{x} = \frac{\Sigma x}{n}$	Where: \bar{x} is the mean Σx is the sum of the data values n is the number of data values			
12.	Mean	Mean from a frequency table $ar{x}=$	$\frac{\Sigma f x}{\Sigma f}$			
		Where $\Sigma f x$ is the sum of the products of data values and their frequencies and Σ is the sum of the frequencies				

Advanta	Advantages and disadvantages of averages									
	Average Advantages				Disadvantages					
	Mean	Every value makes a difference				Affected b	y extreme values			
13.	Median	Not affected k	oy extrer	ne vo	alues		May not c changes	hange even if a data value		
	Mode	Easy to find; n values; can be data	ot affect used for	ed b r non	y extre 1-nume	me rical	There may	There may not be a mode		
Averag	Averages from frequency tables									
14.	Modal class	The class with	the high	est fi	requen	:y				
15.	Median	If the total fre	quency i	s n, t	hen the	e med	lian lies in th	e class with the $\frac{n+1}{2}$ th value in it.		
16.	Mean from a frequency table Times Add Divide		No of make	e-up i ⁺ Freq 7 2 1 4 2 16	tems in ho f x 2x 2 3x 1 4x 4 5x 2	=7 =4 =3 =16 =10 40		Mean = <u>40</u> = 2.5		
17.	Estimated mean from a grouped frequency table Times Add Divide	$Class Interv$ $140 \le h < 12$ $150 \le h < 10$ $160 \le h < 12$ $170 \le h < 12$	al Mid-pa 50 145 60 155 70 165 80 175 Tota	oint la	Frequency 6 16 21 8 51	Mid-pa 14 15 16 17	$bint \times Frequency$ $5 \times 6 = 870$ $5 \times 16 = 2480$ $5 \times 21 = 3465$ $5 \times 8 = 1400$ 8215	Mean = 8215 ÷ 51 =161.07843 = 161.08 (2dp)		
18.	Estimate of range from grouped frequency table	The maxiumu	m possib	ole vo	alue mi	nus th	ie smallest po	ossible value.		
Average	Averages from charts/graphs									

		A chart to dis bar shows the	play discrete e frequency.	data where tł	ne height of t	he	
19.	Bar chart		Wor 5 4 0 1 0 0 Workers 0 0	ker absences	4		Mean: 23 ÷ 10 = 2.3 Median: 2.5 Mode : 3 Range: 4-1 = 3
20.	Pictogram	A chart that include a key	uses pictures t Apple Jan Feb Mar Apr = 10 Apple	o represent que es Sold	uantities. Mus	t	Mean: 95÷4 = 23.75 Median: 22.5 Range: 30
21.	Stem and leaf diagram	STEM LEAF 0 7 1 0 5 5 5 7 9 2 0 2 2 6 7 3 0 2 4 6 8 Key: 6 1 = 61 hours A diagram that shows groups of data arranged by place under floature' should be in order. Must have a hour				Mean: 385÷17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31	
22.	Back to back stem and leaf	Compares two sets of results. Must have a key. A B <u>LEAF</u> STEM LEAF 8 8 7 5 0 7 9 7 4 1 0 1 0 5 5 5 79 2 2 2 1 2 0 2 2 6 7 8 6 4 2 0 3 0 2 4 6 8 Key: 6 1=61 hours				Set A Mean: 356÷18 = 19.8 Median: 20 Mode: 22 Range: 38-5 = 33 Set B Mean: 385÷17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31	
Repres	enting data					1	
23.	Two-Way Tables	Pet No Pet TOTAL	Boys 9 2 11	Girls 4 5 9	TOTAL 13 7 20	Two-v sorting catego	vay tables are a way of g data with two ories.

24.	Pictograms	Movie genre Frequency Horror	Used to show frequencies Pictures and images used to represent frequency A key at the bottom helps you interpret the diagram
25.	Bar Charts	15 10 5 0 0 5-10 11-15 16-20 21-25 Number of customers	Frequency on the vertical axis, and categories along the horizontal axis. Used to compare frequencies
26.	Composite Bar Chart	A A A A A A A A A A A A A A	Frequency on the vertical axis, and categories along the horizontal axis. Two shades used to show difference in proportion between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
27.	Comparative Bar Chart	50 40 30 Cm 20 Jan Feb Mar Apr May Month Dual Bar Chart	Frequency on the vertical axis, and categories along the horizontal axis. Bars are next to each other and used to show difference in frequency between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
28.	Line Graph	C) untroposition 22 23 24 25 24 25 24 25 25 26 24 26 26 26 26 26 26 26 26 26 26	A line graph is used to show a change or relationship between two variables. Once the points are plotted, they are joined with straight lines.

38.	No Correlation	g x x x x x x x x x x x x x	NO relationship between variables	i.e. IQ and House Number	
39.	Causation	 If one variable causes a change in the other. i.e. an increase temperature <u>WILL</u> cause an increase ice cream sales i.e. the number of bee stings <u>WILL NOT</u> cause an increase in ice cream sales (although both will increase in hot weather) 			

ractions r

F ra			
1.	Fraction	Part of a whole	
2.	Numerator	The number on the top of the fraction	numerator
З.	Denominator	The number on the bottom of the fraction	on <i>denominator</i>
4.	Equivalent fractions	Fractions that have the same value but look different.	$\frac{1}{2} \frac{2}{4} \frac{3}{6} \frac{4}{8}$
5.	Improper fraction	A fraction where the numerator is larger than the denominator.	e.g. $\frac{4}{3}$
6.	Mixed number	A number made from integer and fracti parts.	on e.g. $2\frac{2}{3}$
7.	Unit fraction	A fraction that has a numerator of 1	
	Designees	The reciprocal of a number is 1 e.g. divided by the number.	the reciprocal of 3 is $\frac{1}{3}$
δ.	Reciproca	Dividing by a number is the same e.g. as multiplying by its reciprocal	\times by $\frac{1}{3}$ is the same as \div by 3
Fra	ctions - processes	-	-
9.	Simplifying fractions	Divide the numerator and denominator by the HCF.	$\frac{24}{30} = \frac{4}{5}$
10.	Finding equivalent fractions	Multiply the numerator and denominator by the same number	$\frac{4}{8} \times 2 = 8$ 8 × 2 = 16
11.	Comparing fractions	Write them with a common denominato	or
12.	Fraction of an amount	Amount divided by the denominator then multiplied by the numerator	e.g. $\frac{5}{7}$ of 42 42 ÷ 7 x 5 = 30
13.	Multiply fractions	Multiply the numerators and multiply the denominators	$\frac{6}{7} \times \frac{4}{5} = \frac{6 \times 4}{7 \times 5} = \frac{24}{35}$
14.	Divide fractions	 Flip the second fraction (find the reciprocal). Change the divide to multiply. Multiply the fractions. 	$\frac{4}{7} \div \frac{5}{6} = \frac{4}{7} \times \frac{6}{5} = \frac{4 \times 6}{7 \times 5} = \frac{24}{35}$
15.	Add or subtract fractions	 Write as fractions with a common denominator. Add or subtract the numerators 	$\frac{2}{8} + \frac{1}{6} = \frac{6}{24} + \frac{4}{24} = \frac{10}{24} = \frac{5}{12}$

16.	Convert improper fractions to mixed numbers	 Divide the numerator by the denominator The answer gives the whole number part. The remainder becomes the numerator of the fraction part with the same denominator. 	$\frac{43}{6} = 7\frac{1}{6}$			
17.	Convert mixed numbers to improper fractions	 Multiply the denominator by the whole number part. Add the numerator to this. Put the answer to this back over the denominator 	$7\frac{1}{6} = \frac{6 \times 7 + 1}{6} = \frac{43}{6}$			
18.	Adding and subtracting mixed numbers	 Convert mixed numbers to impre- Transform both fractions so they Add or subtract the numerators Convert back to mixed number 	oper fractions have the same denominator if applicable			
19.	Multiplying mixed numbers	 Convert mixed numbers to improper fractions Multiply numerators and multiply the denominators Convert back to mixed number if applicable 				
20.	Dividing mixed numbers	 Convert back to mixed number if applicable Convert mixed numbers to improper fractions Flip the second fraction (find the reciprocal) Change the divide sign to a multiply Multiply the fractions Convert back to mixed number if applicable 				
Per	centages					
21.	Percentage	Means 'out of 100'				
22	Multiplier	A decimal you multiply by to represent a percentage				
~~.		To use a multiplier to find a percentage, divide your percentage by 100, then multiply the amount by this value.				
		Calculate the percentage and add onto	the original			
23.	Percentage increase	Or use a multiplier	amount $\times \frac{100 + \% \text{ increase}}{100}$			
		Calculate the percentage and subtract	from the original			
24.	Percentage decrease	Or use a multiplier	amount $\times \frac{100 - \% \text{ increase}}{100}$			
25.	Percentage change	$\frac{Change}{Original} \times 100$				
26.	Express one number as a percentage of another	$\frac{Number \ 1}{Number \ 2} \times 100$				

		Use when asked to find the priginal amount after a percentage increase or decrease.				
27.	Pauarsa parcantaga	Original Value x Multiplier = New Value				
21.	Nevene percentage	Original Value = <u>Nev</u>	v Value			
		Mu	ltiplier			
28.	Interest	A fee paid for borrowing money or m	noney earnt through investing.			
29.	Simple interest	Interest that is calculated as a	I = Prt I – Interest			
		percentage of the original	P – Original amount r – interest rate t - time			
		When interest is calculate on the original amount and any previous interest	$P\left(1+\frac{R}{100}\right)^n$			
30.	Compound interest	OR	R – Interest rate			
		$Original \times Multiplier^{time}$	n – the number of interest periods (e.g. yrs)			
31.	Тах	A financial charge placed on sales or savings by the government e.g. VAT				
32.	Loss	Income minus all expenses, resulting in a negative value				
33.	Profit	Income minus all expenses, resulting in a positive value				
34.	Depreciation	A reduction in the value of a product	: over time			
35.	Annual	Means yearly				
36.	Per annum	Means per year				
37.	Salary	A fixed regular payment, often paid monthly				
FD	P Conversions	1				
38.	Percentage to decimal	Divide by 100				
39.	Decimal to percentage	Multiply by 100				
40.	Fraction to percentage	Find an equivalent fraction with 100 as the denominator				
41.	Percentage to fraction	Write as a fraction over 100 then simplify				
42.	Fraction to decimal	Carry out division or convert to a percentage first				
43.	Decimal to fraction	Use place value to find the denominator and simplify or convert to a percentage first				

Bas	Basics to memorise										
	F unditure	1	1	1	1	1	_	1	1	2	3
	Fraction	100	10	8	5	4	ł	3	2	3	$\overline{4}$
44.	Decimal	0.01	0.1	0.125	0.2	0.2	25	0. 3	0.5	0. Ġ	0.75
	Percentage	1%	10%	12.5%	20%	25	%	33. 3%	50%	66. 7%	75%
Ter	minating an	d rec	urring de	cimals							
45.	Terminating decimal	Decir	nals that c	an be wr	itten exa	ctly	e.g	. 0.38			
46.	Recurring	Decir	nals where	one digi	t or grou	ps	e.g	. 0. 7 = 0.	7777		
	decimal	of dig	jits are rep	eated			0. Ė	353 = 0.8	53853		
47.	Converting a recurring decin to a fraction	nal	Let x = recurring decimal. Let n = the number of recurring digits. Multiply the recurring decimal by 10 ⁿ . Subtract (1) from (3) to eliminate the resolution of the form (3) to eliminate the resolution of the form. Solve for x, expressing your answer as a second of the form (3) to eliminate the resolution of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expressing your answer as a second of the form. Solve for x, expression of the form. Solve for x, exp			ecurring part. 1.256 (two recurring digits) x = 1.25656 100x = 125.6565 100x - x = 125.6565 1.256565 99x = 124.4 $x = \frac{124.4}{99} = \frac{1244}{990} = \frac{622}{495}$					
48.	Converting a fraction to recurring decimals	Cu	Carry out the neccesary division using a calcualtor or bus stop division $ \begin{array}{c} e.g. & \frac{4}{7} & _{\text{means 4 ÷ 7}} \\ 0.57142857 \\ 7 & 4.40^50^{1}0^{3}0^{2}0^{6}0^{4}0^{5}0 \end{array} $			7 0					
Rat	io and Prop	ortio	า								
49	. Ratio		A relations	nip betwee	en two or r	nore o	quan	tities			
50	. Unit ratio		Used to cor	npare rati	os, one of t	he po	irts is	1			
			The only time it is permissible to have a decimal in a ratio								
51. Equivalent Ratios that have the same simplified form are said to be equ			be equiv	alent							

52.	Scale	A ratio that represents the relationship between a length on a drawing or a map and the actual length				
53.	Proportion	Compares a part with a whole				
54.	Direct proportion	Two quantities increase at the same rate	$y \propto x$ y = kx for a constant k			
		Graph is a straight line that goes through th origin	e			
55.	Inverse/indirect proportion	One variable increases at a constant rate as the second variable decreases	$y \propto \frac{1}{x}$ $y = \frac{k}{x} \text{ for a constant } k$ $y = \frac{k}{x}$ $y = \frac{k}{x}$			
56.	Proportional	A change in one is always accompanied by a change in the other				
67	Constant of	Represented by <i>k</i>				
57.	proportionality	Its value stays the same				
58.	Share	Splitting into parts as defined by a ratio				
50	l haitann an ath a d	Finding the value of 1 item then using this to item	o find the value of any number of that			
59.	Unitary method	Use to work out which products give the best value for money				
Work	ing with ratio	DS				
	-	Divide all parts by the highest common factor	e.g. 12:4 simplifies to 3:1 (divided bv			
60.	Simplifying ratio	All parts in the simplified version must be integers	HCF of 4)			
61.	Divide in a given ratio	Divide an amount so the ratio of the final values simplifies to the given ratio	share £20 in the ratio 3:2 £20 £4 £4 £4 £4			

Shape	s and angles - de	efinitions				
1.	Angle	A measure of turn, measured in degre	A measure of turn, measured in degrees \circ			
2.	Protractor	Instrument used to measure the size o	Instrument used to measure the size of an angle			
3.	Acute angle	An angle less than 90°				
4.	Right angle	A 90° angle				
5.	Obtuse angle	An angle more than 90° but less than	1 80 °			
6.	Reflex angle	An angle more than 180°				
7.	Parallel lines	Lines that are equal distance apart th	nat will never meet even when extended			
8.	Perpendicular lines	Lines that intersect at a right angle				
9.	Polygon	A 2D shape with straight lines only				
	_	A polygon where:				
10.	Regular polygon	All sides are the same length All angles are the same size				
11.	Interior angles (I)	An angle inside a polygon	Exterior angle			
12.	Exterior angles (E)	An angle outside a polygon	Interior angle I + E = 180 ⁰			
13.	Congruent	Shapes that are the same shapes and	size, they are identical.			
14.	Similar	Shapes that are the same shape but a	are different sizes			
15.	Bisect	Cut in half				
16.	Tessellate	Fit together without leaving gaps				
17.	Symmetry	A shape has symmetry if a central line is drawn to show both sides are exactly the same.	\bigcirc			
		We call these lines of symmetry				
18.	Rotational symmetry	A shape has rotational symmetry when it looks the same after some rotation of less than a full turn	Original shape 90 degrees Original = 180 degrees 270 degrees Original = 360 degrees Order of rotational symmetry of 2			

Quadri	Quadrilaterals (4 sided shapes)						
19.	Square		4 equal sides 4 equal angles 2 pairs of parallel sides Diagonals cross at right angles	4 lines symmetry Rotational symmetry order 4			
20.	Rectangle		2 pairs of equal sides 4 right angles 3 pairs of parallel sides	2 lines of symmetry Rotational symmetry order 2			
21.	Rhombus		4 equal sides 2 pairs of equal angles 2 pairs of parallel sides Diagonals cross at right angles	2 lines of symmetry Rotational symmetry order 2			
22.	Parallelogram		2 pairs of equal sides 2 pairs of equal angles 2 pairs of parallel sides	0 lines of symmetry Rotational symmetry order 2			
23.	Kite		2 pairs of equal sides 1 pair of equal angles 2 pairs of parallel sides Diagonals cross at right angles	1 line of symmetry Rotational symmetry order 1			
24.	Trapezium		One pair of parallel lines				
25.	Isosceles trapezium		1 pair of parallel sides 1 pair of equal sides 2 pairs of equal angles	1 line of symmetry Rotational symmetry order 1			
Triangl	es (3 sided shapes)						
26.	Equilateral		3 equal sides 3 equal angles	3 lines of symmetry Rotational symmetry order 3			
27.	Isosceles		2 equal sides 2 equal angles	1 line of symmetry Rotational symmetry order 1			
28.	Scalene		No equal sides No equal angles				
29.	Right-angled		1 right angle Can be scalene or isosceles				
Basic angle rules							
30.	Angles on a straight li	ne add to 180°					

31.	Angles around a point add up to 360°	
32.	Vertically opposite angles are equal	x° y° x°
33.	Angles in a triangle add to 180°	$a^{*} + b^{*} + c^{*} = 180$
34.	Angles in a quadrilateral add up to 360°	$\begin{array}{c} B \\ \hline \\ A \\ \hline \\ A + B + C + D = 360 \end{array}$
Angles	on parallel lines	
35.	Alternate angles are equal	a b b
36.	Corresponding angles are equal	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
37.	Co-interior angles add up to 180°	\rightarrow
Angles	s in polygons	
38.	Interior and exterior angles add to give 180°	Exterior angle Interior angle I + E = 180 ⁰
39.	Sum of interior angles	For a 'n' sided polygon Sum of interior angles = 180 x (n-2)

40.	Size of one interior angle	For a 'n' sided polygon Interior angle = $\frac{180 x (n-2)}{n}$
41.	Sum of exterior angles	For all polygons, sum of exterior angles = 360°
		Exterior angle = 360 ÷ number of sides
42.	Regular polygons	Number of sides = 360 ÷ exterior angle
		Interior angle = 180 — exterior angle

Pythagoras' Theorem						
43	Hunotenuse	The longest side of a right-angled triangle	e c b			
ч <i>5</i> .	riypotenuse	It is always opposite the right angle	a			
44.	Right- angled triangle	A triangle that contains a right angle				
		$a^2 + b^2 = c^2$	a			
45.	Pythagoras' Theorem	Where c is the hypotenuse	ь			
		Where a and b are the two shorter s	sides $a^2 + b^2 = c^2$			
46.	To find the hypotenuse (c)	$3^{2} + 4^{2} = C^{2}$ $9 + 10 = C^{2}$ $35 = C^{2}$ $\sqrt{a5} = C$ 5	SquareAddSquare root			
47.	To find a short side (a/b)	$a^{2} = 17^{2} - 8^{2}$ $= 289 - 64$ $= 225$ $a = \sqrt{225}$ $= 15$	SquareSubtractSquare root			
49	Pythagoras' in	$a^2 + b^2 + c^2 = d^2$	c c			
48.	3D	$d^2 - b^2 - c^2 = a^2$				

Trigonometry - Right angled – SOH CAH TOA									
49.	Trigonometry	The ratios between the sides and angles of triangles							
		θ is	the angle	involved)
	Labelling the	Н	is the hypo	tenuse		adjacent (A) (A) (B) (H) $($			
50.	triangle		O is the opp	oosite					
			A is the adjo	acent					
51.	Sine		SOH			Ο Sin θ H		$Sin \theta =$ $\theta = Sin$	$\frac{Opp}{Hyp}$ $\frac{Opp}{D^{-1}} \frac{Opp}{Hyp}$
52.	Cosine	САН					$\cos \theta =$	Adj Hyp -1 Adj	
						$\theta = Cos^{-1}$		$\frac{1}{Hyp}$	
53	Tanaent		TOA				Tan θ =	$= \frac{Opp}{Adj}$	
						Tan θ A		$\theta = Tar$	$n^{-1} \frac{Opp}{Adj}$
			θ	0°	30°	45°	60°	90°	
			Sin O	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
			Cos Ə	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
54.	Exact Values		Tan O	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		
			These can	be foun	d using the second sec	triangles	s:		
55.	Angle of elevation	_e		Ang	le of depr	1 ression	1	ď	

Graph	Graphs - definitions					
1.	Axis	A reference line on a graph				
2.	Axes	Plural of axis				
3.	Quadrant	A quarter of a graph separated by a axe	s			
_		Used to show a position on a coordinate plane, (x, y)				
4.	Coordinate	First coordinate is the horizontal position, position (y axis)	(x axis) and	d the second is the vertical		
5.	Origin	The point (0,0) on a set of axes				
6.	Plot	Mark a position or positions on a graph				
7.	y intercept	The y value where a graph crosses the y c	axis	where x=0		
8.	x intercept	The x value where a graph crosses the x c	ıxis	where y=0		
9.	Parallel	Lines that are equal distance apart that if extended will never meet				
10	"u=" araph	Constant y coordinate	y = -x	a x=4 y=x		
10.	y giaph	Will be parallel to the x axis		y=2		
		Constant x coordinate	v = -3	x		
11.	"x=" graph	Will be parallel to the y axis	/	x = -1		
12.	Linear function	An arithmetic sequence that can be repre	esented by	a straight line graph		
13.	Linear equation	An equation that produces a straight line	e graph			
14.	Equation of a line	y = mx + c m = gradient c = y intercept	Where	ax + by + c = 0 e a, b and c are integers		

Coordi	nate geometry					
		The steepness of a graph	This has a This has a			
15.	Gradient	$Gradient = \frac{change in y}{change in x} \\ = \frac{rise}{run}$	positive negative gradient gradient			
		If $A = (x_1, y_1)$ and $B = (x_2, y_2)$	В			
16.	Gradient between two points	The gradient of line AB = $\frac{y_2 - y_1}{x_2 - x_1}$	$\begin{array}{c} (x_2, y_2) \\ (x_1, y_1) \end{array}$			
17.	Parallel lines	Have the same gradients				
		Lines that are at right angles to one another				
18.	Perpendicular	Lines that are perpendicular are the negative reciprocal of one another	If a line has a gradient of m , the gradient of a line perpendicular to it will have a gradient of $-\frac{1}{m}$			
		If two lines are perpendicular, the product of their two gradients is -1				
19.	Mid-point	The coordinate half way between two point	If A = (x_1, y_1) and B = (x_2, y_2) the mid-point is $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$			
20.	Distance between two points	Distance (d) between (x_1, y_1) and (x_2, y_1) $d = \sqrt{(x_2 - x_1)}$	(y_2) can be found using the formula $(y_2)^2 + (y_2 - y_{1,j})^2$			
Real li	fe graphs					
21.	Steady speed	Travelling the same distance each minu	te			
22.	Velocity	Speed in a particular direction				
23.	Rate of change	Shows how a variable changes over time				
24.	Acceleration	How fast velocity changes; measured in m/s ² or km/s ² etc				

Distan	ce - Time gr	aphs	-			
25.	Represent a jo	urney				
26.	Vertical axis re	presents the distance from the starting point				
27.	Horizontal axis represents the time taken			Distant C		
28.	Straight lines n	nean constant speed		Time A = steady speed,		
29.	Horizontal line	s mean no movement	C	B = no movement,		
30	Gradient = spe	ed	C=S	teady speed back to start		
31.		Average speed = $=\frac{total\ distance}{total\ time}$				
Velocit	y – Time gr	aphs				
32.	Represents the speed at given times			.≩ ∕ ^B		
33.	Straight lines mean constant acceleration or deceleration			A = steady acceleration,		
34.	Horizontal change means no change in velocity e.g. constant speed		A			
35.	Positive gradient-= acceleration		C	B = constant speed,		
36.	Negative grad	ient = deceleration	a stop			
37.	Distance trave	lled = area under the graph				
Quadr	atic, cubic a	nd other graphs				
38.	Quadratic expression	An expression where the highest index is 2		e.g. $2x^2 + 2x + 2$		
		Solutions to a quadratic equation/function $ax^2 + bx + c = 0$		4		
39.	Roots	The x values where the graph crosses the x as	xis	2 1 1 2 3 4		
		A quadratic can have 0, 1 or 2 roots		4		
		Curved shaped called a parabola		$y = x^2$ $y \uparrow y \uparrow$ $y \uparrow$		
40.	Quadratic graph	A positive x^2 will give a 'U' shape		x $y = -x^2$ x		
		A negative x^2 will give a ' \cap ' shape				

41. Turning points		The point where a curve turns in the opposidirection	site
		Can be called a minimum or maximum	Maximum Minimum
42.	Cubic	General form of $ax^3 + bx^2 + cx + d = 0$	y 5 (1,4) (1,4) (3,27)
		Can have 1, 2 or 3 roots	$\begin{vmatrix} -1 & 0 \\ Graph of f(x) = 2x^3 - 3x^2 + 5. \\ b^2 - 3ac = 9 \end{vmatrix}$ $\begin{vmatrix} 0 \\ y^2 \\ Graph of f(x) = -8(x - 3)^3 + 27. \\ b^2 - 3ac = 0 \end{vmatrix}$
43.	Asymptote	A line a graph will get very close to but wil	ll not touch
44.	Reciprocal	General form of $y = \frac{k}{x}$ where k is a number	$y = \frac{k}{x}$ (positive) $y = \frac{k}{x}$ (negative)
		Has two asymptotes	
45.	Circle	With centre (0,0) and radius, r $x^2 + y^2 = r^2$	$x^{2} + y^{2} = 16 (r = \sqrt{16} = 4)$

2D and	2D and 3D shapes: definitions					
1.	Dimension	The size of something in a particular direction e.g. height, depth, length, width				
2.	2D shape	A shape that has length/height and a width but no depth				
3.	3D shape	A shape that depth as well as length/height and width				
4.	Polygon	A 2D shape with straight lines only				
		A polygon where:				
5.	Regular polygon	All sides are the same length All angles are the same size				
6.	Compound shape	A shape made up of two or more simple shapes				
7.	Rectilinear shape	A shape where all of its sides meet at right angles				
8.	Perimeter	The distance around the outside of a 2D shape				
9.	Area	The space inside a 2D shape				
10.	Surface area	The total area of all the faces of a 3D shape				
11.	Volume	The space inside a 3D shape				
12.	Capacity	The amount of fluid a 3D object can hold				
13.	S.I. Units	Standard units of measurement used by scientists across the world				
14.	Metric units	Standard units of measurement that vary by powers of 10				
15.	Imperial units	Older units of measurement, some of which are still common e.g. miles, gallons				
16.	Cross section	The shape we get when cutting straight through a 3D shape				
17.	Prism	A 3D shape that has a constant cross section through its length				
18.	Pyramid	A 3D shape with a polygon as its base and triangular sides that meet at the top				

19.	Cylinder	A prism with two cir curved surface	cular		,		
20.	Sphere	A 3D shape where all points on the surface are the same distance from the centre					8 m
21.	Spherical	Means in the shape	of a sp	ohere	·		
22.	Cone	A 2D shape that ha point by a curved si	A 2D shape that has a circular base joined to a point by a curved side			E	
23.	Face	A flat surface of a 3D shape (can be curved)			edge	vertex	
24.	Edge	A line segment whe	A line segment where two faces meet				face
25.	Vertex	A point where two or more edges meet					
26.	Vertices	Plural of vertex					
Measu	ures						
27	l Inits of time	Standard units of ti	ne are	e seconds, minu	utes, hour	s, days, yea	ars
27.		60 seconds = 1 minute	60 mi	inutes = 1 hour	24 houi	rs = 1 day	365 days = 1 year
28	Linite of mare	Metric units of mass	are m	illigrams, gran	ns, kilogro	ams and to	nnes
20.		1000mg = 1g		1000g	= 1kg	10	000kg = 1 tonne
20	Linite of longth	Metric units of lengt	h are i	millimetres, ce	ntimetres,	metres ar	nd kilometres
29.		10mm = 1cm 100cm = 1m			1000m = 1km		
		Metric units of lengt	h are i	millimetres ² , ce	entimetre	s², metres²	and kilometres ²
30.	Units of area	1cm	1 ² = 100	Dmm ²			10 mm
1m ² = 1000cm ²				0cm ²		Area = $1 \text{ cm} \times 1$ = 1 cm^2	cm Area = $10 \text{ mm} \times 10 \text{ mm}$ = 100 mm^2

		Metric units of length are millimetres ³ , centimetres ³ , metres ³ and kilometres ³				
31.	Units of volume	1cm ³ = 1000mm ³				
	$1m^3 = 1000000cm^3$		$\times 1 \text{ cm} \times 1 \text{ cm}$ Volume = 10mm $\times 10 \text{ mm} \times 10 \text{ mm}$ = 1000 mm ³			
27	Lipite of conacity	Metric units of capacity are millilitres, ca	entilitres and litre	s		
52.	Units of capacity	10 <i>ml</i> = 1 <i>cl</i>	1000/	<i>m/=</i> 100 <i>c/=</i> 1/		
33.	Capacity and volume conversions	1cm ³ = 1 <i>ml</i>	100	00cm ³ = 1/		
2D Sho	apes					
34.	Saucero	Area = $l \times w$ or l^2 as length and wi	dth are equal	x		
35.	square	Perimeter = $l + l + l + l$ or $4l$		x		
36.	Pactongla	Area = $l \times w$ Perimeter = $l + l + w + w$ or $2l + 2w$		W		
37.	Rectangle			l		
38.	Parallelogram	Area = $b \times h$	Area = $b \times h$			
39.	Triangle	Area = $\frac{b \times h}{2}$ or $\frac{1}{2} \times b \times h$		height		
40.	Trapezium	Area = $\frac{a+b}{2} \times h$ or $\frac{1}{2}(a+b)$) × h			

41	Course and shares	To find the area, split up into simple shapes, find each area and add together.	5 cm 1 $8 \text{ cm} = 40 \text{ cm}^2 = 99 \text{ cm}^2$
41.	Compound snape	To find the perimeter, find any missing sides than add all the sides together.	$2 \qquad 9 \text{ cm} \qquad \text{Area} = A_1 + A_2$
Circles			
42.	Digmeter	A straight line from edge to edge passing through the centre	
-120		Double the size of the radius	
43.	Radius	A straight line from the centre to the edge	
		Half the size of the diameter	
44.	Radii	The plural of radius	
45.	Circumference	Distance around the outside of the circle	
46.	Arc	Part of the circumference	
47.	Chord	A line within a circle where each end touches the edge	
48.	Sector	The region created by two radii and an arc	
49.	Segment	The region created by a chord and an arc	
50.	Tangent	A line outside the circle which only touches the circumference at one point	
51.	Semi -circle	Half a full circle	

Area and circumference of circles formulae								
52.	Ρί (π)	Constant ratio linking the circumference and diameter of a circle						
		3.14159265						
53.	Circumference of a circle	$C = \pi d$	Alternatively, using relationship between r and d $C = 2\pi r$					
54.	Arc length	$\frac{x}{360} \times \pi d$	Where x is the angle at the centre					
55.	Perimeter of a sector	$\left(\frac{x}{360} \times \pi d\right) + 2r$	This represents the arc length plus the two radii					
56.	Area of a circle	$A = \pi r^2$						
57.	Area of a sector	$\frac{x}{360} \times \pi r^2$						
3D shapes: volume								
58.	Prism	Volume = area of cross section × length						
59.	Cuboid	Volume = area of cross section × lea Volume = length × width × heigh	ngth nt					
60.	Triangular prism	Volume = area of cross section × let Volume = $\frac{1}{2}$ × base × height × lenge	gth h					
61.	Volume of a cylinder	$V = \pi r^2 h$						
62.	Surface area of a cylinder	$Total \ surface \ area \\ = \ 2\pi r^2 + \pi dh$						
63.	Volume of a pyramid	$V = \frac{1}{3} \times area \text{ of base} \\ \times \text{ perpendicular height}$	area of base					

			-					
64.	Volume of a co	one	$V = \frac{1}{3} \times \pi r^2 h$					
65.	Surface area of a cone		Curved surface area = πrl Total surface area - $\pi r^{2} + \pi rl$		h			
66.	Volume of a sphere		$V = \frac{4}{3} \times \pi r^3$					
67.	Surface area of a sphere		Total surface area = $4\pi r^2$					
68.	Volume of a frustum		Find the volume of the whole cones subtract the volume of the smaller of to get the volume of the frustum	and one	$V = \frac{3}{3} \pi r^{2}h$ $V = \frac{3}{3} \pi r^{2}h$ $V = \frac{3}{3} \pi r^{2}h$ $V = 180\pi cm^{3}$ $V = \frac{3}{3} \pi r^{2}h$ $V = \frac{3}{3} \pi r^{2}h$ $V = \frac{160\pi}{3} cm^{3}$			
Accuracy and Bounds								
69.	Integer		A whole number and the negative equivalents.					
70.	Rounding		Changing a number to a simpler, ea	sy to us	e value			
71.	Round to a given number of decimal places	Co nee Loo dig 5 o do	unt the number of decimal places you ed. ok at the number to the right of that it to decide if it rounds up or down. r more it rounds up, 4 or less it rounds wn.	dow	e.g. 36. 3486343 36.3 486343 To 1 d.p. is 36. 3 36.34 86343 To 2 d.p. is 36. 35 36.348 6343 To 3 d.p. is 36. 349			
72	Round a large number to a given number of significant figures	 Co the Log dig 5 o do Re plo 	unt the number of digits you need from eleft. ok at the number to the right of that it to decide if it rounds up or down. r more it rounds up, 4 or less it rounds wn. olace remaining digits with zeros as ce holders.	dow	e.g. 324 627 938 3 24627938 To 1 s.f. is 30000000 32 4627938 To 2 s.f. is 32000000 324 627938 To 2 s.f. is 32000000 324 627938 To 3 s.f. is 325000000			
73.	Round a small number to a given number of significant figures	 Zer no Fin nu Loo dig do 5 o do 	 Zeros are not significant until after the first non-zero number. Find the first non-zero and count the number of digits you need from there. Look at the number to the right of that digit to decide if it should round up or down. 5 or more it rounds up, 4 or less it rounds down. 		e.g. 0.0034792 0.003 4792 To 1 s.f. is 0.003 0.0034 792 To 2 s.f. is 0.0035 0.00347 92 To 3 s.f. is 0.00348			

		Round each number to 1 significant figure before doing any calculations.		e.g. Estimate: 3.91 × 8789.8		
74.	Estimating	 It is acceptable to round one or more numbers in the calculation to a greater accuracy than 1 sig. fig. if this makes the calculation easier. DO NOT round the answer! 		$\overline{\begin{array}{c} 620.9 \times 0.492 \\ \hline 3.91 \times 8789.8 \\ \hline 620.9 \times 0.492 \\ \approx \begin{array}{c} \frac{4 \times 9000}{600 \times 0.5} \\ \approx \begin{array}{c} \frac{3600}{300} \end{array}$		
				≈ 120		
75.	Truncation	Approximating a number by ignoring all points after a certain point without round	e.g. 5.6 would be 5 when truncated			
76.	Error interval	Measurements measured to the nearest u up to half a unit smaller or larger than th value	e.g. If 5.6 is rounded correct to the nearest 1dp then the interval is $5.55 \le x < 5.65$			
77.	Upper bound	The upper bound is half a unit greater the rounded number	e.g. the upper bound of 5.6 when measured to the nearest 1dp is 5.65			
78.	Lower Bound	The lower bound is half a unit less than the rounded number		e.g. the lower bound of 5.6 when measured to the nearest 1dp is 5.55		
	Appropriate accuracy	The accuracy when both the upper and lower bound are rounded by the same amount and give the same value				
79.		e.g. If UB = 12.3512 and LB = 12.3475				
		To 1dp: UB = 12.4 and LB- 12.3 Here the ap		propriate accuracy is 2 dp		
		To 3dp: UB = 12.35 and LB = 12.35				
		To 1dp: UB = 12.4 and LB- 12.3 To 2dp: UB = 12.35 and LB - 12.35 To 3dp: UB = 12.351 and LB =12.348	Here the appropriate accuracy is 2 dp			