

Year 9 PC2 (February Exam)

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to recall from a particular topic. That means that it does not have everything on it for a unit of study but it does have the most essential things to learn.

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you

should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that the more you know the more you can learn. By being able to recall the facts, you are able to understand more complicated ideas because you already know what the key words mean. You will also already have a set of ideas in your mind that the

new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

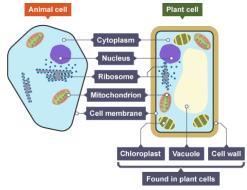
Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!

Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

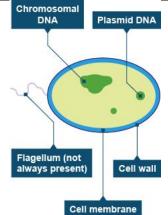
Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.


B1a: Biology key concepts

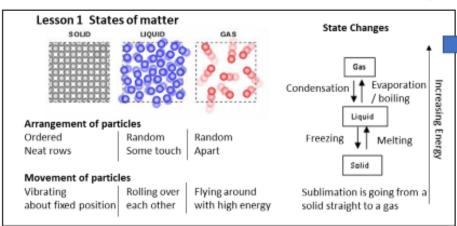
	1. Microscopes	
Magnification	The number of times bigger	
	something appears under a	
	microscope.	
Eyepiece lens	The lens on a microscope that	
	you look through.	
Objective	The lens at the bottom of a	
lens	microscope. There are normally	
	three you can choose from.	
Total	Eyepiece lens x objective lens.	
magnification		
Resolution	The smallest distance between	
	two points so that they can still	
	be seen as two separate points.	
Stains	Dyes added to microscope slides	
	to show the details more clearly.	
Milli	Thousandth, 1x10 ⁻³ (a millimetre	
	is a thousandth of a metre).	
Micro	Millionth, 1x10 ⁻⁶ (a micrometre is	
	a millionth of a metre).	
Nano	Billionth, 1x10 ⁻⁹ (a nanometre is a	
	billionth of a metre).	
Pico	Trillionth, 1x10 ⁻¹² (a picometre is	
	a trillionth of a metre).	

2.	Plant and animal cells
Cell	The basic structural unit of all
	living things (the building blocks of life).
Parts of an	Cell membrane, cytoplasm,
animal cell	nucleus, ribosomes,
	mitochondria.
Parts of a	Cell membrane, cytoplasm,
plant cell	nucleus, ribosomes,
	mitochondria, cell wall,
	permanent vacuole, chloroplasts.
Cell	Controls what enters and leaves
membrane	the cell.
Cytoplasm	A jelly-like substance where
	chemical reactions take place.
Nucleus	Contains DNA and controls the
	cell.
Ribosome	Produces proteins.
Mitochondria	Releases energy by aerobic
	respiration.

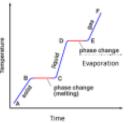
	COMMOD
Cell wall	Protects and supports the cell,
	made of cellulose.
Permanent	Stores sap and helps to support
vacuole	the cell.
Chloroplast	Where photosynthesis happens,
	contains chlorophyll.


	3. Measuring cells	
Micrograph	A picture produced by a	
	microscope.	
Light	A microscope that uses light, can	
microscope	magnify up to 1500 times.	
Electron	A microscope that uses electrons	
microscope	to produce an image, can magnify	
	up to 1,000,000 times.	
Actual size	Actual size = measured size /	
of a cell	magnification	
Convert mm	Micrometres (μm) = millimetres	
to µm	(mm) x 1000	

4. Core p	4. Core practical – using microscopes (CP1)	
CP1 – key	What do cells look like under a light	
question	microscope?	
CP1 -	Collect the cells you are studying	
Prepare	and place them on the slide. Add a	
the slide	drop of stain and cover with a cover	
	slip.	
CP1 -	Choose between the 4x, 10x and	
Select lens	40x objective lenses.	
CP1 – Place	Place slide on microscope stage,	
slide in	adjust the coarse focus until the	
microscope	lens is just touching the slide.	
CP1 -	Looking through the eyepiece,	
Rough	slowly adjust the coarse focus until	
focus	you see a rough image.	
CP1 – Fine	Looking through the eyepiece,	
focus	slowly adjust the fine focus until	
	you see a sharply focussed image.	
CP1 -	Draw what you see, label any cell	
Record the	parts you can recognise and repeat	
image	with different objective lenses.	
CP1 -	As you increase the magnification of	
Results	the objective lens, the cells appear	
	larger and more detailed.	
5. Specialised cells		

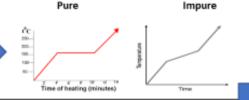

	<u> </u>
Small	Job: To absorb small food molecules
intestine	produced during digestion.
cell	Adaptations: Tiny folds called
	microvilli that increase their surface
	area.
Sperm	Job: Fertilise an egg and deliver male
cell	DNA.
	Adaptations: A tail to swim,
	mitochondria to give energy for
	swimming, an acrosome to break
	through the egg's jelly coat, haploid
	nucleus with only half the total DNA.
Egg cell	Job: To be fertilised by a sperm and
	then develop into an embryo.
	Adaptations: Jelly coat to protect the
	cell, many mitochondria and nutrients
	to provide energy for growth, haploid
	nucleus with only half the total DNA.

Ciliated	Job: To clear mucus out of your lungs
epithelial	(and other internal surfaces).
cell	Adaptations: Small hairs on the
	surface – called cilia – which wave to
	sweep mucus along.


6. Bacterial cells	
Parts of a	All bacteria: Cell membrane,
bacterial cell	cell wall, cytoplasm,
	ribosomes, chromosomal DNA,
	plasmid DNA
	Some bacteria: flagellum.
Chromosomal	Large piece of DNA containing
DNA	most genes.
Plasmid DNA	Small loops of DNA containing
	a few genes.
Flagellum	A tail used for movement.
Eukaryotic cells	Cells with a nucleus.
Prokaryotic	Cells without a nucleus.
cells	
Standard form	A way of writing numbers in
	terms of powers of ten. E.g.
	$0.015 = 1.5 \times 10^{-2}$
	0.000458 = 4.56 x 10 ⁻¹
	4
	The index of ten (the 'minus'
	number) tell you which
	decimal point to start on.
Chromo	ncomal

CC1-SC2: States of matter, separating and purifying knowledge organiser (H)

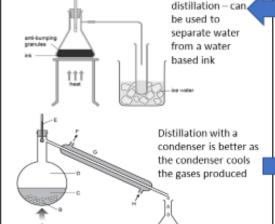
Lesson 2 Heating / Cooling curves


A heating or cooling curve shows how the temperature changes with time State changes are shown as horizontal lines During this time the energy is used to change state and not temperature

0000

Lesson 3 Mixtures

- Mixtures contain substances which are not chemically combined and they can be separated
- · Pure materials contain only one substance
- · Impure materials contain a mixture of substances


Pure substances have a sharp melting point Impure substances have a range of melting points

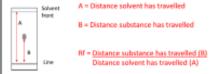
Lesson 6 Distillation

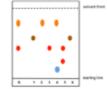
Distillation is used to separate a solvent from a solution or from a mixture of solvent (fractional distillation)

Simple

State changes involved in distillation boiling/evaporation and condensation

Risk Assessment


Hazard – what is dangerous e.g. Bunsen Burner Risk – the hard it could do e.g. Hair could catch fire Control measure – How you make it safe e.g. tie your hair back


Lesson 5 Chromatography

Chromatography is used to separate a mixture of substances. E.g. a mixture of different dyes in an ink.

The mixture separates because some dyes like the solvent more and some like the paper more.

Calculating Rf values

You can compare how far inks have travelled (Rf values) to analyse the dyes in an unknown mixture

Splint

Beaker

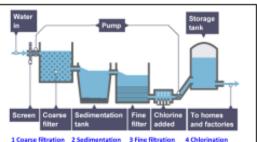
Samples

Solvent

Filter paper

Lesson 7 Purifying water

Water is used for many things around the home and comes from a variety of sources

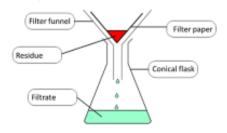

Water is purified to remove impurities (silt and mud, chemicals, dissolved salts)

Course filtration – filtered to remove twigs etc.

Sedimentation – a chemical is added which makes particles sink to bottom

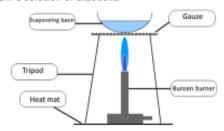
Fine filtration – filtered through sand

Chlorination - to kill bacteria



Distilled water is pure water and contains no

dissolved salts. It is used for laboratory tests.
Sea water contains dissolved sodium chloride
Mineral water contains many dissolved salts
We do not use distillation to make drinking
water as it uses a lot of energy and would be
expensive


Lesson 4 Filtration and crystallisation

Filtration can be use to separate an insoluble solid from a liquid or from a solution

Filtration works because the large particles of the residue can not pass through the small gaps in the filter paper

Crystallisation can be used to separate a soluble solid from a solution of that solid

In crystallisation of a solution the **solvent** is **evaporated** from a **solution** to leave the **solute**

CP1/SP1 Motion

1.	1. Vectors and Scalars	
Magnitude	The size of something, such as	
	the size of a force or the	
	measurement of a distance.	
Scalar	A quantity that has a magnitude	
quantity	(size) only, but not a direction.	
Scalar	Distance – 10 m	
examples	Speed – 25 m/s	
	Mass – 50 kg	
	Energy – 300 J	
Vector	A quantity that has both a	
quantity	magnitude (size) and a direction.	
Vector	Displacement – 10 m north	
examples	Velocity – 25 m/s east	
	Force – 30 N left	
	Acceleration – 3 m/s ² south	
	Momentum – 400 N m/s right	
	Weight – 600N down	
Vector	Vectors can be represented by	
arrows	arrows, with the length of the	
	arrow representing the	
	magnitude.	
Displacement	The distance travelled in a	
	particular direction.	
Velocity	The speed of an object in a	
	particular direction.	

2. Speed	
Speed	A measure of the distance an
	object travels in a given time.
Units of speed	Metres per second (m/s)
Some typical	Walking – 1.4 m/s
speeds	Cycling – 6 m/s
	Speed limit in towns – 10.5 m/s
	Ferry 18 m/s
	Motorway speed limit – 31 m/s
	Commuter train – 55 m/s
	High speed train – 90 m/s
	Airliner – 250 m/s

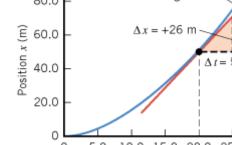
Speed – word	Speed = distance / time
equation	Speed (m/s)
	Distance (m)
	Time (s)
	x $s \times t$
Speed –	v = x/t
symbol	
equation	v = speed
	x = distance
	t = time
Instantaneous	The speed at one particular
speed	moment in a journey.
Average	The speed worked out from the
speed	total distance travelled divided
	by the total time taken for a
	journey. v = x/t.
Calculating	Distance = average speed x time
distance	x = v x t
travelled -	
word	Distance (m)
equation	Average speed (m/s)
	Time (s)
Measuring	Measure the distance between
speed	two points and time how long an
	object takes to pass, then
	calculate using v = x/t.
Light gates	A piece of apparatus containing
	an infrared beam that is
	transmitted from a source onto
	a detector. If the beam is cut,
	the light gate measures how
	long it is cut for, giving a reading
	for time.

3. Distance-Time Graphs	
Distance-time	A graph showing the distance
graph	travelled against time for a
	moving object.
	Time is on the x-axis and
	distance on the y-axis.
Distance-time	Horizontal line
graphs –	
stationary	C on diagram below

Distance-time	Forwards – line sloping up		
graphs –	A and B on diagram below		
constant	Backwards – line sloping down		
speed	D on diagram below		
Distance-time	A measurement describing the		
graphs – line	steepness of the line on a graph.		
gradient	Steeper line = faster, so		
	A is faster than B below		
Calculating	Speed = change in distance/		
speed from	change in time =gradient		
the gradient			
of a distance-	gradient = change in y / change		
time graph	in x		
Distance	e (m)		
25			
20	C		
15	В		
	D		
10 A			
5			
0	5 10 15 20 25 30 Time (seconds)		
	inic (seconds)		
A	B C		
She travels 80 m ii	the park. Alice stops to chat Alice is now late, n 100s. to a friend for 100s. so she has to jog.		
220			
200			
180	distance travelled:		
160 E 110	240 m - 80 m =		
9 120	160 m		
E 140 Dougles 120 120 100			
80	J		
60	time taken: 280 s - 200 s = 80 s		
40	gradient = speed		
20	$=\frac{160 \mathrm{m}}{80 \mathrm{s}} = 2 \mathrm{m/s}$		
0			
0 20 40 60	80 100 120 140 160 180 200 220 240 260 280 Time (s)		

4. Acceleration	
Acceleration	A measure of how quickly the velocity of something is changing. Rate of change of velocity. It is positive if an object is speeding up and negative if it is slowing down. A vector quantity.
An object accelerates when it	Speeds upSlows downChanges direction

Units of	Metres per second squared
acceleration	(m/s ²)
Positive and	Positive acceleration =
negative	speeding up
acceleration	Negative acceleration =
	slowing down
Deceleration	Slowing down, negative
	acceleration.
Acceleration –	Acceleration = change in
word equation	velocity / time
	Acceleration (m/s²)
	Change in velocity (m/s)
	Time (s)
Acceleration –	a = (v - u)/t
symbol equation	
	(v - u)
	$a \times t$
	a = acceleration
	v = final velocity
	u = initial velocity
	t = time
Linking	Use the equation:
acceleration and	$v^2 - u^2 = 2ax$ to find distance
distance	
travelled	$x = (v^2 - u^2) / 2a$
	x = distance travelled
	a = acceleration
	v = final speed
	u = initial speed
Acceleration due	10 m/s ²
to gravity	
(free fall)	


5. Velocity-Time Graphs		
Velocity-time A graph of velocity against tim		
graph	A graph of velocity against time for a moving object.	
	Time is on the x-axis, velocity is	
	on the y-axis.	
Velocity-time	Horizontal line	
graphs –		
constant speed		

Velocity-time	Speeding up – line sloping up		
graphs –			
acceleration	Slowing down – line sloping		
	down		
Velocity-time	Horizontal line on the x-axis		
graphs –			
stationary			
Velocity-time	Steeper line = greater		
graphs – line	acceleration		
gradient			
Calculating	Acceleration = change in		
acceleration on	velocity / change in time =		
a velocity-time	gradient		
graph			
	gradient = change in y / change		
	in x		
Calculating	Distance = area under the		
distance	graph.		
travelled from a			
velocity-time	Divide the graph into		
graph	rectangles and triangles, find		
	the area of each and add them		
	together.		
are	ea of triangle = $\frac{1}{2}$ x base x height		
area = 5 s x 10 m/s	= $\frac{1}{2}$ x 5 s x 30 m/s area = 5 s x 10 m/s		
= 50 m	= 75 m = 50 m		
€ 30			

0 1 2 3 4 5 6 7 8 9 10 11 12 Time (s)

The total distance travelled by the object in graph D is the sum of all the areas.

total distance travelled = 50 m + 50 m + 75 m = 175 m

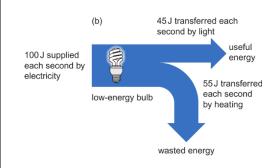
6. Calculating instantaneous speed (HIGHER ONLY)		
Instantaneous speed	Draw a tangent to the curve of the graph at the time you want to calculate the instantaneous speed for. Find the gradient of the tangent line by calculating the change in distance on the y axis and the change in time on the x axis. Instantaneous speed =	
	gradient of tangent = change in distance / change in time	

80.0	Tangent line
(E) 60.0	$\Delta x = +26 \text{ m}$
Position x (m)	$\Delta t = 5.0 \text{ s}$
20.0	
٥L	
0	5.0 10.0 15.0 20.0 25.0
	Time t (s)

Lesson	Memorised?
1. Vectors and Scalars	
2. Speed	
3. Distance-Time Graphs	
4. Acceleration	
5. Velocity Time	
Graphs	
6. Calculating	
instantaneous speed	
(HIGHER ONLY)	

CP3 Conservation of Energy

Lesson sequence


- 1. Energy stores and transfers
- 2. Energy efficiency
- 3. Keeping warm
- 4. Stored energies
- 5. Non-renewable energy resources
- 6. Renewable energy resources

 The capacity to do work.
The units of energy, symbo
= J
1000 J, symbol = kJ
Energy stored in hot
objects.
Energy stored in moving
objects.
Energy stored in chemicals
such as fuels.
Energy stored in the
nucleus of atoms. Also
called atomic energy.
Energy stored in objects
based on how high they
are.
Also called strain energy.
Energy stored in bent or
stretched objects.
Light, thermal(heat),
sound, electrical, kinetic
(movement)
Energy cannot be created
or destroyed, just
transferred from one
energy store to another.
Say from what store the
energy starts as and what
its new store is.
ergy transferred by to be during braking energy stored in hot brakes (thermal energy)
ene

Sankey diagram	Shows energy transfers.
	Shows energy transfers. The thickness of the arrow
	relates to the amount of
	energy.

2. Energy efficiency		
Dissipation	The way energy spreads out into	
	the surroundings, becoming less	
	useful as it does.	
Wasted	Energy that is transferred into	
energy	stores that aren't useful.	
Friction	Causes thermal energy loss as	
	heat when two surfaces rub	
	together.	
Lubrication	Allows surfaces to move	
	smoothly, reduces energy loss	
	from friction.	
Electrical	Causes wires to heat up, wasting	
resistance	electrical energy.	
Calculating	efficiency = (useful energy transferred by the device) (total energy supplied to the device)	
efficiency	Efficiency is expressed as a	
	decimal.	
Energy	Efficiency is between 0 and 1.	
efficiency	1 = no energy wasted	
numbers	0 = all energy wasted	

3	3. Keeping warm	
Convection	Heat transfer caused when hot	
	fluids (gas or liquid) rise because	
	they are less dense.	
Conduction	Heat transfer through solids	
	caused by vibrating particles	
	bumping into each other.	
Radiation	Heat transfer by infrared	
	radiation which heats objects up	
	when they absorb it.	
Radiation and	Infrared radiation is absorbed	
surfaces	(taken in) and emitted (given	
	out) easily by dull, dark surfaces.	
	Radiation is absorbed and	
	emitted poorly by shiny, light	
	surfaces.	
Insulation	Materials that contain lots of	
	tiny air pockets that prevent	
	heat loss by conduction.	
Thermal	A measure of how well a	
conductivity	material conducts heat.	
Reducing the	Increase thickness of material	
rate of energy	Decrease thermal conductivity	
transfer	Decrease temperature	
	difference	

4. S	4. Stored energies	
Gravitational field strength g	The strength of gravity. Different on different planets. On Earth g = 10 N/kg.	
Calculating gravitational potential energy	$GPE = mg\Delta h$ $M \times g \times \Delta h$ GPE is gravitational potential energy (J) $M \times g \times dh$ $M \times g \times dh$ $M \times g \times dh$ GPE is gravitational field strength (N/kg) $M \times g \times dh$ $M \times g \times dh$	

Calculating kinetic energy	$KE = \frac{1}{2}mv^2$
	$\frac{1}{2} \times m \times v^2$
	KE is kinetic energy (J)
	m is mass (kg)
	v is velocity (m/s)
Calculating v from KE	$v = \sqrt{\frac{2KE}{}}$
	\sqrt{m}

5. Non-renewable energy resources	
Non-renewable	A resource that will one day
resource	run out because it is being
	used faster than it is being
	made.
Fossil fuels	Coal, oil, natural gas. All are
	non-renewable.
Harm from	Carbon dioxide gas is released
burning fossil	which causes global warming.
fuels	Sulfur dioxide is released which
	causes acid rain.
Nuclear power	Electricity generated from non-
	renewable nuclear fuels such
	as uranium.
Nuclear power	C Lasts a long time, releases
pros and cons	no carbon dioxide
	Produces very harmful
	waste, expensive to
	decommission, although rare,
	accidents are very dangerous.
Climate	Changes that happen to
change	global weather patterns as
	a result of global warming.
	•

6. Renewable energy resources	
Renewable	A resource will not run out.
resource	
Wind power	Large turbines spun by the
	wind turn kinetic energy into
	electrical energy.
	©No CO₂
	Lots needed, ugly?, no wind
	no power
Solar power	Solar cells turn light energy
	from the Sun into electrical
	energy.
	© No CO₂
	😕 No sun no power, need lots
	of space, not suitable for all
	countries
Tidal power	Uses kinetic energy from water
	movement from tides to spin
	turbines and produce electrical
	energy.
Tidal barrage	A damn built across an estuary
	that fills up when tide goes in.
	When stored water is released
	its kinetic energy produces electrical energy.
	Huge amounts of energy,
	Destroys important mudflat
	habitats
Hydroelectricity	A damn is built across a river
	valley, water released from the
	damn spins turbine and its
	kinetic energy produces
	electrical energy.
	© Lots of energy, no CO₂
	Destroys habitat by
	flooding
Biofuels	Fuels made from recently plant
	or animal matter, often waste,
	are a store of chemical energy.
	© Carbon neutral
	Needs a lot of land,
	increases food prices

Carbon neutral	When burning a fuel releases the same CO₂ it absorbed
	the same CO ₂ it absorbed
	when it was growing, so there
	is no CO ₂ increase.

7. Reducing energy losses		
	(HIGHER ONLY)	
Reducing energy losses	Increases the efficiency of a device or process, e.g. engines. This can be by reducing friction; by making sure all fuel is burned; or by using energy that	
	would otherwise be wasted.	

Lesson	Memorised?
1. Energy stores and	
transfers	
2. Energy efficiency	
3. Keeping warm	
4. Stored energies	
5. Non-renewable	
energy resources	
6. Renewable energy	
resources	
7. Reducing energy	
losses	
(HIGHER ONLY)	

B2: Cells and Control

1. Mitosis	
Cell cycle	The life of a cell comprising of
cen cycle	interphase and mitosis.
	Preparation for mitosis in which
Interphase	extra cell parts are made and DNA
mice phase	chromosomes are replicated
	(copied).
Mitosis	When one cell divides into two
141110313	genetically identical daughter cells.
	The membrane of the nucleus
Prophase	breaks down and spindle fibres start
	to form.
	Spindle fibres fully form and
Metaphase	chromosomes line up across the
	m iddle of the cell.
	Chromosome copies get pulled
Anaphase	a part and move to each end of the
	cell.
	A new membrane forms around
Telophase	each set of chromosomes to form
	two nuclei.
Cytokinesis	The two new cells fully separate.
	The type of cells produced by
Diploid	mitosis which have two sets of
	chromosomes (23 pairs in humans).
	Type of reproduction with just one
Asexual	parent producing a clone of itself
	through mitosis.
	When mitosis happens out of
Cancer	control forming large lumps of cells
	called tumours.

2. Animal Growth	
Growth	Increase in size due to increased numbers of cells.
Percentile	A measure of the growth of a child that compares them to other children of the same age.
90 th percentile	90% of children will have a mass below this percentile on a percentile growth curve.

50 th percentile	Average for height/mass for the
	age.
	The process by which an
Differentiation	unspecialised cell becomes
	specialised.
Specialised	A cell with special features
cell	designed for a specific job.
	Specialised cell with no nucleus
Red blood cell	(more room for haemoglobin)
Rea blood cell	and a large surface area
	(allowing for quicker diffusion).
	Specialised cell with large fat
Fat cell	droplets in the cytoplasm which
	is stored until energy is needed.
	Specialised cell with contractile
Muscle Cell	proteins than can shorten the
	cell.

3. Plant Growth	
	Cell division creates more cells,
Plant growth	elongation makes these cells get
	bigger.
	Areas in the tips of roots and
Meristems	shoots where cell division and
	differentiation happens.
Xylem	Specialised cells which form a
	hollow tube of dead cells to
	allow water to pass through.
Root hair cell	Specialised cell with a large
	surface area to allow roots to
	take in more water / mineral
	ions.
Percentage	% change = (final value – starting
change	value) / starting value x 100

4. Stem Cells	
Stem cell	An unspecialised cell that can undergo cell division and differentiation to form specialised cells.
Embryonic stem cell	A stem cell that can become any kind of cell. Found in developing embryos.
Adult stem cell	A stem cell that can only become limited types of cell. Found in animals after birth.

Stem cells	It is hoped they can be used to replace damaged cells in diseases like type 1 diabetes or leukaemia, or
in	replace damaged cells in diseases
medicine	like type 1 diabetes or leukaemia, or
medicine	to grow new organs for transplant.
D I. I	They may potentially cause cancer,
Problems with stem	They may potentially cause cancer, stem cells may be rejected if used in
cells	other people than where they were
	taken from.

	taken nom.
	5. The Nervous System
	Organ system made up of the CNS
Nervous	and nerves. Allows all parts of the
	body to work together to gather
system	information, make decisions and
	1
	control responses.
CNS	Central nervous system- The brain
	and spinal cord – controls the body.
	Anything your body is sensitive to
Stimulus	(e.g. changes inside or outside the
	body).
Sense	Contain receptor cells that detect
organ	stimuli (e.g. eyes, ears, skin).
Neurone	A nerve cell
Impulse	Electrical message carried by a
iiipuise	neuron.
D	The action that the nervous system
Response	makes happen.
Sensory	Nerve cell that carries impulses from
Neurone	sense organs to the CNS.
	The central part of a nerve cell
Cell body	containing its nucleus.
	The long parts of a nerve cell
Dendron	carrying impulses towards the cell
and axon	body (dendron) and away from it
	(axon)
	Branches at the beginning of a
Dendrites	dendron that connect to receptor
	cells or another neuron.
	Branches at the end of an axon that
Axon	connect to a muscle or another
terminals	neuron.
	A fatty layer around the axon and
Myelin	dendron that insulates it to prevent
•	•
sheath	the impulse from losing energy and
	speeds the impulse up.

Voluntary Response	Stimulus detected by receptor → impulse sent along sensory neurone → brain makes decision → impulse sent along motor neurone →
	effector carries out response.

6. Neurotransmission Speeds	
Neuro-	The travelling of an impulse
transmission	along a neuron and into another.
	The body part that produces the
Effector	response, often a muscle.
	Small gap between two neurons
Synapse	where the axon terminals of one
	meet the dendrites of another.
	Chemicals released by axon
Neuro-	terminals that diffuse across the
transmitter	synapse to trigger a new impulse
	the dendrite of another neuron.
Relay neuron	Nerve cell in the CNS that links
Relay lieuron	sensory and motor neurones.
	Nerve cell that carries impulses
Motor neuron	from the CNS to effectors.
iviolor neuron	Dendrites join onto cell body,
	long axon.
	Automatic responses that
Reflexes	happen very quickly without
Reflexes	conscious thought to keep the
	body safe.
	Neurone pathway that bypasses
	the brain.
Reflex arc	Stimulus → receptor → sensory
	neurone → relay neurone →
	motor neurone → effector

Lesson	Memorised?
1. Mitosis	
2. Animal Growth	
3. Plant Growth	
4. Stem Cells	
5. The Nervous System	
6. Neurotransmission	
Speeds	

B5: Health, Disease & the Development of Medicines

1. Health and Disease	
Health	A state of complete physical, social and mental wellbeing.
Physical Health	Being free from disease, active, fit, sleeping well and no substance abuse.
Mental Health	How you feel about yourself.
Social Health	Having healthy relationships and how your surroundings affect you.
Disease	An illness that prevents the body from functioning normally.
Communicable Disease	Diseases caused by pathogens, can be spread from one person to another.
Non- Communicable Disease	Diseases caused by genes or lifestyle. Cannot be spread from one person to another.
Correlated Diseases	Getting one disease increases your chance of another due to diseases weakening organ systems, damaged immune system, and weaker defences.
Pathogen	A microorganisms that causes disease.

2. Non-Communicable Diseases	
Genetic	Diseases caused by inheriting
Disorders	faulty genes from parents.
Malnutrition	Getting too little or too much of
Mamutition	a particular nutrient.
Deficiency	Disease caused by the lack of a
Disease	certain nutrient.
	Lack of iron. Causes fewer and
Anaemia	smaller red blood cells and low
	energy.
Kwashiorkor	Lack of protein. Swollen belly,
Kwasiii01K01	small muscles, stunted growth.

Lack of calcium or vitamin D.
Causes weak bones leading to
bowed legs.
Lack of vitamin C. Swollen
bleeding gums, muscle and joint
pain, lack of energy.
Chemical that changes the way
the body works.
Fatal liver disease caused by
drinking too much alcohol over
a long period of time.
Fifth largest causes of death in
the UK, increasing 450% in the
last 30 years. Costs £500 million
each year to treat.

3 Ca	3. Cardiovascular Disease	
A condition in which someone is		
	overweight for their height and	
Obesity	large amounts of fat builds up	
	around major organs.	
Cardiavassular	Disease in which the heart or	
Disease	circulatory system is affected.	
Disease	When the heart stops pumping	
Heart Attack	due to a lack of oxygen reaching	
Heart Attack	it.	
	Body mass Index	
	· ·	
вмі	BMI = (weight in kilograms)	
Bivii	height in meters ²	
	BMI over 30 is obese	
	Waist measurement ÷ hip	
Waist:hip	measurement	
Ratio	Better method of measuring	
Ratio	abdominal fat which is linked	
	with cardiovascular disease.	
	Harmful substances from smoke	
	can damage blood vessels,	
Smoking	increase blood pressure, make	
	blood vessels narrower and	
	increase risk of blood clots.	
	A small mesh tube that is	
Stent	inserted into a narrowed artery	
	and opened up to widen it.	
Treating Heart		
Disease with	can treat cardiovascular disease	
Lifestyle	and giving up smoking.	

4. Pathogens	
Types of Pathogen	Bacteria, virus, protist, fungi.
Tuberculosis	Bacteria. Damages lungs causing bloody cough, fever and weight loss.
Cholera	Bacteria. Sever life-threatening diarrhoea.
Chalara Ash Dieback	Fungi. Kills the leaves of ash trees, killing the tree.
Malaria	Protist. Multiplies inside red blood cells and liver cells and causes fever and weakness.
Haemorrhagic Fever	Virus, e.g. Ebola. Liver and kidney damage, internal bleeding and fever.
ніV	Human immunodeficiency virus attacks white blood cells, causing AIDS.
AIDS	Acquired Immunodeficiency Syndrome. Weakened immune system making simple infections deadly. Caused by HIV.
Hidden Pathogens	Many types of bacteria live in our bodies. Some are essential for health, others may not affect us most of the time. <i>Helicobacter</i> <i>pylori</i> can cause stomach ulcers some of the time.

5. Spreading Pathogens	
Airborne	Spread through the air. Colds/flus/TB by infected droplets in saliva being passed into the air
	by coughing or sneezing. Chalara ash dieback by fungal spores carried by wind.
Waterborne	Spread through contaminated water. Cholera
Oral Route	Pathogen enters body through the mouth by eating/drinking.
Vectors	Organisms that carry a pathogen from one person to the next. Mosquitos are vectors for malaria.

Bodily Fluids	Spreading through contact with bodily fluids such as blood or
	semen. HIV
Lluciono	Keeping things clean to remove
Hygiene	or kill pathogens.
Epidemic	When many people over a large
	area are infected with the same
	pathogen at the same time.

6. Physic	al & Chemical Barriers
Chemical Defences	Kill pathogens or make them inactive before they can infect us.
Lysozyme	Enzyme found in mucus, tears and sweat that kills some bacteria.
Hydrochloric Acid	Found in the stomach, reducing pH to 2, killing most pathogens.
Physical Barrier	Block or trap pathogens so they cannot enter the body.
Mucus	Sticky secretion that traps pathogens- found in most body openings (nose, mouth, etc.).
Ciliated Cells	Specialised cells with hair like cells that sweep mucus out of the body.
Skin	Blocks pathogens from entering the body.
STIs	Sexually transmitted infections – pathogens spread via sexual activity.
Preventing STIs	Use barrier contraception (such as condoms) to prevent mixing of fluids.
Screening	Large scale testing of people to check if they have an STI so they can be treated. This helps to reduce the spread of STIs.

7. The Immune System		
Immune	Destroys pathogens that	
System	manage to infect us.	
	Chemical markers on the	
Anticono	surface of pathogens that	
Antigens	identify them as a pathogen.	
	Unique to each pathogen.	

	White blood cells that produce	
Lymphocyte	antibodies. Each lymphocyte	
	produces a different antibody.	
	Molecules with a specific shape	
Antibodies	that can attach to a specific	
Antibodies	antigen on a pathogen and kill	
	it.	
	When an antigen sticks to an	
Activated	antibody, it activates the	
Lymphocyte	lymphocyte causing it to make	
2,	many copies of itself that make	
	the same antibodies.	
Memory	Lymphocytes left over after an	
Lymphocyte	infection that retain the ability	
Lymphocyte	to fight the pathogen.	
	The body has memory	
Immune	lymphocytes to fight the	
iiiiiiuiie	pathogen if it returns so it can't	
	be harmed by it.	
Primary Response vs. Secondary Response		
Antbody numbers per cm³ of blood	secondary response response	
0 10 first infection with pathogen	Time (days) second infection with the same pathogen	
Vaccine	A weakened or inactive version	
	of a pathogen.	
	Vaccines are harmless versions	
How vaccines	of pathogen that still have the	
work	antibodies on them, so the	
	immune response is triggered	
	without any risk of disease.	
1 Pathogens have anti-	ne System Attacks Pathogens	
on their surface that ar		
unique to them.		
th	A lymphocyte with an antibody value perfectly fits the antigen is clivated.	
4 Some of the lymphor	odes secrete	
4 Some of the lymphocytes secrete large amounts of antibodies. The antibodies stick to the antigens and destroy the pathogen. Other lymphocytes remain in the blood as memory lymphocytes, ready to respond immediately if the same antigen ever turns up again.		

	8. Antibiotics
Antibiotics	Substances that kill bacteria or inhibit their processes without harming human cells.
Penicillin	The first antibiotic discovered by Alexander Fleming. Produced by a mould.
Resistance	Widespread use of antibiotics has led to resistance, meaning many antibiotics don't work as well as they once did.
Drug Development	Developing new medicines involves many stages that take a lot time and money.
Discovery Phase	Developing new chemicals that might work as medicines.
Pre-Clinical Phase	Testing on cells grown in the lab, or on animals, to see if the chemical has any useful effect.
Small Clinical Trial	Testing on a few healthy people to check for safety.
Large Clinical Trial	Testing on many patients to discover how effective the drug is and determine the dose.
Side Effects	Unwanted effects of the medication that can be quite harmful.
Dose	The correct amount of the medicine that needs to be given to the patient.

Lesson	Memorised?
1. Health and Disease	
2. Non-Communicable Diseases	
3. Cardiovascular Disease	
4. Pathogens	
5. Spreading Pathogens	
6. Physical & Chemical Barriers	
7. The Immune System	
8. Antibiotics	

CC13: Groups in the Periodic Table

1. Group 1	
Alkali The name we give to group 1 –	
metals lithium, sodium, potassium and	so
on.	
Group 1 Li – lithium	
symbols Na – sodium	
K – potassium	
Properties - soft	
of alkali - relatively low melting points	
metals	
Reaction Metal + water → metal hydrox	de +
of alkali hydrogen	
metals	
with E.g:	
water sodium + water → sodium hydr	oxide
+ hydrogen	
$2Na + 2H_2O \rightarrow 2NaOH + H_2$	
Lithium Floats. Bubbles (of hydrogen).	
and water Moves slowly.	
Sodium Floats. Melts. Bubbles (of hydro	gen).
and water Moves more quickly	
Potassium Floats. Melts. Bubbles (of hydro	
and water catch fire (lilac flame). Moves v	ery
quickly	
Group 1 Reactivity increases as you move	5
reactivity down the group.	
Explaining When metals react they lose the	
group 1 outer electrons. Further down the	ne
reactivity group there are:	
- more shells of electrons - so the outer electrons are furt	
from the nucleus	ier
- so outer electrons are less	
attracted to the nucleus	
- so outer electrons are easier to	
remove.	,
l'emove.	
OPPOSITE PATTERN TO GROUP	7

	2. Group 7	
Halogens	The name given to group 7 – fluorine,	
	chlorine, bromine and iodine.	
Chlorine	Cl ₂ . A pale green gas.	
Bromine	Br ₂ . A red-brown liquid.	
Iodine	I ₂ . A shiny purple-black solid.	
Reaction	Halogen + metal → metal halide	
of		
halogens	E.g:	
with	Bromine + sodium → sodium	
metals	bromide	
	Br₂ + 2Na → 2NaBr	
Reaction	Halogen + hydrogen → hydrogen	
of	halide	
halogens		
with	E.g:	
hydrogen	, , , ,	
	chloride	
	$Cl_2 + H_2 \rightarrow 2HCl$	
	Hydrogen halides dissolve in water to	
halides	form acids, for example hydrogen	
	chloride makes hydrochloric acid.	
Chlorine	Chlorine gas turns damp blue litmus	
test	red then quickly bleaches it white.	
	3. Reactivity of halogens	
	·	
Group 7	Reactivity increases as you go up	

3. Reactivity of halogens	
Group 7	Reactivity increases as you go up
reactivity	the group.
Explaining	When non-metals react they
group 7	complete their outer shells. Going
reactivity	up the group there are:
	- less shells of electrons
	- so the outer electrons are closer
	to the nucleus
	- so outer electrons are more
	attracted to the nucleus
	- so more able to hold an extra
	outer electron
	OPPOSITE PATTERN TO GROUP 1

	,		
Displacement	Reactions in which a more		
reactions	reactive metal displaces a less		
	reactive metal from a salt eg:		
	copper sulfate + zinc → zinc		
	sulfate + copper		
	Does not work backwards as		
	copper is less reactive than zinc.		
Displacement	A more reactive halogen		
reactions of	displaces a less reactive halide		
halogens	ion by taking its electrons.		
	E.g:		
	bromine + sodium iodide ->		
	iodine + sodium bromide		
	$Br_2 + 2Nal \rightarrow l_2 + 2NaBr$		
	[bromine more reactive]		
Redox	Displacement reactions are		
reactions of	REDOX because the more		
halogens	reactive halogen oxidises the less		
	reactive halide by taking its		
	electrons. The more reactive		
	halogen is reduced.		
	E.g:		
	$Br_2 + 2l^- \rightarrow 2Br^- + l_2$		
OIL RIG	Oxidation Is Loss (of electrons)		
	Reduction Is Gain (of electrons)		
-			

	4. Group 0
Noble	The name given to group 0 – helium,
gases	neon, argon, krypton and xenon.
Melting	They are all gases at room
point of	temperature but the melting and
noble	boiling point increase down the
gases	group.
Reactivity	The noble gases do not (easily) do
of group 0	any reactions – they are inert.
Explaining	When elements react they try to
reactivity	complete their outer shells. Because
of group 0	group O's outer shells are already
	complete, they do not react.
Uses of	-Helium is used in airships because it
noble	is inert and has low density
gases	- Argon is used in fire extinguishers
	because it is inert and denser than
	air.
	- Neon is used in lighting because it
	glows red when electricity is passed
	through it.

Lesson		Memorised?
1.	Group 1	
2.	Group 7	
3.	Reactivity of	
	halogens	
4.	Group 0	

C3 & 4: Atoms and the periodic table

Lesson sequence

- 7. Structure of atoms
- 8. Detailed structure of atoms
- 9. Isotopes
- 10. Mendeleev's periodic table
- 11. The modern periodic table
- 12. Electron configuration

	1. Structure of atoms
*Particle	The tiny pieces that all matter is
	made from.
*Atom	The smallest independent particle.
	Everything is made of atoms.
**Size of	About 1 x 10 ⁻¹⁰ m in diameter.
atoms	
**Dalton's	- Tiny hard spheres
model of	- Can't be broken down
atoms	- Can't be created or destroyed
	- Atoms of an element are identical
	- Different elements have different
	atoms
*Subatomic	Smaller particles that atoms are
particles	made from.
*Proton	Mass = 1
	Charge = +1
	Location = nucleus
*Neutron	Mass = 1
	Charge = 0
	Location = nucleus
*Electron	Mass = 1/1835 (negligible)
	Charge = -1
	Location = shells orbiting nucleus
*Nucleus	Central part of an atom, 100,000
	times smaller than the overall atom

2. Detailed structure of atoms					
**Alpha	Small positively charged particle				
particle	made of two protons and two				
	neutrons.				
**Scattering	When particles bounce back or				
	change direction.				
**Rutherford's	Fired alpha particles at gold leaf,				
experiment	used a phosphor-coated screen				
	to track where they went.				

**Rutherford's	Most alpha particles went						
results	through, some scattered						
	(changed direction).						
**Rutherford's	Scattered particles hit a solid						
explanation	nucleus. Most did not hit it,						
	therefore nucleus is small						
*Atomic	The bottom number on the						
number	periodic table, gives the number						
	of protons and electrons.						
*Atomic mass	The top number on the periodic						
	table, gives the total protons						
	and neutrons together.						
*Number of	The atomic number.						
protons							
*Number of	The atomic number.						
electrons							
*Number of	Atomic mass minus atomic						
neutrons	number.						
*Number of	Equal, because each negative						
protons and	electron is attracted to a						
electrons	positive proton in the nucleus.						

3. Isotopes					
**Isotopes	Atoms with the same number of				
	protons but different number of				
	neutrons.				
**Describing	Mass after the name (e.g. boron-				
isotopes	10) or superscript mass before				
	the symbol (10B).				
*Nuclear	Large unstable atoms break into				
fission	two smaller stable ones.				
**Uses of	Nuclear power, nuclear				
fission	weapons.				
**Relative	The weighted average of the				
atomic mass,	masses of all of the isotopes of				
A _r	an element.				
***Isotopic	The percentage of an element				
abundance	that is made of a particular				
	isotope.				
***Calculating	- Multiply each mass by the				
A _r	decimal %				
	- Add these up				
	Note: (decimal % = %/100)				

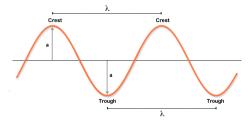
4. Mendeleev's periodic table					
*Dmitri Russian chemist, developed the					
Mendeleev periodic table.					

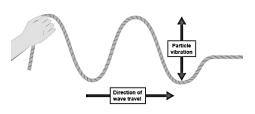
*Mendeleev's	Ordered by increasing A _r , some
periodic table	elements switched according to
	their properties.
*Chemical	Includes reaction with acid and
properties	formula of oxide.
*Physical	Includes melting point and
properties	density.
**Gaps in	Mendeleev left gaps where no
Mendeleev's	known element fitted and
periodic table	predicted these would be filled
	with newly discovered elements.
**Eka-	An element that Mendeleev
aluminium	thought would fill a gap. He
	predicted its properties, which
	matched gallium when
	discovered.
·	·

5. The modern periodic table					
*Noble	Gases that do not react: He, Ne,				
gases	Ar, Kr.				
**Moseley's	Fired electrons at samples of				
experiment	elements and measured X-rays				
	produced.				
**Moseley's	Energy of x-rays produced				
results	proportional to the positive charge				
	of the element.				
**Conc.	The atomic number must be the				
from	number of protons in the atoms.				
Moseley's					
work					

	Elements (like Ar and K) that are
reversals	not in order of increasing mass.
**Explaining It means elements should be or	
pair	elements by increasing atomic
reversals	number instead.

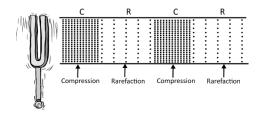
6.	6. Electron configuration					
*Shells	Electrons orbit atoms in shells.					
*First shell	Holds up to two electrons.					
*Second	Holds up to eight electrons.					
shell						
*Third shell	Holds up to eight electrons.					
*Number of	Given by the atomic number.					
electrons						
*Filling shells	Fill shells from the first shell out.					
	Move up a shell when current one					
	is full.					
*Electron	The number of electrons in each					
configuration	shell (e.g. Al is 2.8.3).					
*Outer shell	The last shell with any electrons					
	in it.					
**Groups	Columns in the periodic table, tell					
	you the number of electrons in					
	the outer shell.					
**Periods	Rows in the periodic table, tell					
	you the number of electron					
	shells.					

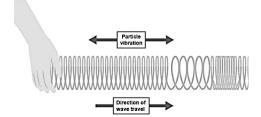

1	2			Key			1 H hydrogen 1					3	4	5	6	7	0 4 He helium 2
7 Li lithium 3	9 Be beryllium 4		ato	ve atomic omic syml name (proton) r	bol							11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O cxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12					•						27 Al atuminium 13	28 Si silcon 14	31 P phosphorus 15	32 S sulfur 16	35.5 CI chtorine 17	40 Ar argon 18
39 K potassium 19	40 Ca caldium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26	59 Co cobalt 27	59 Ni rickel 28	63.5 Cu copper 29	65 Zn zino 30	70 Ga gollium 31	73 Ge germenium 32	75 As arsenic 33	79 Se selenium 34	80 Br bromine 35	84 Kr krypton 36
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh modum 45	106 Pd palledium 46	108 Ag silver 47	112 Cd cadmium 48	115 In indium 49	119 Sn tin 50	122 Sb antimorry 51	128 Te tellurium 52	127 iodine 53	131 Xe xenon 54
133 Cs caesium 55	137 Ba berlum 56	139 La* lanthanum 57	178 Hf hefnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re merium 75	190 Os osmium 76	192 Ir iridium 77	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallium 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astetine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actnium 89	[261] Rf rutherfordum 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt metherium 109	[271] Ds damstaction 110	[272] Rg roentgenium 111	Elen	nents with ato		s 112-116 ha		orted but not	fully


P4 Waves

	1. Describing waves
Waves	Transfer energy without
	transferring matter.
Oscillate	When particles vibrate backwards
	and forwards or up and down.
Transverse	Waves in which particles oscillate
waves	at right angles to the direction of
	energy movement. E.g., waves on
	the surface of the water, some
	seismic waves and light waves (all
	electromagnetic waves).
Longitudinal	Waves in which particles oscillate
waves	parallel to the direction of energy
	movement. E.g., sound waves
	and some seismic waves.
Medium	The material that waves travel
	through. Light (all
	electromagnetic waves) waves
	are the only waves that have no
	medium.
Seismic	Waves of vibrating rock caused by
waves	earthquakes.
Frequency, f	The number of waves that pass a
	point every second.
Hertz, Hz	The unit of frequency. 1 Hz = 1
	wave per second.
Period, T	The length of time it takes for a
	single wave to pass.
Wavelength,	The distance in m from the top of
λ	one wave to the top of the next.
Amplitude, a	The maximum distance a particle
or A	vibrates away from its resting
	point,
Velocity, v	The speed of a wave in m/s.

Transverse wave


Transverse wave


Longitudinal wave

teachoo.com

Compression and rarefactions of a longitudinal wave

Longitudinal wave

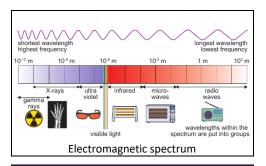
2. Wave speeds						
Speed, distance and time	$wave speed (m/s)$ $= \frac{distance (m)}{time (s)}$					
	v × t					
	Wave speed = v Distance = x					
	Time = t					
Speed, frequency and wavelength	wave speed $\left(\frac{m}{s}\right)$ = frequency (Hz) × wavelength (m) Wave speed = v Frequency = f Wavelength = λ					
Measuring	Time how long they take to					
wave speed	travel a certain distance.					
	(stopwatch) Distance between two points.(tape measure)					
Changing	Waves travel at a different					
speed	speed in a different medium.					
	Light is slower in water than air.					

3. Core prac	ctical – Investigating waves						
CP4 - Aim	To measure the speed of waves						
	in a liquid and a solid.						
CP4 – Water	1. Count the number of waves						
waves 1	in 10 s and use this to find						
	the frequency.						
	2. Measure the wavelength						
	with a ruler						
	Wave speed = frequency x						
	wavelength						
CP4 – Water	1. Time how long a wave takes						
waves 2	to pass two points, 0.3 m						
	apart.						
	Wave speed = dist / time						

P4 - Waves	 Hit suspended metal bar
n a solid	with hammer and measure
	the frequency using an app.
	Measure the metal bar – double
	the length gives the wavelength

4	4. Refraction			
Refraction	Bending of waves when they			
	enter a new medium at an			
	angle.			
Interface	The boundary between two			
	media (mediums) such as air			
	and water.			
Normal	An imaginary line drawn at			
	90° to where light hits an			
	interface (boundary).			
Angle of	The angle between an			
incidence	incoming light ray and the			
	normal.			
Angle of	The angle between the normal			
refraction	and a ray of light that has			
	been refracted.			
Travelling from	Light bends towards the			
air to glass or	normal			
water				
Travelling from	Light bends away from the			
glass or air to	normal.			
water				
Explaining	Light waves slow down as they			
refraction	go from air to water. The			
	'bottom' of the wave hits the			
water and slows down first,				
	causing refraction.			

Lesson	Memorised?
1. Describing waves	
2. Wave speeds	
3. Core practical – Investigating waves	
4. Refraction	


P5 Light and the Electromagnetic waves

1. E	ectromagnetic waves
Electromagnetic	A group of waves that all travel
waves	at the same speed (speed of
	light) in a vacuum, and are all
	transverse.
Speed of light	300,000,000 m/s (3 x 10 ⁸ m/s)
Frequency	The number of waves that pass
	a point every second.
	One hertz (Hz) is one wave per
	second.
Wavelength	The distance between a point
	on one wave and the same
	point on the next wave.
EM wave	All are transverse, all travel at
similarities	the speed of light.
EM wave	Different frequencies, different
differences	wavelengths.
Visible light	The only type of EM radiation
	that our eyes can detect.
Interface	The boundary between two
	different materials.
Refraction and	Light travels at different
wave speed	speeds in different materials
	causing it to refract when
	hitting the interface at an
	angle.
Prisms and the	Different wavelengths slow
colour	down by different amounts
spectrum	when they hit glass causing
	each colour to refract
	differently.
Infrared	Light split into a spectrum.
discovery	Thermometer placed on every
	colour plus next to red. Red
	was hot, next to red was
	hottest.

2. Core practical – Investigating refraction		
lormal	A line at right angles to the interface.	

Angle of	Angle between the incident ray			
incidence	and the normal.			
Angle of	Angle between the refracted ray			
refraction	and the normal.			
CP5 – Aim	To explore how changing the			
	angle of incidence changes the			
	angle of refraction.			
CP5 - Setup	Place a glass block on a sheet of			
	paper, point a beam of light			
	from a ray box at it, trace around			
	the block and draw in the light			
	ray.			
CP5 -	Use a protractor to draw a			
Measurement	normal, then measure the angles			
	of incidence and refraction.			
CP5 -	Repeat 5 times, from 5 different			
Variations	angles, including head-on.			
CP5 - Results	The greater the angle of			
	incidence, the greater the angle			
	of refraction.			

3. The elect	romagnetic spectrum		
EM spectrum	R ubbish M emories I nclude		
mnemonic	<u>V</u> isiting <u>U</u> r <u>X</u> <u>G</u> irlfriend		
EM spectrum –	Radio waves, microwaves,		
lowest to highest	infrared, visible light,		
frequency or	ultraviolet, X-rays, gamma		
energy	rays.		
EM spectrum –	Gamma rays, X-rays,		
lowest to highest	ultraviolet, visible light,		
wavelength	infrared, microwaves, radio		
	waves.		
EM spectrum	The full range of types of EM		
	waves.		
EM Radiation	Some EM radiation (visible		
and the	light, radio waves) passes		
atmosphere	through the atmosphere,		
	most is absorbed.		
Space telescopes	For radiation absorbed by the		
	atmosphere, a telescope		
	must be placed in space.		

4. Using the long wavelengths			
Visible light uses	Illumination, photography		
Infrared uses	Short-range communications		
	(TV remotes), fibre optics,		
	cooking (grills and toasters),		
	security cameras, thermal		
	images.		
Microwave uses	Microwave ovens, mobile		
	phone and satellite		
p. 1:	communications.		
Radio wave uses	Radio and TV signals,		
	communications between		
	controllers and spacecraft,		
Producing radio	satellite communications.		
waves	Oscillating electricity in a metal rod produces radio		
Waves	waves.		
Receiving radio	Radio waves absorbed by a		
waves	metal rod cause electrical		
	oscillations.		
C cir	The oscillations cause radio waves to spread out from the aerial. Radio waves cause an oscillating current in the receiving aerial. radio receiver circuits radio receiver circuits		

5. Using the short wavelengths				
Fluorescence	Absorbing ultraviolet and re-			
	emitting it as visible light.			
Ultraviolet uses	Security marking, fluorescent			
	lamps, detecting forged bank			
	notes and disinfecting water.			
X-ray uses	Observing the internal			
	structure of objects, airport			
	security scanners and medical			
	X-rays.			
Gamma ray	Sterilising food and medical			
uses	equipment, and the detection			
	of cancer and its treatment.			

radiation dangers
Surface heating causing skin
burns.
Absorbed by water causing it
to heat up → internal heating
of body cells.
High-energy radiation causes
ions to form in our cells,
damaging DNA and causing
cancer.
Damage to surface cells and
eyes leading to skin cancer and
eye conditions.
Cancer, mutation or damage to
cells in the body.
Cancer, mutation or damage to
cells in the body.

Lesson	Memorised?
1. Electromagnetic waves	
2. Core practical – Investigating refraction	
3. The electromagnetic spectrum	
4. Using the long wavelengths	
5. Using the short wavelengths	
6. EM radiation dangers	