

Integers, Place Value and Decimals

Integ	Integers, Place Value and Decimals									
Num	ber Skills									
1.	Addition	To find the sum or total of two or more numbers.								
2.	Subtraction	To find the difference between two numbers.								
3.	Multiplication	Repeated addition of a number. Also called 'product'								
4.	Division	The process of calculating the number of times one number is contained in another.								
5.	Divisible	Can be divided by a number without a remainder.								
Multipl	Multiplication methods									
6.	Lattice	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
7.	Grid	Eg) 574 x 29 500 70 4 20 10000 1400 80 9 4500 630 36 11480 + 5166 16646 Finished!								
8.	Column	36 30 6 × 15 10 5 30 (6×5) 60 (6×10) 1 50 (30×6) 300 (30×10)								
Division	methods	·								
9.	Short	e.g. 6497 ÷ 8								

10. Long e.g. 13032 ÷ 24	1 - 24 24 13032 2 - 48 - 120
--------------------------	---------------------------------

×	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Divisib	ility Rules																
	A number is div	isible															
	by:	if:															
11.	2	The last	The last digit is divisible by 2														
	3	The sum	e sum of the digits is divisible by 3														
	4	The num	ber	mac	de by	y the	last	two	dig	its is o	divisi	ble	by 4				
	5	The last	digit	is 5	or O)											
	6	The num	ber	is di	visib	le by	2 a	nd 3	}								
	8	The number made by the last 3 digits is divisible by 8															
	9		The sum of its digits is divisible by 9														
	10	The last	digit	is O	•												
		The valu	The value of a digit based on its place in a number														
12.	Place value		Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones	Decimal point ←	Tenths	Hundredths	Thousandth	Ten-Thousandths	Hundred-Thousandth	Millionths	
					wn	iole p	art			•		D	ecim	al pa	rt		

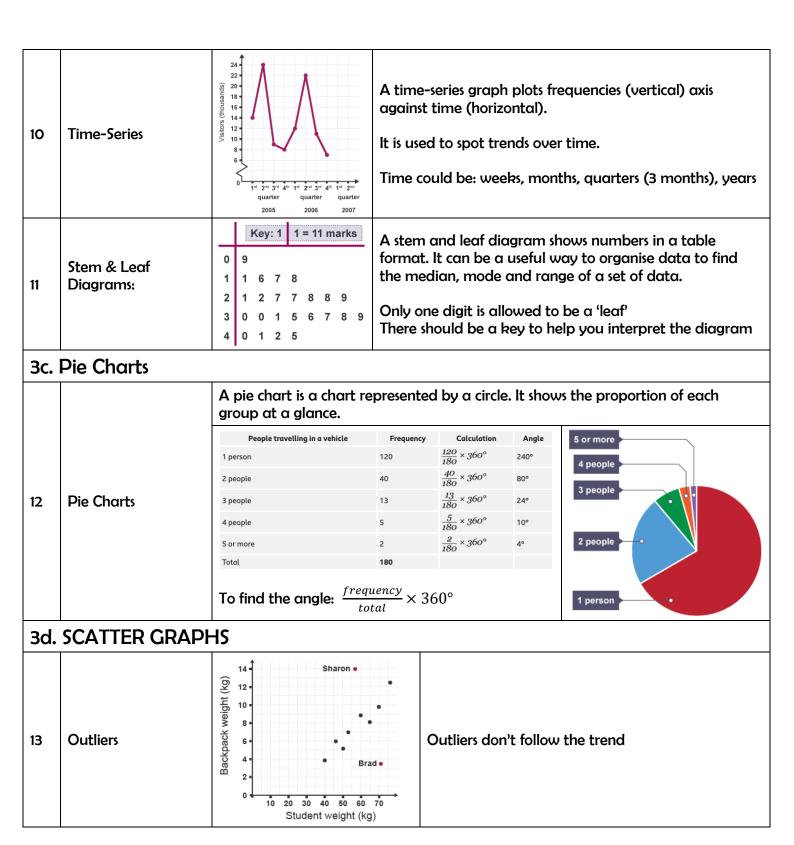
40	D: ::	A single symbol used to make a numb	per					
13.	Digit	0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are the ten digi	its we use every day.					
14.	Integer	A whole number that is can be positive, negative or zero.						
15.	Negative number	A number that is less than zero.	-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10					
16.	Negative number rules	When multipllying or dividing with numbers that include negative numbers to following applies:	<pre> x + = + + + + + + + + + + + + + + + + +</pre>					
17.	Ascending order	A set of numbers arranged from smallest to biggest.						
18.	Descending order	A set of numbers arranged from biggest to smallest.						
19.	Decimal	A number with a decimal point in it, which can be negative or positive.						
20.	Terminating decimal	A decimal that has digits that end.	0.25 (it has two decimal digits) 3.0375 (it has four decimal digits)					
21.	Recurring decimal	A decimal with a digit or groups of dithat repeat forever.	gits $\frac{1}{3} = 0.333 = 0.3 = 0.3$ Fraction Ways to show recurring decimals					
22.	Decimal place	The number of digits after the decima	al point					
23.	Rounding	Changing a number to a simpler, easy	y to use value.					
24.	Approximate	An easier figure to use close to the val	lue.					
25.	Significant figure	The digits of a number that express a size to a given degree of accuracy 1st significant digit 2nd significant digit						
Roundi	ng to decimal pla	ices						

				T					
	Count th	e number of deci	mal places you need	9↑					
26.		the number direct it rounds up or do	tly to the right of that digit to own	9 8 7 6 5					
	• 5 or mor down	e means it rounds	up; 4 or less means it rounds	down 3 2 1					
			256.1 873	To 1 d.p. is 256.2					
27.	e.g. 256.187	3	256.18 73	To 2 d.p. is 256.19					
			256.187 3	To 3 d.p. is 256.187					
Roundi	ng large numbers								
	Count th	e number of digit	s you need from the left	*					
28.		the number to the p or down	e right of the digit to decide if it	9 8 7 6 5					
20.	• 5 or mor down	e means it rounds	up; 4 or less means it rounds	down 3 2					
	 Replace 	remaining digits v	vith zeros as placeholders	Ψ.					
	•		2 56.1873	To 1 s.f. is 300					
29.	e.g. 256. 1873		25 6.1873	To 2 s.f. is 260					
			256 .1873	To 3 s.f. is 256					
Roundi	ng small numbers	to significant figu	ıres						
	Zeros are	not significant ur	ntil after the first non-zero term						
		first non-zero terr u need from there	m and count the number of	9 8 7 6					
30.		the number direct it rounds up or do	tly to the right of that digit to own	down 3					
	• 5 or mor down	e means it rounds	up; 4 or less means it rounds	Ψ'					
	_		0.002 3681	To 1 s.f. is 0.002					
31	e.g. 0.0023681		0.0023 681	To 2 s.f. is 0.0024					
			0.00236 81	To 3 s.f. is 0.00237					
Inequal	ity notation								
32.	=	Equal to							
33.	#	Not equal to							
34.	<	Less than							
35.	>	Greater than							
36.	≤ Less than or equal to								
37.	Greater than or equal to								

Indice	Indices, powers and roots										
		Symbols and words t	o show ho	w to combir	ne numbers.						
38.	Operations	×	Multiply			+	Add				
		÷	Divide		В -		Subtract				
	Order of	The order in which operations should be	carried		Brackets Indices						
39.	operations	out.	carried		DM	Divide and Multiply					
	operation.			AS			Add and Subtract				
		The operation used t	o reverse	the original	operation						
40.	Inverse	+ and - are inverse		$ imes$ and \div are inverse							
40.	operations	Finding the square ro	oot is the i	nverse of fin	ding the squa	re of a n	umber.				
		Finding the cube root is the inverse of finding the cube of a number.									
				4	••	2 ²	or 2 x 2 = 4				
41.	Square numbers	The product of a nur multiplied by itself.	nber	4		2 (or 2 x 2 = 4				
42.	Cube numbers	The product of multi number by itself thre		2 ³	= 2 x 2	x 2	=8				
					$\overline{1} = \pm 1$	/01	= ±9				
							= ±9				
				√	$4 = \pm 2$	$\sqrt{100}$	$= \pm 10$				
				√	$9 = \pm 3$	$\sqrt{121}$	= ±11				
		A value that can be		$\sqrt{}$	$16 = \pm 4$	$\sqrt{144}$	= ±12				
43.	Square root	multiplied by itself to the original number	give		$\frac{1}{25} = \pm 5$		= ±13				
		the original number			$\frac{1}{36} = \pm 6$		= ±14				
					_		_				
					$49 = \pm 7$	√225	$= \pm 15$				
				$\sqrt{\epsilon}$	$64 = \pm 8$						
				3√.	$\overline{1} = 1$	³ √216	= 6				
		A value that can be			$\frac{1}{8} = 2$						
		multiplied by itself th	ree								
44.	Cube root	times to give the orig		√2	$\overline{7} = 3$	∜512	= 8				
		number		$\sqrt[3]{6}$	$\overline{64} = 4$	$\sqrt[3]{729}$	= 9				
						³ √1000					
		A small number to th	ne upper r			,					
45.	Index	base number is multi									
46.	Power	Another word for an	index.								

47.	Indices	The plural of index.							
48.	Index form	A nun	nber written to the powe	er of an inde	х.				
Laws o	f indices	_							
49.	Multiplying	Add t	he powers		$x^7 \times x^6 = 1$	χ^{13}			
50.	Dividing	Subtro	Subtract the powers $x^5 \div x^6 = x^{-1}$						
51.	Brackets	Multip	Add the powers $x^7 \times x^6 = x^{13}$ Subtract the powers $x^5 \div x^6 = x^{-1}$ Multiply the powers $(x^2)^3 = x^6$						
52.	Power of 0	_	Always = 1 $x^0 = 1$						
53.	Negative	Mean	s "1 over"		$x^{0} = 1$ $x^{-n} = \frac{1}{x^{n}}$	\overline{i}			
54.	Unit Fraction	Mean	s root		$x^{\frac{1}{n}} = \sqrt[n]{x}$ $x^{\frac{a}{n}} = (\sqrt[n]{x})$;			
55.	Fractional	Means	root and bracket		$x^{\frac{a}{n}} = (\sqrt[n]{x})$) ^a			
Facto	rs, multiples	and p	rimes	•					
56.	Multiple	The result of multiplying a number by an integer.							
57.	Factor	A nun	A number that divides into another number without a remainder.						
58.	Remainder	An an	An amount left over after dividing.						
		A nun	A number with exactly two factors; 1 and itself.						
59.	Prime number		5, 7, 11, 13, 17, 19, 23 3, 89, 97.	, 29, 31, 3	7, 41, 43, 47, 53, 5	9, 61, 67, 71, 73,			
60.	Product	The a	nswer when two or more	numbers ar	e multiplied together.				
61.	Prime factor decomposition		ng a number as a produc factors.	t of its	60 2 30 2 15 3 5 5 1 60 = 2 × 2 × 3 × 5 60 = 2 ² × 3 × 5	72 2 36 2 18 2 9 3 3 1 72 = 2 × 2 × 2 × 3 × 3 72 = 2 ³ × 3 ²			
62.	Highest common factor	HCF	The highest number the exactky into two or monumbers.						

63.	Lowest common multiple	LCM	The smallest positive integer that is a multiple of two or more numbers.	e.g. the LCM of 12 adm 8 is 24		
-----	------------------------------	-----	--	-----------------------------------	--	--


Algeb	ra: the basics				
Definit	ions				
1.	Variable	A letter representing a varying or ur	nknown quantity.		
2.	Coefficient	A number which multiplies a variab	le e.g. 4 is the coefficient in 4a		
		One part of an expression/equation/	/formula e.g. 4c		
3.	Term	Can involve multiplying and dividin and variables	g coefficients W		
		Separated from other terms by add subtraction	ition and ${5}$		
4.	Like terms	Terms that have the same variable but have different coefficients	e.g. c + 4c are like terms c² and c³ are not like terms		
_		A fixed value.	Coefficient Variable		
5.	Constant	A number on its own or sometimes a letter such as a, b or c to represent a fixed number.	Operator Constants		
		One or a group of terms.			
6.	Expression	Can include variables, constants, operators and grouping symbols.	e.g. 3y −3 3y² +y³		
		No 'equals' sign	3y ⁻ †y ⁻		
7.	Equation	Contains an 'equals' sign, = Has at least one variable	e.g. 3y - 3 = 12		
8.	Formula	A special type of equation that show variables	vs the relationship between a set of		
9.	Formulae	Plural of 'formula'			
10.	Identity	An equation that is true no matter what values are chosen, ≡	e.g. $3y \equiv 2y - y$ for any value of y.		
11.	Subject	The variable on its own on one side			
12.	Substitute	Replace a variable with a number.	$a = 3, b = 2 \text{ and } c = 5.$ Find: $1. 2a = 2 \times 3 = 6$ $2. 3a - 2b = 3 \times 3 - 2 \times 2 = 5$ $3. 7b^2 - 5 = 7 \times 2^2 - 5 = 23$		
13.	Simplify	Minimising the size of an expression			

14.	Factorise	Splitting an expression into	a product	t of factors					
15.	Expand	Removing brackets by usin	ng multipli	cation					
16.	Solve	Find the value of an unkn	own						
Algebr	aic Notation	,							
17.	Adding like terms	Add the coefficients		b + 2b = 3b					
18.	Subtracting like terms	Subtract the coefficients		5b - 4b = b					
19.	Multiplying like terms	If the base is the same, add powers	d the	$b \times b = b^2$					
20.	Dividing terms	If the base is the same, sub the powers	otract	$b^5 \div b^2 = b^3$					
21.	Adding different terms	Cannot combine if the terr different.	ms are	b + 2c = b + 2c					
22.	Subtracting different terms	Cannot combine if the terr different.	ms are	3c - 4 = 3c - 4					
23.	Multiplying different terms	Combine with no 'x' sign		$d \times e = de$					
24.	Multiplying different terms with coefficients	Combine with no 'x' sign, the coefficients	multiply	$2d \times 3e = d6e$					
25.	Dividing different terms	Write as fractions with no	'÷' sign	$3d \div e = \frac{3d}{e}$					
26.	Dividing different terms with coefficients	Write as fractions with no simplify the coefficients who possible.		$14d \div 7e = \frac{2d}{e}$					
Expar	ding (single brackets)								
27.		the bracket, by the term o	n the outsid	de.					
28.	3(a + 4) = 3	3a+12	$\frac{2x}{4x^2}$	$\begin{array}{c c} -3 \\ -6x \end{array}$					
Facto	rising (single brackets)	,							
29.	 Find the highest conterms This goes outside the Divide each term by new terms inside the 	e bracket the factor to get the	$2x + 4y$ $2(x + 2y)$ $5x^2y - 10xy$ $5xy(x - 2)$						
F		Janany your pracket							
Expre	Expressions								
30.	Linear	Can be represented by a s	traight	e.g. $2x + 2$					
		No indices above 1							
31.	Quadratic	An expression where the h index is 2	e.g. $2x^2 + 2x + 2$						

scicio	Academy								Unit 3	
Зα.	TABLES									
1	TYPES OF DATA									
1a	Qualitative Data	Non-numer	rical data			i.	i.e. Colour of car			
1b	Quantitative Data	Numerical o	data			i.	i.e. House number			
1c	Discrete Data	Numerical of decimals	Numerical data that <u>CANNOT</u> be shown in decimals				i.e. Number of children in a class			
1d	Continuous Data	Numerical data that <u>CAN</u> be shown in decimals				i.	i.e. The heights of children in a class			
1e	Grouped Data	Numerical data given in intervals				e. Year g 'ear 7-9	roup range Year 10-1			
			Colour of Ca			of Car	Tally		Frequency	
		Three Columns:			Red		IIII		4	
2	Data Collection	Data values The second secon			White		 		5	
		• Tally	Frequency (how many)			Grey Black			3	
		• Frequer				Blue			6	
3	Mode	Most popul	ar (i.e. most cor	nme		of car is l	IIII I			
							-			
4a	24-hour clock	15:30	Uses hours 00	(MI	anignt) to	23 (11 In	tne evei	ning)		
4b	12-hour clock	03:30 pm	Uses hours 01	to 12	with mo	rning (A	M) and a	fternoon/e	vening (PM)	
			Boys	Gir	·ls	TOTAL	<u> </u>		a	
5	Two-Way Tables	Pet	9	4		13		-way tabii ng data w	es are a way of	
,	Two-way rables	No Pet	2	5		7		gories.	itii two	
		TOTAL	11	9		20				
3b.	Charts and Grap	hs								
6	Plotting Points	Co-ordinate (x, y)	es show an exac	ct po	osition	×	3			

7	Pictograms	Movie genre Frequency Horror Action Romance Comedy Other = 4 people = 2 people = 1 person	Used to show frequencies Pictures and images used to represent frequency A key at the bottom helps you interpret the diagram
8a	Bar Charts	15 10 10 10 10 10 10 10 10 10 10 10 10 10	Frequency on the vertical axis, and categories along the horizontal axis. Used to compare frequencies
8b	Composite Bar Chart	Number of pets Boys State St	Frequency on the vertical axis, and categories along the horizontal axis. Two shades used to show difference in proportion between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
8c	Comparative Bar Chart	Solution Rainfall 40 40 40 30 Cm 20 Jan Feb Mar Apr May Month Dual Bar Chart	Frequency on the vertical axis, and categories along the horizontal axis. Bars are next to each other and used to show difference in frequency between sub-groups (i.e. gender) Used to compare frequencies within sub-groups
9	Line Graph	20 22 22 22 22 22 22 22 22 22 22 22 22 2	A line graph is used to show a change or relationship between two variables. Once the points are plotted, they are joined with straight lines.

14	Line of Best Fit	50	possible through the p	e that goes as centrally as points plotted. The same steepness of the
15	Interpolate	50 -	our range For example: To estimate sold with 3mm rai Find where 3 mm	to estimate data WITHIN nate how many umbrellas in. of rainfall is on the graph. ing across from 3 mm and
16	Extrapolate	80 - 75 - 70 - 65 - 60 - 55 - 60 - 75 - 70 - 70 - 70 - 70 - 70 - 70 - 7	Continuing a line of best fit to estimate data BEYOND our range (not as reliable as interpolation) For example: To estimate how many umbrellas are sold with 10mm rain. Continue the line of best fit. Find where 10mm of rainfall is on the graph. Draw a line by going across from 10mm and then down.	
17a	Positive Correlation	1022 986 990 900 900 900 900 900 900 90	BOTH variables increase with each other	i.e. Ice creams sold vs Temperature
17b	Negative Correlation	Digos seguinos de la composición del composición de la composición	ONE variable increases as the other decreases	i.e. Coats sold vs temperature

17c	No Correlation	x x x x x x x x x x x x x x x x x x x	NO relationship between variables	i.e. IQ and House Number
18	Causation	 If one variable causes a change in the other. i.e. an increase temperature WILL cause an increase ice cream sales i.e. the number of bee stings WILL NOT cause an increase in ice cream sales (although both will increase in hot weather) 		

Fra	ctions				
1.	Fraction	Part of a whole			
2.	Numerator	The number on the top of the fract	numerator		
3.	Denominator	The number on the bottom of the	fraction	denominator	
4.	Equivalent fractions	Fractions that have the same value look different.	e but	$\frac{1}{2} \frac{2}{4} \frac{3}{6} \frac{4}{8}$	
5.	Improper fraction	A fraction where the numerator is than the denominator.	larger	e.g. $\frac{4}{3}$	
6.	Mixed number	A number made from integer and parts.	fraction	e.g. $2\frac{2}{3}$	
7.	Unit fraction	A fraction that has a numerator of 1			
	Decimand	The reciprocal of a number is 1 divided by the number. e.g. the reciprocal of 3 is $\frac{1}{3}$		reciprocal of 3 is $\frac{1}{3}$	
8.	Reciprocal	Dividing by a number is the same e.g. \times by as multiplying by its reciprocal		by $\frac{1}{3}$ is the same as \div by 3	
Fra	ctions - processes				
9.	Simplifying fractions	Divide the numerator and denominate by the HCF.	nator	$\frac{24}{30} = \frac{4}{5}$	
10.	Finding equivalent fractions	Multiply the numerator and denominator by the same number		$\frac{4}{8} \times 2 = 8$	
11.	Comparing fractions	Write them with a common denom	ninator		
12.	Fraction of an amount	Amount divided by the denominator then multiplied by the numerator		e.g. $\frac{5}{7}$ of 42 42 ÷ 7 x 5 = 30	
13.	Multiply fractions	Multiply the numerators and multiply the denominators		$\frac{6}{7} \times \frac{4}{5} = \frac{6 \times 4}{7 \times 5} = \frac{24}{35}$	
14.	Divide fractions	Flip the second fraction (find the		$\frac{4}{7} \div \frac{5}{6} = \frac{4}{7} \times \frac{6}{5} = \frac{4 \times 6}{7 \times 5} = \frac{24}{35}$	

15.	Add or subtract fractions Convert improper fractions to mixed numbers	 Write as fractions with a common denominator. Add or subtract the numerators Divide the numerator by the denominator The answer gives the whole number part. The remainder becomes the numerator of the fraction part with the same denominator. Multiply the denominator by the 				
17.	Convert mixed numbers to improper fractions	 whole number part. Add the numerator to this. Put the answer to this back over the denominator 	$7\frac{1}{6} = \frac{6 \times 7 + 1}{6} = \frac{43}{6}$			
Per	Percentages					
18.	Percentage	Means 'out of 100'				
19.	Multiplier	A decimal you multiply by to represent a percentage To use a multiplier to find a percentage, divide your percentage by 100,				
		then multiply the amount by this value.				
		Calculate the percentage and add onto the original				
20.	Percentage increase	Or use a multiplier	$amount \times \frac{100 + \% increase}{100}$			
		Calculate the percentage and subtract from the original				
21.	Percentage decrease	Or use a multiplier	$amount \times \frac{100 - \% increase}{100}$			
22.	Percentage change	$\frac{Change}{Original} \times 100$				
23.	Express one number as a percentage of another	$\frac{Number\ 1}{Number\ 2} \times 100$				
		Use when asked to find the priginal amount after a percentage increase or decrease.				
24.	Reverse percentage	Original Value x Multiplier = New Value				
	por contago	Original Value = New V	'alue			
		Multip	olier			
25.	Interest	A fee paid for borrowing money or mon	ey earnt through investing.			

26.	Simple interest					calculated			erest iginal ame erest rate	- Prt ount	
27.	Compound interest				inal amou rest	is calculate nt and any × Multip	previous	P – Orię R – Inte	$P\Big(1+$ ginal amount	$\left(\frac{R}{100}\right)^n$ exterest periods	(e.g. yrs)
28.	Tax			A fi	nancial cho	arge placed	d on sales o	or savings k	y the gov	ernment e	g. VAT
29.	Loss			Inco	me minus	all expense	es, resulting	g in a nega	tive value	2	
30.	Profit			Inco	me minus	all expense	es, resulting	g in a posit	ive value		
31.	Depreciation			A reduction in the value of a product over time							
32.	Annual			Means yearly							
33.	Per annum			Means per year							
34.	Salary			A fixed regular payment, often paid monthly							
FDI	P Conversion	ons									
35.	Percentage t	o decimal		Divide by 100							
36.	Decimal to p	ercentage		Multiply by 100							
37.	Fraction to p	ercentage		Find an equivalent fraction with 100 as the denominator							
38.	Percentage t	o fraction		Write as a fraction over 100 then simplify							
39.	Fraction to d	ecimal		Carry out division or convert to a percentage first							
40.	Decimal to fr	action		Use place value to find the denominator and simplify or convert to a percentage first.							
Bas	ics to mem	orise									
	Cu a. al.:	1		1	1	1	1	1	1	2	3
	Fraction	100	1	0	8	5	4	3	2	3	$\overline{4}$
41.	Decimal	0.01	C).1	0.125	0.2	0.25	o. 3	0.5	0. 6	0.75
	Percentage	1%	10)%	12.5%	20%	25%	33. 3%	50%	66. 7%	75 %

-	L!				
Equat	tions	T			
1.	Equation	Contains an 'equals' sign	e.g. 3y – 3 = 12		
•	Equation	Has at least one variable	c.g. 3y 3 12		
2	Lineary	Produces a straight line graph			
2.	Linear	No indices above 1			
		One part of an expression/equation/formula	e.g. 4c		
3.	Term	Can involve multiplying and dividing coefficients and variables	<u>w</u> 5		
		Separated from other terms by addition and subtraction			
		One or a group of terms.	e.g. 3y -3		
4.	Expression	Can include variables, constants, operators and grouping symbols.	3y ² +y ³		
		No 'equals' sign			
5.	Formula	A special type of equation that shows the relationship between a set of variables			
6.	Identity	An equation that is true no matter what values are chosen, \equiv e.g. $3y \equiv 2y - y$ for any value of y.			
7.	Unknown	A letter representing a number			
8.	Solve	TO find the value of the unknown			
		The operation used to reverse the original operation			
	Inverse	$+$ and $-$ are inverse \times and \div a	are inverse		
9.	operations	Finding the square root is the inverse of finding the squ	uare of a number.		
		Finding the cube root is the inverse of finding the cube of a number.			
Solving	g equations				
10.	To solve equations we need to use inverse operations				
11.	What ever you	What ever you do to one side of the equals sign you must do the same to the other			
	-				
		x + 4 = 7 $ x - 5 = 12 $ $ 3x =$	$\frac{\chi}{4} = 6$		
12.	One step	$\begin{vmatrix} x+4 & = & 7 \\ (-4) & (-4) \end{vmatrix} \begin{vmatrix} x-5 & = & 12 \\ (+5) & (+5) \end{vmatrix} \begin{vmatrix} 3x & = \\ (\div 3) \end{vmatrix}$	$ \begin{array}{c ccc} 18 & \frac{x}{4} & = & 6 \\ (\div 3) & (\times 4) & (\times 4) \\ 1 & x & = & 24 \end{array} $		
		x = 11 x = 17 x =	1 x = 24		

			,
13.	Two step	Requires the use of two inverse operations	2x - 7 = 19 $2x = 26$ $x = 13$
14.	With brackets	Expand the brackets first $5(2x + 1) = 35$ $10x + 5 = 35$ $10x = 30$ $x = 3$	OR if possible divide by the number outside of the bracket first $4(2x + 4) = 20$ $2x + 4 = 5$ $2x = 1$ $x = \frac{1}{2}$
15.	Unknowns on both sides	Start by eliminating the unknown from one of the signs.	5x + 2 = 3x - 8 $2x + 2 = -8$ $2x = -10$ $x = -5$
16.	With fractions	Eliminate any terms that are being added or subtracted separate from the fraction first. $\frac{f}{5}+2=8$ $\frac{f}{5}=6$ $f=30$	If everything is part of the fraction then multiply by the denominator first. $\frac{f+2}{5}=8$ $f+2=40$ $f=38$
Inequa	alities		
17.	Inequality	The relationship between two expressions that are	e not equal
18.	=	Equal to	
19.	#	Not equal to	
20.	<	Less than	x < -1
21.	>	Greater than	x > 5
22.	≤	Less than or equal to	x≤5
23.	2	Greater than or equal to	x ≥ 3 -1 0 1 2 3 4 5 6 7 8 9 10 11
	·		

24.	Inclusive	Gives a finites rnage of solutions	e.g. $3 < x \le 8$				
25.	Exclusive	Gives an infinite range of solutions e.g. $x > 5$ $-4 \le x$					
26.	Integer	A whole number that can be positive negative or zero					
		Inequalities are solved in the same way as solving equations					
27.	Solve	Only exception: if you multiply or divide by a neg sign e.g. less than to greater than	gative number you must swap the				
		Give the integers that satisfy the inequality					
28.	List integers solutions	e.g. x > 6 integer solutions are 6, 7, 8					
		e.g5 < x ≤ 5 integer solutions are -4, -3, -2, -1, 0,	1, 2, 3, 4, 5				
		An empty circle shows the value is not included	0				
29.	Represent on a number line	A shaded circle shows the value is included					
		An arrow shows that the solution continues to infinity	○ →				
30.	Inequalities on graphs	The region $y \ge 2$ The region $x < 4$ $y = 2$ $-10 -5 0 5 10$ $-10 -5 0 5 10$ The unwanted sections are shaded Dashed lines are used to represent < or > Solid line is used to represent $\le or \ge$	The region that satisfies: x < 4 $y \ge 3$ y < 2x + 3 y = 2				
Seque	equences						
31.	Sequence	An order pattern of numbers or diagrams					
32.	Term	One of the numbers or diagrams in a sequence					
33.	Term to term rule	The rule for moving from one term to the next in a sequence					
34.	Formula	A rule written to describe a realtionship between	twp quantities				
35.	Arithmetic sequence	A sequence where the term to term rule is to add each time	ld or subtract the same amount				

26	Quadratic	sequence where the term to term rule is changing by the same amount each time					
36.	sequence	e second difference is a constant amount.					
37.	Geometric sequence	A sequence where the term to term rule is to multiply by the same amount each time					
20	Common	The value a geometric sequence is multiplied by from one term to the next					
38.	ratio	Denoted by the letter <i>r</i>					
39.	Series	The sum of the terms in a sequence					
40.	Position to term rule	The rule for finding any value of a sequence					
		The rule to find any term in a sequence of numbers					
41.	nth term rule for an arithmetic sequence	 Find the common difference between the terms This becomes you coefficient of n (this is the times table the sequenc is linked to) The number you need to add or subtract to get to the second term becomes the second term in the nth term rule Now compare the sequence to the 4 times table 6, 10, 14, 18, 22					
42.	nth term for a geometric sequence	 Divide the second sequence by the first to find the common ratio, r The nth term is arⁿ⁻¹ where a is the first term and n is the term position in the sequence 					
43.	Finite	Has a final point					
44.	Infinite	Carries on forever					
45.	Ascending	ncreases					
46.	Descending	Decreases					
47.	Linear function	An aruthmetic sequence that can be represented by a straight line graph					
Special	Special Sequences						
48.	Square numbe	1, 4, 9, 16, 25, 36, 49, 64, 81, 100					
49.	Cube numbers	1, 8, 27, 64, 125	125				

50.	Triangular numbers	1, 3, 6, 10, 15, 21, 28	1 3 6 10			
E1	File	A sequence where each term is the sum of the two previous terms				
51.	Fibonacci sequence	e.g. 1, 1, 2, 3, 5, 8, 13, 21				

Clasus		finitions.		
Snape	es and angles - de	etinitions		
1.	Angle	A measure of turn, measured in degrees ·		
2.	Protractor	Instrument used to measure the size of an angle		
3.	Acute angle	An angle less than 90°		
4.	Right angle	A 90° angle		
5.	Obtuse angle	An angle more than 90° but less than 180°		
6.	Reflex angle	An angle more than 180°		
7.	Parallel lines	Lines that are equal distance apart that will never meet even when extended		
8.	Perpendicular lines	Lines that intersect at a right angle		
9.	Polygon	A 2D shape with straight lines only		
		A polygon where:		
10.	Regular polygon	All sides are the same length All angles are the same size		
11.	Interior angles (I)	An angle inside a polygon		
12.	Exterior angles (E)	An angle outside a polygon I + E = 1800		
13.	Congruent	Shapes that are the same shapes and size, they are identical.		
14.	Similar	Shapes that are the same shape but are different sizes		
15.	Bisect	Cut in half		
16.	Tessellate	Fit together without leaving gaps		
17.	Symmetry	A shape has symmetry if a central line is drawn to show both sides are exactly the same.		
		We call these lines of symmetry		
18.	Rotational symmetry	A shape has rotational symmetry when it looks the same after some rotation of less than a full turn Original shape 90 degrees Original = 180 Original = 180 Original = 360 degrees Order of rotational symmetry of 2		

Quadrilaterals (4 sided shapes)						
19.	Square		4 equal sides 4 equal angles 2 pairs of parallel sides Diagonals cross at right angles	4 lines symmetry Rotational symmetry order 4		
20.	Rectangle		2 pairs of equal sides 4 right angles 3 pairs of parallel sides	2 lines of symmetry Rotational symmetry order 2		
21.	Rhombus		4 equal sides 2 pairs of equal angles 2 pairs of parallel sides Diagonals cross at right angles	2 lines of symmetry Rotational symmetry order 2		
22.	Parallelogram		2 pairs of equal sides 2 pairs of equal angles 2 pairs of parallel sides	O lines of symmetry Rotational symmetry order 2		
23.	Kite		2 pairs of equal sides 1 pair of equal angles 2 pairs of parallel sides Diagonals cross at right angles	1 line of symmetry Rotational symmetry order 1		
24.	Trapezium		One pair of parallel lines			
25.	Isosceles trapezium		1 pair of parallel sides 1 pair of equal sides 2 pairs of equal angles	1 line of symmetry Rotational symmetry order 1		
Triangl	es (3 sided shapes)					
26.	Equilateral		3 equal sides 3 equal angles	3 lines of symmetry Rotational symmetry order 3		
27.	Isosceles		2 equal sides 2 equal angles	1 line of symmetry Rotational symmetry order 1		
28.	Scalene		No equal sides No equal angles			
29.	Right-angled		1 right angle Can be scalene or isosceles			
Basic	angle rules					
30.	Angles on a straight li	ne add to 180°				

31.	Angles around a point add up to 360°	
32.	Vertically opposite angles are equal	x° y° x°
33.	Angles in a triangle add to 180°	a* + b* + c* = 180
34.	Angles in a quadrilateral add up to 360°	A A + B + C + D = 360
Angle	on parallel lines	
35.	Alternate angles are equal	o d
36.	Corresponding angles are equal	$\stackrel{\times}{\longleftrightarrow} \stackrel{\downarrow}{\longleftrightarrow} \stackrel{\downarrow}$
37.	Co-interior angles add up to 180°	
Angle	in polygons	
38.	Interior and exterior angles add to give 180°	Interior angle For any polygon: $I + E = 180^{\circ}$
39.	Sum of interior angles	For a 'n' sided polygon Sum of interior angles = 180 x (n-2)

40.	Size of one interior angle	For a 'n' sided polygon $ \text{Interior angle} = \frac{180 x (n-2)}{n} $			
41.	Sum of exterior angles	For all polygons, sum of exterior angles = 360°			
		Exterior angle = 360 ÷ number of sides			
42.	Regular polygons	Number of sides = 360 ÷ exterior angle			
		Interior angle = 180 — exterior angle			

Statist	ics and samp	ling: definitions					
1.	Primary	Data that is collect	Data that is collector by the researcher first hand				
2.	Secondary	Data that is collect	Data that is collected by someone other than the user				
3.	Qualitative	Data described by	words	e.g. favourite colou	r		
4.	Quantitative	Data that is catego can be discrete or o		e.g. height, shoe size	e		
5.	Discrete	Can be counted, co	an only have a finite values	e.g. number of peo	ple in a class		
6.	Continuous	•	Can be measured, can have an infinite number of possible values within a e.g. height, weight, time, distance				
7.	Population	The whole group					
8.	Census	A survey of the wh	ole population				
9.	Sample	A selection of the v	A selection of the whole population				
10.	Survey	A tool used to gath	ner information from ir	ndividuals			
11.	Bias	Prejudice or favour shown for one person, group, thing or opinion over another. e.g. asking people leaving a library whether they enjoyed reading			_		
12.	Random sample	Every member of t	the population has an	equal chance of being	selected.		
13.	Inequality signs	< less than	> greater than	≤ less than or equal to	2 greater than or equal to		
14.	Frequency	How often someth	ing occurs				
15.	Estimate	Find a value close	to the correct answer i	f you were to calculate	e accurately		
16.	Interval	What is between to	wo values of points	e.g. all the numbers	between 0 and 10		
17.	Midpoint	The middle or half way point of an interval		e.g. the midpoint of all the umbers between 0 and 10 is 5			
Measu	res of central te	ndency and sprea	ad				
18.	Central tendency	A calculated centre	al value of a set of	Mean, median and r of central tendency	mode are measures		
19.	Spread	Describes how simi values are	lar or varied a set of	Range and interqua	rtile range are		

20.	Mean	Add up all the mounts then divide by how many there are.					
21.	Median	Put values in order and locate the mid	Put values in order and locate the middle value				
22.	Mode	The value that occurs most often i.e. ho	as the highest frequency.				
23.	Range	The biggest value minus the smaller va	alue				
24.	Outlier	An extreme data value that doesn't fit	with the overall trend or pattern				
Advar	ntages and disa	dvantages of averages					
	Average	Advantages	Disadvantages				
	Mean	Every value is included	Affected by extreme values				
26.	Median	Not affected by extreme values	May not change if a data value changes				
	Mode	Easy to find; not affected by extreme values; can be used with non-numerical data	There may not be a mode				
Avera	ges from freque	ency tables					
27.	Modal class	The class with the highest frequency					
28.	Median	If the total frequency is n , then the me	dian lies in the class with the $\frac{n+1}{2}$ th value in it				
29.	Mean from a frequency table Times Add Divide	No of make-up items in handbag No of Items Freq f x x	Mean = $\frac{40}{16}$ = 2.5				
	Estimated mean from a	Class Interval Mid-point Frequency Mid-	Mean = 8215 ÷ 51 point × Frequency = 161.07843				

31.	Estimate of range from grouped frequency table	The maxiumum possible value minus the smallest possible v	alue.
Average	es from charts/grap	phs	
		A chart to display discrete data where the height of the bar shows the frequency.	
		Worker absences	
32.	Bar chart	Number of workers of workers of the property o	Mean: 23 ÷ 10 = 2.3 Median: 2.5 Mode : 3 Range: 4-1 = 3
		A chart that uses pictures to represent quantities. Must	
33.	Pictogram	Apples Sold Jan Feb Mar Apr = 10 Apples Feb Apples Feb Mar Apr	Mean: 95÷4 = 23.75 Median: 22.5 Range: 30
34.	Stem and leaf diagram	STEM LEAF 0 7 1 0 5 5 5 79 2 0 2 2 6 7 3 0 2 4 6 8 Key: 6 1 = 61 hours A diagram that shows groups of data arranged by place value. 'Leaves' should be in order. Must have a key.	Mean: 385÷17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31
35.	Back to back stem and leaf	Compares two sets of results. Must have a key. A B LEAF STEM LEAF 8 8 7 5 0 7 9 7 4 1 0 1 0 5 5 5 7 9 2 2 2 1 2 0 2 2 6 7 8 6 4 2 0 3 0 2 4 6 8 Key: 6 1 = 61 hours	Set A Mean: 356÷18 = 19.8 Median: 20 Mode: 22 Range: 38-5 = 33 Set B Mean: 385÷17 = 22.6 Median: 22 Mode: 15 Range: 38-7 = 31

2D ar	nd 3D shapes: det	finitions			
1.	Dimension	The size of something in a particular direction e.g. height, depth, length, width			
2.	2D shape	A shape that has length/height and a width but no depth			
3.	3D shape	A shape that depth as well as length/height and width			
4.	Polygon	A 2D shape with straight lines only			
		A polygon where:			
5.	Regular polygon	All sides are the same length All angles are the same size			
6.	Compound shape	A shape made up of two or more simple shapes			
7.	Rectilinear shape	A shape where all of its sides meet at right angles			
8.	Perimeter	The distance around the outside of a 2D shape			
9.	Area	The space inside a 2D shape			
10.	Surface area	The total area of all the faces of a 3D shape			
11.	Volume	The space inside a 3D shape			
12.	Capacity	The amount of fluid a 3D object can hold			
13.	S.I. Units	Standard units of measurement used by scientists across the world			
14.	Metric units	Standard units of measurement that vary by powers of 10			
15.	Imperial units	Older units of measurement, some of which are still common e.g. miles, gallons			
16.	Cross section	The shape we get when cutting straight through a 3D shape			
17.	Prism	A 3D shape that has a constant cross section through its length			
18.	Pyramid	A 3D shape with a polygon as its base and triangular sides that meet at the top			

19.	Cylinder	A prism with two circular ends connected by a curved surface					
20.	Sphere	A 3D shape where all points on the surface are the same distance from the centre					8 m
21.	Spherical	Means in the shape o	of a sp	here	 		
22.	Cone	A 2D shape that has a circular base joined to a point by a curved side			ed to a	E	
23.	Face	A flat surface of a 3E) shap	oe (can be curv	ved) e	dge	vertex
24.	Edge	A line segment where	A line segment where two faces meet				face
25.	Vertex	A point where two or more edges meet					
26.	Vertices	Plural of vertex					
Measu	res						
27.	Units of time	Standard units of tin	ne are	e seconds, minu	utes, hours, o	days, yed	ars
21.	Units of time	60 seconds = 1 minute	60 mi	nutes = 1 hour	24 hours =	= 1 day	365 days = 1 year
28.	Units of mass	Metric units of mass	are m	illigrams, gran	ns, kilogram	s and to	nnes
20.	Silies of filess	1000mg = 1g		1000g	= 1kg	1000kg = 1 tonne	
29.	Units of length	Metric units of length	ı are ı	millimetres, ce	ntimetres, n	netres ar	nd kilometres
29.	Offics of length	10mm = 1cm 100cm = 1m		n = 1m	1000m = 1km		
		Metric units of length	are ı	millimetres², ce	entimetres²,	metres ²	and kilometres ²
30.	Units of area	1cm ²	1m ² = 1000cm ²			←1cm→	10 mm
		1m ²				= 1 cm × 1 = 1 cm ²	cm Area = 10 mm × 10 mm = 100 mm ²

		Metric units of length are millimetres³,	centimetres³, me	etres³ and kilometres³	
31.	Units of volume	1cm ³ = 1000mm ³		10mm	
		1m ³ = 100000cm ³			
32.	Units of capacity	Metric units of capacity are millilitres, cer	ntilitres and litre	S	
52.	Units of capacity	10 <i>ml</i> = 1 <i>cl</i>	1000	m/= 100 <i>c</i> /= 1/	
33.	Capacity and volume conversions	1cm ³ = 1 <i>m</i> /	100	00cm ³ = 1/	
2D Shap	es				
34.	- Square	Area = $l \times w$ or l^2 as length and wid	th are equal	x	
35.	7443.7	Perimeter = $l + l + l + l$ or $4l$		<u>x</u>	
36.	Rectangle	Rectangle		w	
37.	rtoccangio			1	
38.	Parallelogram	Area = $b \times h$		height	
39.	Triangle	Area = $\frac{b \times h}{2}$ or $\frac{1}{2} \times b \times h$		height	
40.	Trapezium	Area = $\frac{a+b}{2} \times h$ or $\frac{1}{2} (a+b)$	$\times h$	<u>←</u> a → h b	

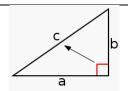
41.	Compound shape	To find the area, split up into simple shapes, find area and add together. To find the perimeter, find any missing sides than all the sides together.	5 cm $A_1 = LB \qquad A_2 = LB$ $= 8 \times 5 \qquad = 11 \times 9$ $= 40 \text{ cm} \qquad = 99 \text{ cm}^2$ $2 \qquad 9 \text{ cm} \qquad \text{Area} = A_1 + A_2$	
3D shap	oes: volume			
42.	Prism	Volume = area of cross section × length		A
43.	Cuboid	Volume = $area\ of\ cross\ section\ imes\ length$ Volume = $length\ imes\ width\ imes\ height$		N N N N N N N N N N N N N N N N N N N
44.	Triangular prism	Volume = $area$ of $cross$ $section \times length$ Volume = $\frac{1}{2} \times base \times height \times length$		h b

Graph	s - definitions				
1.	Axis	A reference line on a graph			
2.	Axes	Plural of axis			
3.	Quadrant	A quarter of a graph separated by a c	axes		
	_	Used to show a position on a coordinate	te plane, (x, y	·)	
4.	Coordinate	First coordinate is the horizontal position (y axis)	on, (x axis) an	d the sec	cond is the vertical
5.	Origin	The point (0,0) on a set of axes			
6.	Plot	Mark a position or positions on a grap	h		
7.	y intercept	The y value where a graph crosses the	y axis	where	x=O
8.	x intercept	The x value where a graph crosses the	x axis	where	y=0
9.	Parallel	Lines that are equal distance apart that if extended will never meet			
10	"y=" graph	Constant y coordinate	y = -x		4
10.	y- grapri	Will be parallel to the x axis			y = 2
		Constant x coordinate	y = -3		×
11.	"x=" graph	Will be parallel to the y axis		x = -1	
12.	Linear function	An arithmetic sequence that can be re	presented by	a straigl	nt line graph
13.	Linear equation	An equation that produces a straight	line graph		
14.	y = mx = c	The general equation of a straight line	m = gradien	it and	c= y intercept
Linear	graphs				
		The steepness of a graph		<u>,</u>	y run
15.	Gradient	$Gradient = \frac{change in y}{change in x}$ $= \frac{rise}{run}$	This has a This has positive negative		This has a negative gradient
		=			

16.	Gradient between two points	If A = (x_1, y_1) and B = (x_2, y_2) The gradient of line AB = $\frac{y_2-y_1}{x_2-x_1}$	$ \begin{array}{c} B\\ (x_2, y_2)\\ (x_1, y_1) \end{array} $
17.	Parallel lines Have the same gradients		
18.	Mid-point	The coordinate half way between two point	If A = (x_1, y_1) and B = (x_2, y_2) the mid-point is $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$
Real life graphs			
19.	Steady speed Travelling the same distance each minute		
20.	Velocity Speed in a particular direction		
21.	Rate of change	Shows how a variable changes over time	
22.	Acceleration How fast velocity changes; measured in m/s² or km/s² etc		n m/s² or km/s² etc
Distance - Time graphs			
23.	Represent a journey		
24.	Vertical axis represents the distance from the starting point		3 B
25.	Horizontal axis represents the time taken		Distance
26.	Straight lines mean constant speed		Time A = steady speed,
27.	Horizontal lines mean no movement		B = no movement,
28.	Gradient = speed		C = steady speed back to start
29.	Average speed = $=\frac{total\ distance}{total\ time}$		
Velocity – Time graphs			
30.	Represents the speed at given times		, in the second
31.	Straight lines mean constant acceleration or deceleration		Weltocity V
32.	Horizontal change means no change in velocity e.g. constant speed		Time A = steady acceleration,
33.	Positive gradient-= acceleration		B = constant speed,
34.	Negative gradient = deceleration		C = steady deceleration back to a stop
35.	Distance travelled = area under the graph		

Transf	formations - d	efinitions						
	Tuesefousestion	Changing a 2D shap	e in some way.					
1.	Transformation	Rotation	Reflection	Translation	Enlargement			
2.	Object	The name given to a	The name given to a shape before a transformation has occurred.					
3.	Image	The name given to a	shape after a transfor	mation has occurred	1			
4.	Rotation	A circular movemen	t about a fixed point					
F	Centre of	The fixed point that	the shape has been rot	ated about				
5.	rotation	Written as a coordin	ate (x,y)					
6.	Direction	Clockwise or anticloc	kwise					
7.	Reflection	An image as it would	d be seen in a mirror					
	Line of	The "mirror line" use	d to perform reflections	5.				
8.	reflection	Written using algebr	Written using algebraic notation e.g. $y=3$, $x=-2$, $y=x$ or x/y axis					
9.	Translation	The movement of a	shape without rotating	or flipping it				
		Notation used to rep	present translations	1	<i>x</i> \			
10.	Column vector	x is the horizontal me	ovement	[[-)			
		γ is the vertical movement						
11.	Resultant vector	The vector that mov	The vector that moves the shape to its final position after more than one translation					
12.	Enlargement	A change in size of a	shape (can be bigger o	or smaller)				
12	Scale factor	The proportions by v	which the dimensions of	an object will incred	ase/decrease by			
13.	Scale factor	If fractional then the	image will be smaller t	than the object				
1.4	Centre of	A fixed point to enlarge an object from						
14.	enlargement	Written as a coordin	ate (x,y)					
15.	Single transformation	Where the object is o	only transformed once					
16.	Combination	Where the object is t	ransformed multiple tir	mes				
17	Origin	The point (0,0); whe	re the x and y axis inte	rsect				
10	Cinailou	Same shape but diffe	erent sizes					
18.	Similar	e.g. similar shapes ar	e enlargements of one	another				

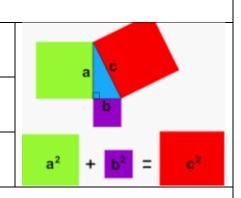
19.	Congruent	Shapes that are the same shape and size			
20.	Describe	Use key words to accurately state what resulting image	has happened to an object to make the		
Transf	formations				
21.	Rotation	 To carry out you need to: Draw object on tracing paper Place pencil on 'centre of rotation' and carry out the motion Draw your image on the grid 	To describe you need to write: a) "rotation" b) angle of rotation c) direction of rotation d) centre of rotation		
22.	Reflection	 If required draw the 'line of reflection' Count squares from object to line and repeat the other side of the line for all corners of the object Join points up to create the image 	To describe you need to write: a) "reflection" b) the equation of the line of reflection		
23.	Translation	1. Use vector notation to work out the horizontal and vertical movement 2. Count squares to carry out movement on all corners of the object 3. Join up points to create the image	To describe you need to write: a) "translation" b) the column vector		
24.	Enlargement	To carry out you need to: 1. If required cross the coordinate that is the centre of enlargement 2. For each corner count from the line of reflection to the object 3. Multiply this movement by the required scale factor 4. Draw new corners from the centre of enlargement with new horizontal and vertical movement 5. Join up points to create image	To describe you need to write: a) "enlargement" b) the scale factor c) the centre of enlargement		

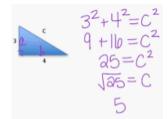


		1 4	Oille II		
Ratio	and Proportio	n - definitions			
1.	Ratio	A relationship between two or more quantities			
2.	Unit ratio	Used to compare ratios, one of the parts is 1			
۷.	OTHE TOLIO	The only time it is permissible to have a decimal	in a ratio		
3.	Equivalent	Ratios that have the same simplified form are sa	id to be equivalent		
4.	Scale	A ratio that represents the relationship between and the actual length	a length on a drawing or a map		
5.	Proportion	Compares a part with a whole			
6.	Direct	Two quantities increase at the same rate	$y \propto x$ y = kx for a constant k		
o.	6. proportion	Graph is a straight line that goes through the origin	x x		
7.	Inverse/indirect proportion	One variable increases at a constant rate as the second variable decreases	$y \propto \frac{1}{x}$ $y = \frac{k}{x}$ for a constant k $y = \frac{k}{x}$		
8.	Proportional	A change in one is always accompanied by a cha	ange in the other		
-	Constant of	Represented by k			
9.	proportionality	Its value stays the same			
10.	Share	Splitting into parts as defined by a ratio			
11.	Unitary method	Finding the value of 1 item then using this to find item	I the value of any number of that		

		Use to work out which products give the best value for money			
Worki	ing with ratio	OS .			
12.	Simplifying ratio	Divide all parts by the highest common factor All parts in the simplified version must be integers	e.g. 12:4 simplifies to 3:1 (divided by HCF of 4)		
13.	Divide in a given ratio	Divide an amount so the ratio of the final values simplifies to the given ratio	share £20 in the ratio 3:2 £20 £4 £4 £4 £4 £4		

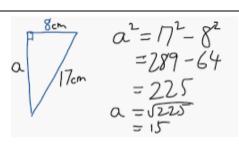
Pythagoras' Theorem


1. Hypotenuse	Hupotopuso	The longest side of a right-angled triangle	
	Пуросенизе	It is always opposite the right angle	
	Right- angled		


- 2. triangle
- A triangle that contains a right angle
 - $a^2 + b^2 = c^2$
 - 3. Pythagoras' Theorem

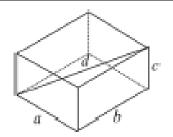
Where c is the hypotenuse

Where a and b are the two shorter sides



To find the hypotenuse (c)

- Square
- Add
- Square root


5. To find a short side (a/b)

- Square
- Subtract
- Square root

- 6. Pythagoras' in 3D
- $a^2 + b^2 + c^2 = d^2$

$$d^2 - b^2 - c^2 = a^2$$

Trigonometry - Right angled – SOH CAH TOA									
7.	Trigonometry	The ratios be	etween the	sides and	angles of	triangles			
		θis	the angle	involved				7)
8.	Labelling the	Н	is the hypo	tenuse		adjacent (A)	hypotenu (H)	ise H	7
	triangle		O is the opp			" Ь	opposite	_ /	A
		•	A is the adj	acent		^	(0)		Onn
9.	Sine		SOH			/c		Sin θ =	Нур
2.	Jine		30			Sin θ	н	$\theta = Sin$	$a^{-1} \frac{Opp}{Hyp}$
40	Carina		CALL			Â		Cos θ =	$=\frac{Adj}{Hyp}$
10.	Cosine		САН			Cos θ	Н	$\theta = Cos$	Λdi
	_					6		Tan θ =	Onn
11.	Tangent		TOA			Tan θ	A	$\theta = Tan$	$n^{-1} \frac{Opp}{Adj}$
			θ	0°	30°	45°	60°	90°]
			Sin O	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
			Cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
12.	Exact Values		Tan O	0	$\frac{\sqrt{3}}{3}$	1	√3		
			These can	be found	d using tl	ne triangle:	s:		
					J 3	2 600	1 45		
13.	Angle of elevation	e		Ang	le of depr	ession	2	d	

i icuccii	ny 🚝		Unit 15		
Probo	ability - defin	itions			
1.	Probability	The extent to which an event is likely to occur Written as a fraction, decimal or percentage	For equally likely outcomes the probability that an event will happen is $P = \frac{number\ of\ successful\ outcomes}{total\ number\ of\ possible\ outcomes}$		
2.	Theoretical probability	Calculated without doing an experiment			
	E-maning antal	Probabilities based on the data collected during an experiment	frequency of event		
3.	Experimental probability	Also known as estimated probability	$estimated probability = \frac{frequency}{total frequency}$		
		The more trials you do the more reliable your set of results			
4.	P() notation	P() means the probability of the thing insid	le the brackets happening e.g. P(tails)		
5.	Experiment	A repeatable process that gives rise to a nun	nber of outcomes		
6.	Relative frequency	In an experiment, how often something happens as a proportion of the number of trials	Relative frequency = \frac{how often something happens}{all outcomes}		
_	You can predict the number of outcomes you will get using relative frequence				
7.	Predictions	Predicted number of outcomes = probability x number of trials			
8.	Event	A collection of one or more outcomes			
9.	Independent	When one event has no effect on another	Here P(A and B) = $P(A) \times P(B)$		
10.	Dependent	When the outcome of one event, changes th	e probability of the next event		
11.	Exhaustive	Events are exhaustive if they cover all possib	le outcomes		
12.	Biased	Unfair			
13.	Unbiased	Fair			
14.	Sample space	The set of all possible outcomes			
15.	Sample space diagram	A diagram showing all possible outcomes fro	pm an experiment +		

		Can be used to represent events graphically		A B
16.	Venn diagram	Frequencies or probabil regions	lities can be placed in the	0.4 (0.3) 0.2
17.	A ∩ B	A intersection B	All elements in A and B	A B
18.	A ∪ B	A union B	All the elements in A OR B OR both	ABB
19.	A'	Complement of A	Not in A	ABB
		Events that have no outcomes in common		A B
20.	Mutually exclusive	Here P(A or B) = P(A)	- P(B)	P(A or B) = P(A) + P(B)
21.	Tree diagram	Used to show the outco events happening in suc	•	The Bire Bire Bire Red Red Red Red
22.	AND rule	Multiply the probabilities	es	
23.	OR rule	Add the probabilities		
24	Conditional	The probability of a dep	pendent event	
24.	probability	The probability of a sec first outcome	ond outcome depends on wl	hat has already happened in the

Multi	plicative reas	soning – definitions and formulae	
1.	Proportion	Compares a part with a whole	
2.	Proportional	A change in one is always accompanied by a chang	ge in another
3.	Ratio	A relationship between two or more quantities	
4.	Compound measure	Combine measures of two different quantities	
		The mass of a substance contained in a certain volume	
5.	Density	Usually measured in g/cm³ or kg/m³	/ M ÷ _T ÷
		$density = \frac{mass}{volume}$	/D×V
6.	Velocity	Speed in a given direction	Usually measured in m/s
7.	Acceleration	The rate of change of velocity	Usually measured in m/s²
		The distance travelled in an amount of time	\Diamond
8.	Speed	Usually measured in m/s, mph or km/h	
		$speed = \frac{distance}{time}$	T ★ S
		The force applied over an area	<u></u>
9.	Pressure	$pressure = \frac{force}{area}$	PA
		Usually measured in N/m²	7 1 1 1
Perce	entages		
10.	Percentage	Means 'out of 100'	
		A decimal you multiply by to represent a percentag	de .
11.	Multiplier	To use a multiplier to find a percentage, divide you multiply the amount by this value.	r percentage by 100, then

	Percentage	Calculate the percentage and add onto the original			
12.	increase	Or use a multiplier	$amount \times \frac{100 + \% increase}{100}$		
		Calculate the percentage and subtract from	m the original		
13.	Percentage decrease	Or use a multiplier	$amount \times \frac{100 - \% increase}{100}$		
14.	Percentage change	Change Origina	$- \times 100$		
15.	Express one number as a percentage of another	Number Number	— x 100		
		Use when asked to find the priginal amoun	nt after a percentage increase or decrease.		
	Reverse	Original Value x Multiplie	r = New Value		
16.	percentage	Original Value = New Value			
		Multiplier			
17.	Interest	A fee paid for borrowing money or money earnt through investing.			
18.	Simple interest	Interest that is calculated as a percentage of the original	I = Prt I – Interest P – Original amount r – interest rate t - time		
19.	Compound	When interest is calculate on the original amount and any previous interest	$P \left(1 + \frac{R}{100}\right)^n$		
19.	interest	Or $Original \times Multiplier^{time}$	R – Interest rate n – the number of interest periods (e.g. yrs)		
20.	Тах	A financial charge placed on sales or saving	gs by the government e.g. VAT		
21.	Loss	Income minus all expenses, resulting in a ne	egative value		
22.	Profit	Income minus all expenses, resulting in a positive value			
23.	Depreciation	A reduction in the value of a product over	time		

24.	Annual	Means yearly
25.	Per annum	Means per year
26.	Salary	A fixed regular payment, often paid monthly

2D shapes and 3D solids - definitions					
1.	Face A flat surface of a 3D shape				
2.	Edge	A line segment where two faces meet			
3.	Vertex	A point where two or more edges meet			
4.	Vertices	The plural of vertex			
5.	Dimension	The size of something in a particular directions e.g. length depth	, width, height, diameter,		
6.	Plane	A flat 2D surface			
7.	Plane of symmetry	When a solid can be cut exactly in half and a part on one exact reflection of the part on the other side of the plane	side of the plane is an		
8.	Prism	A 3D shape with a uniform cross section			
9.	Pyramid	A 3D shape with a polygon as a base and triangular sides that meet at the top			
10.	Arc	A section from the circumference (outside) of a circle			
11.	Sector	A region of a circle bound by two radii and an arc			
12.	Congruent	Exactly the same shape and size e.g. identical			
13.	Regular	A shape where all the sides and angles are the same			
Plans	Plans and elevations				
14.	Plan	The view from above a solid	Plan Plan		
15.	Front elevation	The view from the front of a solid	Front Side		
16.	Side elevation	The view from a side of the solid			
17.	Clockwise	Following the direction of a clock			
18.	Anticlockwise	Following the opposite direction of a clock			

19.	Compass directions	Terminology needed to accurately describe a location of directions	Northwest Northwast West East Southwest Southeast	
20.	Sketch	An approximate drawing of an object		
21.	Scale	A ratio that shows the relationship between a length or actual length	n a drawing/map and the	
Consti	ructions and	loci		
22.	Construct	Draw accurately using a ruler and a pair of compasses.		
23.	Construction	Lines or arcs drawn as part of working out		
23.	lines	They must not be rubbed out as they show the working		
24.	Equidistant	The same distance from each other or in relation to other things		
25.	Bisect	Cut in half		
26.	Perpendicular	At a 90 degree angle (right angle)		
27.	Perpendicular bisector	A line that cuts another in half at a right angle		
28.	Angle bisector	A line that cuts an angle exactly in half		
29.	Locus	The set of all points that fulfil a certain rule		
29.	Locus	Often drawn as a continuous path		
30.	Loci	The plural of locus		
31.	Region	An area bounded by a loci		
Loci				
32.	Circle	Locus of points that are a fixed distance from a fixed point	2 0 A 0 2	
33.	Parallel line	Locus of points a fixed distance from a fixed line		

34.	Perpendicular bisector	The line that cuts another in half at a right angle	
35.	Angle bisector	The locus of points equidistant between two fixed points.	
Const	ructions		
36.	Angle bisector		
37.	Perpendicular bisector		
38.	Constructing 60° angles	Step 2 Initial Line angle of 60° created	

Constructing triangles			
You co	<mark>an draw an d</mark>	accurate triangle when you are given:	
39.	ASA	an angle, side, angle	
40.	SAS	a side, angle, side	
41.	SSS	all three sides	*
42.	RHS	that it has a right angle, the hypotenuse and another side	
Bearir	ngs		
		The direction of a line in relation to the North-South line	075°
43.	Bearing	It is always measured clockwise	310°
		Always measured from the North line	
		Always written using 3 digits	310° Clockwise

Quad	Quadratics - definitions				
1.	Expression	One or a group of terms			
2.	Quadratic expression	An expression where the highest index is 2	e.g. $2x^2 + 2x + 2$		
,	Function	A relation of expression involving one or more vario	ıbles		
3.	Function	Also a rule for working out values of y given values	for x		
		Solutions to a quadratic equation/function $ax^2 + bx + c = 0$	4 2		
4.	Roots	The x values where the graph crosses the x axis	2 /1 1 2 3 4		
		A quadratic can have 0, 1 or 2 roots	4		
	Quadratic graph		Curved shaped called a parabola	y↑ / y↑	
5.		A positive x² will give a '∪' shape	$y = x^2$		
3.		A negative x² will give a '∩' shape	$y = -x^2$		
6.	Turning points	The point where a curve turns in the opposite direction			
		Can be called a minimum or maximum	Ma×imum Minimum		

Expanding double brackets

7. Everything in the first bracket must be multiplied by everything in the second

	Grid method	FOIL method
	(x+4)(x+7)	FIRST: $(x+3)(x-4)$ gives $x \times x = x^2$
	× 2 +4 .	OUTER: $(x+3)(x-4)$ gives $x \times (-4) = -4x$
8.	x x 4x +7 7x 28	INNER: $(x+3)(x-4)$ gives $3 \times x = 3x$
	$= x^{2} + 4x + 7x + 28$ $= x^{2} + 11x + 28$	LAST: $(x+3)(x-4)$ gives $3 \times (-4) = -12$

Facto	Factorising a quadratic expression				
		Multiply to 5			
		Factorise $x^2 + 5x + 6 \leftarrow Add t$	o 6		
9.	Factorising a quadratic in the form of $ax^2 +$	2 and 3 add to 5 2 and 3 multiply to 6			
	bx + c	(x+2)(x+3)			
		Check: $(x+2)(x+3) = x^2 +$	5x + 6		
		A special type of quadratic which only has two terms.			
40	Difference of two	One term is subtracted from the other			
10.	squares	$x^2 - 25 = x^2 - 5^2 = (x^2 - 5)^2$	^ /		
		$y^2 - 49 = y^2 - 7^2 = (y^2 - 16) = a^2 - 4^2 = (a^2 - 4)^2 = (a^2 - 4$			
Solving	g quadratic equations/func	tions			
11		Take you factorised form and set each bracket equal to zero	$x^{2} + 4x + 3 = 0$ (x + 3)(x + 1) = 0		
11.	By factorising	Solve each separate linear equation to find the solutions/roots	x + 3 = 0 x + 1 = 0 So So x = -3 x = -1		

Circles - definitions and formulae				
		A straight line from edge to edge passing through the centre		
1.	Diameter	Double the size of the radius		
2.	Radius	A straight line from the centre to the edge		
۷.	Rudius	Half the size of the diameter		
3.	Radii	The plural of radius		
4.	Circumference	Distance around the outside of the circle		
5.	Arc	Part of the circumference		
6.	Chord	A line within a circle where each end touches the edge		
7.	Sector	The region created by two radii and an arc		
8.	Segment	The region created by a chord and an arc		
9.	Tangent	A line outside the circle which only touches the circumference at one point		
10.	Semi -circle	Half a full circle		
Area	and circumfe	rence of circles formulae		
	D. ()	Constant ratio linking the circumference and diameter of a	a circle	
11.	Pi (π)	3.14159265		

12.	Circumference of a circle	$C = \pi d$	Alternatively, using relationship between r and d ${\cal C}=2\pi r$
13.	Arc length	$\frac{x}{360} \times \pi d$	Where x is the angle at the centre
14.	Perimeter of a sector	$\left(\frac{x}{360} \times \pi d\right) + 2r$	This represents the arc length plus the two radii
15.	Area of a circle	$A = \pi r^2$	
16.	Area of a sector	$\frac{x}{360} \times \pi r^2$	
Cylinders, pyramids, cones and spheres		s, cones and spheres	
17.	Volume of a cylinder	$V = \pi r^2 h$	
18.	Surface area of a cylinder	Total surface area = $2\pi r^2 + \pi dh$	
19.	Volume of a pyramid	$V = \frac{1}{3} \times area \ of \ base \times perpendicular \ height$	height area of base
20.	Volume of a cone	$V = \frac{1}{3} \times \pi r^2 h$	
21.	Surface area	Curved surface area $=\pi rl$	h

 $Total\ surface\ area=\ \pi r^2+\pi rl$

 $V = \frac{4}{3} \times \pi r^3$

Total surface area = $4\pi r^2$

21.

22.

23.

of a cone

sphere

Volume of a

Surface area

of a sphere

Fra	ctions				
1.	Improper fraction	A fraction where the numerator is larger than the denominator.			
2.	Mixed number	A number made from integer and fraction parts. e.g. $2\frac{2}{3}$			
3.	Unit fraction	A fraction that has a numerator of	1		
	Reciprocal	The reciprocal of a number is 1 divided by the number.		iprocal of 3 is $\frac{1}{3}$	
4.	Recipiocal	Dividing by a number is the same as multiplying by its reciprocal	e.g. \times by $\frac{1}{3}$	is the same as \div by 3	
5.	Convert improper fractions to mixed numbers	 Divide the numerator by the denominator The answer gives the whole part. The remainder becomes the numerator of the fraction parthe same denominator. 	number	$\frac{43}{6} = 7\frac{1}{6}$	
6.	Convert mixed numbers to improper fractions	Multiply the denominator by the		$7\frac{1}{6} = \frac{6 \times 7 + 1}{6} = \frac{43}{6}$	
7.	Adding and subtracting mixed numbers	 Convert mixed numbers to improper fractions Transform both fractions so they have the same denominator Add or subtract the numerators Convert back to mixed number if applicable 			
8.	Multiplying mixed numbers	 Convert mixed numbers to improper fractions Multiply numerators and multiply the denominators Convert back to mixed number if applicable 			
9.	Dividing mixed numbers	 Convert mixed numbers to improper fractions Flip the second fraction (find the reciprocal) Change the divide sign to a multiply Multiply the fractions Convert back to mixed number if applicable 			
Ind	Index laws				
10.	Index	A small number to the upper right of a base number that shows how many times the base number is multiplied by itself.			
11.	Power	Another word for an index.			
12.	Indices	The plural of index.			

13.	Index form	A number written to the power of an index.	
14.	Multiplying	Add the powers	$x^7 \times x^6 = x^{13}$
15.	Dividing	Subtract the powers	$x^5 \div x^6 = x^{-1}$
16.	Brackets	Multiply the powers	$(x^2)^3 = x^6$
17.	Power of O	Always = 1	$x^0 = 1$
18.	Negative	Means "1 over"	$x^{-n} = \frac{1}{x^n}$ $x^{\frac{1}{n}} = \sqrt[n]{x}$ $x^{\frac{a}{n}} = (\sqrt[n]{x})^a$
19.	Unit Fraction	Means root	$x^{\frac{1}{n}} = \sqrt[n]{x}$
20.	Fractional	Means root and bracket	$x^{\frac{a}{n}} = (\sqrt[n]{x})^a$
Sta	ndard form		
21.	Standard form	A number written in the form: $A \times 10^n$, where A is between 1 and 10.	
22.	Scientific notation	Another name for standard form	
23.	Convert a small number to standard form	 Count the number of zero's in front of the first significant figure (including the one in front of the decimal point). The power of ten is negative followed by this number. 	e.g. 0.0000037 $= 3.7 \times 10^{-7}$
24.	Convert a large number into standard form	 Count the number of place value position there are after the first significant figure. The power of ten is positive followed by this number. 	e.g. $147\ 100\ 000\ 000$ $= 1.47 \times 10^{11}$
25.	Converting to a small ordinary number	 Look at the digit after the negative in the power of 10. Write this may zero's in front of the first sig. fig. Reposition the decimal place between the first and second zero. 	e.g. 2.4×10^{-6} = 0.0000024
26.	Adding or subtracting numbers in standard form	 Convert the numbers to ordinary numbers. Add. Convert the sum to standard form. 	e.g. $(2.3 \times 10^4) + (6.4 \times 10^3)$ = $23000 + 6400$ = 29400 = 2.94×10^4

27.	Multiplying numbers in standard form	 Multiply the numbers between one and 10 at the front. Use index law for multiplication for the powers of 10. If necessary increase the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(4.5 \times 10^3) \times (3 \times 10^5)$ = $13.5 \times 10^{3+5}$ = 13.5×10^8 = 1.35×10^9
28.	Dividing numbers in standard form	 Divide the numbers between one and 10 at the front. Use index law for division for the powers of 10. If necessary, decrease the power of ten by one to ensure the initial number is between 1 and 10. 	e.g. $(2.5 \times 10^{11}) \div (5 \times 10^{13})$ = 0.5×10^{-2} = 5×10^{-3}

	•	-		
1.	Congruent	Exactly the same shape and size		
	Similar	Two shapes where one is an enlargement of another		
2.		Corresponding angles are equal	Corresponding sides are in the same ratio	
3.	Scale factor	The proportion by which the dimensions of an object will increase or decrease by		
4.	Linear scale factor (LSF)	The scale factor/ratio of sides of two similar shapes	$LSF = \frac{length\ from\ large\ shape}{length\ from\ small\ shape}$	
5.	Area scale factor (ASF)	The scale factor ratio of areas/surface areas of two similar shapes	$ASF = \frac{Area \ of \ large \ shape}{lArea \ of \ small \ shape}$	
6.	Volume scale factor (VSF)	The scale factor/ratio of volumes of two similar shapes	$VSF = \frac{volume \ of \ large \ shape}{volume \ of \ small \ shape}$	

Two triangles are congruent if...

7.	SSS	All 3 sides are equal	
8.	SAS	2 sides and the included angle are equal	~
9.	ASA	2 angles and the corresponding side are equal	≅
10.	RHS	The right angle, hypotenuse and one other side are equal	≅

Vectors					
11.	Magnitude	Size			
12.	Scalar	A quantity has a magnitude			
13.	Vector	A quantity that has direction and magnitu	ıde		
	Column	x denotes the horizontal movement	(x)	- +	
14.	vector	y denotes the vertical movement	(y)	Į	
15.	Written vectors	Can be written in bold a or with underlining	ng <u>a</u>		
16.	Vector between two points	A vector between any two given points	e.g. vector between written as $\rightarrow AB$	A and B could be	
17.		Column vectors can be represented on grids	$a = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $b = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ $c = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$		
18.	Adding vectors	$\binom{2}{3} + \binom{1}{-4} = \binom{3}{-1}$			
19.	Subtracting vectors		$\begin{pmatrix} 1 \\ -4 \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$		
20.	Multiplying a vector by a scalar quantity	$\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}. \text{ Then } 2\mathbf{p} = 2 \times \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}.$	T _R	/2p	
21.	Magnitude of a vector	3 3	b $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ $\begin{pmatrix} b^2 \\ b \end{pmatrix}$	$= 3^2 + 4^2$ $= \sqrt{3^2 + 4^2}$ $b = 5$	
22.	Unit vector	Has a magnitude of 1			

Algebra definitions				
1.	Equation	A mathematical statement containing an equals sign (=) to show that two expressions are equal		
2.	Formula	A rule describing the relationship between different variables		
3.	Formulae	The plural of formula		
4.	Function	A relation involving one or more variables		
_	Roots	Solutions to an equation		
5.		In graphs, the values of x where the graph cross	ses the x axis	
6.	Identity	An equation that is true for any value of x Denoted using \equiv		
7.	Substitute	Replace a variable with a number		
8.	Subject	The variable on its own on one side of the equals sign is said to be the 'subject' of a formula		
9.	Rearrange	Change positons of terms using inverse operations		

Changing the subject of a formula (rearranging)

Always use inverse operations to isolate the term you have been asked to make the subject

10.	Make u the subject: $v = u + at$ $(-at)$ $v - at = u$ So	Make u the subject: $v^{2} = u^{2} + 2as$ $(-2as)$ $v^{2} - 2as = u^{2}$ $(\sqrt{})$ $\sqrt{v^{2} - 2as} = u$
	u = v - at	So
		$u = \sqrt{v^2 - 2as}$

Types of graphs/functions

		Represented by a straight line	y = 2x + 4	10 8
		Usually represented by $y = mx + c$		6/
11.	Linear	Can also be given as $ax + by + c = 0$		10 -8 -6 -4 /2 0 2 4 6 8 10

12.	Quadratic	General form of $ax^2 + bx + c = 0$ A positive x^2 will give a ' \cup ' shape A negative x^2 will give a ' \cap ' shape	Equation $y=2x^2+6x$ $y=2x^2+6x$ Table of Values $x y -3 0 -2 -4 -1 -4 0 0 0 1 8$		
13.	Cubic	General form of $ax^3 + bx^2 + cx + d = 0$	y 243 (3,27)		
		Can have 1, 2 or 3 roots	Graph of $f(x) = 2x^3 - 3x^2 + 5$. $b^2 - 3ac = 9$ Graph of $f(x) = -8(x - 3)^3 + 27$. $b^2 - 3ac = 0$		
14.	Asymptote	A line a graph will get very close to but wi	ll not touch		
15.	Reciprocal	General form of $y = \frac{k}{x}$ where k is a number	$y = \frac{k}{x}$ (positive) $y = \frac{-k}{x}$ (negative)		
		Has two asymptotes			
Simul	taneous equ	ations			
16.	Simultaneous equations	Two equations where there are two unknown which have the same value in each			
Solving	simultaneous	equations			
		Add or subtract one equation from another	er to eliminate a variable		
17.	Elimination	If the matching coeefieicents have the same sign then subtract the equations	If the matching coefficients have different signs then add the equations		
		✓ Same	✓ Different		
		✓ Subtract	✓ Add		
		✓ Substitute ✓ Substitute Paggrange to the subject of one aquation is a single variable.			
18.	Substitution	Rearrange so the subject of one equation is a single variable Substitute this into the second equation			
		Sassitute this into the second equation	y+ y=2x y=x+1		
19.	Graphically	The points of intersection of two graphs are the solutions to the simultaneous equations	4 -3 -2 1 9 1 2 3 4 x		