Science Knowledge Organisers

Year 11 PC2 (December Exams)

Biology Paper 1

Chemistry Paper 2

Physics Paper 1

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to recall from a particular topic. That means that it does not have everything on it for a unit of study but it does have the most essential things to learn.

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you

should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that the more you know the more you can learn. By being able to recall the facts, you are able to understand more complicated ideas because you already know what the key words mean. You will also already have a set of ideas in your mind that the

new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

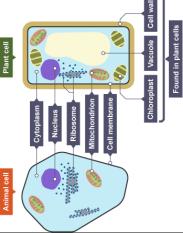
Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!

Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.


B1: Biology key concepts

- 1. Microscopes
- 2. Plant and animal cells
- 3. Measuring cells
- 4. Core practical: using microscopes
- 5. Specialised cells
- 6. Bacterial cells
- 7. Digestive enzymes
- 8. How enzymes work
- 9. Factors affecting enzymes
- 10. Core practical: enzymes and pH
- 11. Cell transport
- 12. Core practical: osmosis in potatoes

	4 84
1. Microscopes	
*Magnification	The number of times bigger
	something appears under a
	microscope.
*Eyepiece lens	The lens on a microscope that
	you look through.
*Objective	The lens at the bottom of a
lens	microscope. There are normally
	three you can choose from.
*Total	Eyepiece lens x objective lens.
magnification	
**Resolution	The smallest distance between
	two points so that they can still
	be seen as two separate points.
**Stains	Dyes added to microscope slides
	to show the details more
	clearly.
**Milli	Thousandth, 1x10-3 (a millimetre
	is a thousandth of a metre).
**Micro	Millionth, 1x10 ⁻⁶ (a micrometre
	is a millionth of a metre).
**Nano	Billionth, 1x10 ⁻⁹ (a nanometre is
	a billionth of a metre).
**Pico	Trillionth, 1x10 ⁻¹² (a picometre is
	a trillionth of a metre).

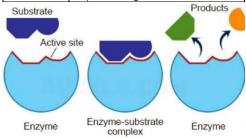
2. Plant and animal cells	
*Cell	The basic structural unit of all living things (the building blocks
	of life).
*Parts of an	Cell membrane, cytoplasm,
animal cell	nucleus, ribosomes,
	mitochondria.
*Parts of a	Cell membrane, cytoplasm,
plant cell	nucleus, ribosomes,
	mitochondria, cell wall,
	permanent vacuole,
	chloroplasts.
*Cell	Controls what enters and leaves
membrane	the cell.
*Cytoplasm	A jelly-like substance where
	chemical reactions take place.
*Nucleus	Contains DNA and controls the cell.
*Ribosome	Produces proteins.
*Mitochondria	Releases energy by aerobic
	respiration.
*Cell wall	Protects and supports the cell,
	made of cellulose.
*Permanent	Stores sap and helps to support
vacuole	the cell.
*Chloroplast	Where photosynthesis happens,
	contains chlorophyll.

3. Measuring cells	
*Micrograph A picture produced by a	
	microscope.
*Light	A microscope that uses light, can
microscope	magnify up to 1500 times.
**Electron	A microscope that uses electrons
microscope	to produce an image, can magnify
	up to 1,000,000 times.
**Actual	Actual size = measured size /
size of a cell	magnification
**Convert	Micrometres (μm) = millimetres
mm to µm	(mm) x 1000

4. Core p	4. Core practical – using microscopes (CP1)	
*CP1 – key	What do cells look like under a light	
question	microscope?	
*CP1 -	Collect the cells you are studying	
Prepare	and place them on the slide. Add a	
the slide	drop of stain and cover with a cover	
	slip.	
*CP1 -	Choose between the 4x, 10x and	
Select lens	40x objective lenses.	
*CP1 -	Place slide on microscope stage,	
Place slide	adjust the coarse focus until the	
in	lens is just touching the slide.	
microscope		
*CP1 -	Looking through the eyepiece,	
Rough	slowly adjust the coarse focus until	
focus	you see a rough image.	

*CP1 – Fine	Looking through the eyepiece,
focus	slowly adjust the fine focus until
	you see a sharply focussed image.
*CP1 -	Draw what you see, label any cell
Record the	parts you can recognise and repeat
image	with different objective lenses.
*CP1 -	As you increase the magnification of
Results	the objective lens, the cells appear
	larger and more detailed.

larger and more detailed.		
	5. Specialised cells	
**Small	Job: To absorb small food molecules	
intestine	produced during digestion.	
cell	Adaptations: Tiny folds called	
	microvilli that increase their surface	
	area.	
**Sperm	Job: Fertilise an egg and deliver male	
cell	DNA.	
	Adaptations: A tail to swim,	
	mitochondria to give energy for	
	swimming, an acrosome to break	
	through the egg's jelly coat, haploid	
	nucleus with only half the total DNA.	
**Egg cell	Job: To be fertilised by a sperm and	
	then develop into an embryo.	
	Adaptations: Jelly coat to protect the	
	cell, many mitochondria and	
	nutrients to provide energy for	
	growth, haploid nucleus with only	
	half the total DNA.	
**Ciliated	Job: To clear mucus out of your lungs	
epithelial	(and other internal surfaces).	
cell	Adaptations: Small hairs on the	
	surface – called cilia – which wave to	
	sweep mucus along.	


6. Bacterial cells		
*Parts of a All bacteria: Cell membrane,		
bacterial cell	cell wall, cytoplasm,	
	ribosomes, chromosomal DNA,	
	plasmid DNA	
	Some bacteria: flagellum.	
**Chromosomal	Large piece of DNA containing	
DNA	most genes.	

**Plasmid DNA	Small loops of DNA containing
	a few genes.
**Flagellum	A tail used for movement.
**Eukaryotic	Cells with a nucleus.
cells	
**Prokaryotic	Cells without a nucleus.
cells	
***Standard	A way of writing numbers in
form	terms of powers of ten. E.g.
	0.015 = 1.5 x 10 ⁻²
	0.000458 = 4.56 x 10 ⁻¹
	4
	The index of ten (the 'minus'
	number) tell you which
	decimal point to start on.
< <	

Plasmid DNA		Cell wall	Cell membrane
Chromosomal		Flagellum (not always present)	Cell m
	7 Digestive e	nzvmes	

7. Digestive enzymes	
*Digestion	Breaking large food molecules
	down into ones small enough to
	absorbed by the small intestine.
*Catalyst	A substance that speeds up a
	chemical reaction without being
	used up.
*Enzyme	A protein that works as a catalyst
	to speed up the reactions in our
	cells.
*Digestive	Enzymes that break large food
enzymes	molecules down into smaller ones.
**Amylase	Where found: saliva, small
	intestine
	What it does: breaks down starch
	into simple sugars such as maltose
**Lipase	Where found: small intestine
	What it does: breaks down fats
	into fatty acids and glycerol
**Protease	Where found: stomach (pepsin),
	small intestine (trypsin)
	What it does: breaks down
	proteins into amino acids

	8. How enzymes work	
*Substrate	The chemical(s) that an enzyme	
	works on.	
*Active site	An area of an enzyme with the	
	same shape as the substrate.	
**Lock and	The substrate moves into the	
key	active site and reacts to form the	
mechanism	products. The products leave the	
	active site so another substrate	
	can then enter and so on.	
**Specificity	Each enzyme can only work on one	
	substrate because the shape of the	
	active site has to match.	
*Denature	When the shape of the active site	
	changes shape so the enzyme	
	stops working.	

9. Factor affecting enzymes	
*Optimum	The temperature when an
temperature	enzyme works fastest (about 37°
	for human enzymes).
**Changing	Increasing to optimum: rate
the	increases because particles move
temperature	faster
	Increasing past optimum: rate
	decreases as enzyme denatures
*Optimum	The pH when enzymes work
рН	fastest (around pH 6-8 for most
	human enzymes)
**Changing	Rate decreases as you move
pН	away from the optimum because
	the enzyme denatures.
**Increasing	At first the rate increases, but
substrate	then it levels out as the enzyme
concentration	is working as fast as possible.

10. Core practical – enzymes and pH (CP2)

*CP2 – key	How does the rate that amylase
question	works change as you change the
question	0 ,
	pH?
*CP2 -	Place starch solution, amylase
Prepare your	solution and pH 7 buffer into
reactants	separate test tubes and warm
	them in a water bath at 40°C
*CP2 -	Place a few drops of iodine
Prepare your	solution into each well of a
dropping tile	spotting tile.
*CP2 - Start	Mix reactants together, start the
the reaction	stop watch and keep the mixture
	warm in the water bath.
*CP2 – Test	Remove a small amount of
for starch	mixture and place in a well on
	the spotting tile.
*CP2 -	Repeat the test until the mixture
Record your	does not go black (no starch).
results	Record the time.
*CP2 – Vary	Repeat with different pH buffers
the pH	from pH 3 to pH 10
*CP2 -	The amylase works fastest
Results	around pH 7 and more slowly at
	pH high or lower than this.

13	L. Cell transport
*Concentration	The number of particles in a
	given volume (the strength of
	a solution).
**Concentration	The difference in
gradient	concentration between two
	neighbouring areas.
*Diffusion	The movement of particles
	from high to low
	concentration (down a
	concentration gradient).
*Diffusion	Lungs: oxygen into blood,
examples	carbon dioxide out of blood
	Leaf: carbon dioxide into leaf,
	oxygen out of leaf.
**Partially	A membrane that allows some
permeable	molecules but not others to
membrane	pass through it (like a cell
	membrane).

The movement of water
across a partially permeable
membrane from high
water/low solute conc to low
water/high solute conc.
Water into plant roots, water
in/out of any cells.
Using energy to move
substances from low to high
concentration (up a
concentration gradient).
Minerals being absorbed into
plant roots.

12. Core prac	tical – osmosis in potatoes (CP3)
*CP3 -	Cut six similar pieces of potato,
Prepare	blot them dry and weigh them.
potatoes	
*CP3 – Run	Place each potato piece in a test
the	tube with sucrose (sugar)
experiment	solutions with concentrations
	from 0% to 50%
*CP3 -	Blot each potato piece dry and
Record	re-weigh it.
results	
*CP3 -	% change = (final value – starting
Calculate	value) / starting value x 100
percentage	
mass change	
*CP3 -	Potato in weaker sucrose
Results	solutions gain mass because
	water enters potatoes by
	osmosis, those in stronger
	solutions lose mass as water
	leaves by osmosis.

B2: Cells and Control

	1. Mitosis		
Call avala	The life of a cell comprising of		
Cell cycle	interphase and mitosis.		
Intomboo	Preparation for mitosis in which		
	extra cell parts are made and DNA		
Interphase	chromosomes are replicated		
	(copied).		
Mitosis	When one cell divides into two		
IVIILUSIS	genetically identical daughter cells.		
	The membrane of the nucleus		
Prophase	breaks down and spindle fibres start		
	to form.		
Metaphase	Spindle fibres fully form and		
	chromosomes line up across the		
	m iddle of the cell.		
	Chromosome copies get pulled		
Anaphase	a part and move to each end of the		
	cell.		
	A new membrane forms around		
Telophase	each set of chromosomes to form		
	two nuclei.		
Cytokinesis	The two new cells fully separate.		
	The type of cells produced by		
Diploid	mitosis which have two sets of		
	chromosomes (23 pairs in humans).		
	Type of reproduction with just one		
Asexual	parent producing a clone of itself		
	through mitosis.		
	When mitosis happens out of		
Cancer	control forming large lumps of cells		
	called tumours.		

2. Animal Growth	
Growth	Increase in size due to increased numbers of cells.
Percentile	A measure of the growth of a child that compares them to other children of the same age.
90 th percentile	90% of children will have a mass below this percentile on a percentile growth curve.

50 th percentile	Average for height/mass for the
50 percentile	age.
	The process by which an
Differentiation	unspecialised cell becomes
	specialised.
Specialised	A cell with special features
cell	designed for a specific job.
	Specialised cell with no nucleus
Red blood cell	(more room for haemoglobin)
kea biooa ceii	and a large surface area
	(allowing for quicker diffusion).
	Specialised cell with large fat
Fat cell	droplets in the cytoplasm which
	is stored until energy is needed.
	Specialised cell with contractile
Muscle Cell	proteins than can shorten the
	cell.

	3. Plant Growth
Plant growth	Cell division creates more cells,
	elongation makes these cells get
	bigger.
	Areas in the tips of roots and
Meristems	shoots where cell division and
	differentiation happens.
Xylem	Specialised cells which form a
	hollow tube of dead cells to
	allow water to pass through.
	Specialised cell with a large
Root hair cell	surface area to allow roots to
ROOT Half Cell	take in more water / mineral
	ions.
Percentage	% change = (final value – starting
change	value) / starting value x 100

4. Stem Cells	
Stem cell	An unspecialised cell that can undergo cell division and differentiation to form specialised cells.
Embryonic stem cell	A stem cell that can become any
Adult stem cell	A stem cell that can only become limited types of cell. Found in animals after birth.

Stem cells in medicine	It is hoped they can be used to replace damaged cells in diseases like type 1 diabetes or leukaemia, or to grow new organs for transplant.
Problems with stem cells	They may potentially cause cancer, stem cells may be rejected if used in other people than where they were taken from.

	taken nom
Ē	5. The Nervous System
Nervous system	Organ system made up of the CNS and nerves. Allows all parts of the body to work together to gather information, make decisions and control responses.
CNS	Central nervous system- The brain and spinal cord – controls the body.
Stimulus	Anything your body is sensitive to (e.g. changes inside or outside the body).
Sense	Contain receptor cells that detect
organ	stimuli (e.g. eyes, ears, skin).
Neurone	A nerve cell
Impulse	Electrical message carried by a neuron.
Response	The action that the nervous system makes happen.
Sensory	Nerve cell that carries impulses from
Neurone	sense organs to the CNS.
Cell body	The central part of a nerve cell containing its nucleus.
Dendron and axon	The long parts of a nerve cell carrying impulses towards the cell body (dendron) and away from it (axon)
Dendrites	Branches at the beginning of a dendron that connect to receptor cells or another neuron.
Axon terminals	Branches at the end of an axon that connect to a muscle or another neuron.
Myelin sheath	A fatty layer around the axon and dendron that insulates it to prevent the impulse from losing energy and speeds the impulse up.

Voluntary Response Stimulus detected by receptor → impulse sent along sensory neuror → brain makes decision → impulse sent along motor neurone → effector carries out response.	ne e
--	---------

6. Neu	rotransmission Speeds
Neuro-	The travelling of an impulse
transmission	along a neuron and into another.
Effector	The body part that produces the
Effector	response, often a muscle.
	Small gap between two neurons
Synapse	where the axon terminals of one
	meet the dendrites of another.
	Chemicals released by axon
Neuro-	terminals that diffuse across the
transmitter	synapse to trigger a new impulse
	the dendrite of another neuron.
Polov nouron	Nerve cell in the CNS that links
Relay neuron	sensory and motor neurones.
	Nerve cell that carries impulses
Motor neuron	from the CNS to effectors.
iviolor neuron	Dendrites join onto cell body,
	long axon.
	Automatic responses that
Reflexes	happen very quickly without
Reflexes	conscious thought to keep the
	body safe.
	Neurone pathway that bypasses
	the brain.
Reflex arc	Stimulus \rightarrow receptor \rightarrow sensory
	neurone \rightarrow relay neurone \rightarrow
	motor neurone → effector

Lesson	Memorised?
1. Mitosis	
2. Animal Growth	
3. Plant Growth	
4. Stem Cells	
5. The Nervous System	
6. Neurotransmission	
Speeds	

B3: Genetics

1. Meiosis	
Gametes	Sex cells- egg and sperm
Fertilisation	Sperm cell fuses with egg cell
reitilisation	and nuclei combine.
Zygote	A fertilised egg cell
	Length of DNA coding for a
Gene	protein. Controls your
	characteristics
Genome	All the DNA and genes in an
denome	organism
	A cell that has 2 sets of
Diploid	chromosomes- 23 pairs of
	chromosomes in humans
	A cell with 1 set of
Haploid	chromosomes- 23 single
	chromosomes in humans
Meiosis	Cell division that makes gametes
Stages of	DNA replicates, cell divides into 2
Meiosis	diploid cells, these divide into 4
ivieiosis	haploid daughters.
Meiosis	One division by meiosis creates
Daughter	4, haploid, non-identical
Cells	daughter cells.

2. DNA		
Chromosome	Large DNA molecule made into a small package by tightly coiling DNA around a protein.	
	Two strands, double helix, complementary base pairs, sugar-phosphate backbone	
DNA Structure	phosphate hydrogen sugar bond bond sugar bond complementary base pairs join the two strands together	

DNA Bases	Adenine, A; thymine, T;
DIVA Bases	cytosine, C; guanine, G
Complementary	A pairs with T
Base Pairs	C pairs with G
	Weak force holding the two
Hydrogen	strands of DNA together.
Bonds	C and G form 3 bonds
	A and T form 2 bonds
	Uses small differences in DNA
DNA Analysis	to determine family
DNA Analysis	relationships or link people to
	crimes.

3. DNA Extraction Method	
	Salt makes DNA clump
Mix water, salt and	together, detergent breaks
detergent	down cell membranes to
	release DNA.
Mash fruit/veg and	Mash to increase the
add solution	surface area.
Leave in water bath	Heat makes it react
at 60°c	quicker.
Filter the mixture	Removes unwanted lumps.
and collect filtrate	inemoves unwanted fumps.
Measure out 10cm ³	
of filtrate and add	Protease breaks down
two drops of	proteins around the DNA
protease	
Gently add ice cold	DNA is insoluble in ethanol
ethanol	so precipitates.
Leave for several	So a white DNA layer
minutes	forms.

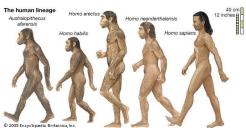
4. Alleles		
	Different version of the same	
Allele	gene. We have two alleles of	
	each gene.	
Homozygous	Two copies of the same allele	
Heterozygous	Two different copies of an allele	
Dominant	One copy needed for	
Allele	characteristic to show. Written as	
Allele	a capital.	
Recessive	Two copies for the characteristic	
Allele	to show. Written as lowercase.	
Camatuma	The combination of alleles in an	
Genotype	organism.	

Phenotype	The characteristics produced by
	the alleles.
	Shows the likelihood of offspring
	produced by parents with certain
	genotypes.
Genetic Diagram	alleles R R R Gifferent possible combinations Genotype—— RR RR RR Rr Pr rr

5. Inheritance	
Sex	Female: XX
Chromosomes	Males: XY
Punnet Squares	Uses the genotypes of male and female gametes to predict the genotypes of the offspring.
Inheriting Sex	possible gametes X - Y - Female X XX XY XY
Cystic Fibrosis	Illness that affects the lungs and digestive system caused by inheriting two copies of a faulty recessive allele.
Family Pedigree Chart	Chart showing how genotypes are inherited down through a family. Richard Dave Richard and Diane have be children have be chi

6. Gene Mutation	
Mutation	A change to the bases in a
Widtation	gene.
	Sometimes harmless, can be
Mutations	harmful, very rarely beneficial

Cause of Mutations	Mistakes copying DNA during cell division, DNA damage from chemicals or radiation
Human Genome Project	(HGP) Project involving many scientists from many countries to find the order of bases in human DNA. Allows us to tailor drugs to genes to design better drugs.


7. Variation		
	Natural differences between	
Variation	members of a species that affect the chance of survival.	
Genetic	Variation caused by genes.	
Variation Environmental	Caused by interaction with the	
Variation	surroundings.	
Acquired	Characteristics caused only by	
Characteristics	the environment.	
Continuous	Data can be any value in a range	
Variation	(height, weight, etc.)	
Discontinuous	Data can be a limited set of	
Variation	values (blood group, eye colour, etc.)	
	Bell-shaped curve formed by	
	continuous data with more in	
	the middle and fewer either	
	side.	
Normal Distribution	mean/median/mode	

Lesson	Memorised?
1. Meiosis	
2. DNA	
3. DNA Extraction	
4. Alleles	
5. Inheritance	
6. Gene Mutation	
7. Variation	

B4: Evolution

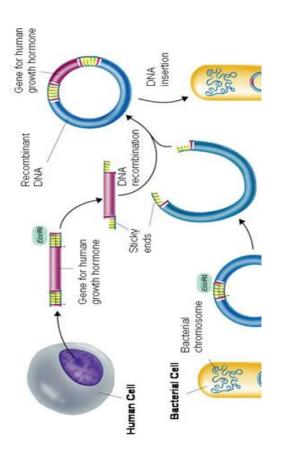
- 13. Human evolution
- 14. The theory of evolution
- 15. Resistance
- 16. Classification
- 17. How to modify species
- 18. Problems with modifying species
- 19. Genetic engineering of bacteria (HT)

1. Human evolution		
*Binomial naming	Two-part names, first part =	
	genus, second part =	
	species. Written in italics.	
*Homo sapiens	Our species. Evolved about	
	200,000 years ago. Skull	
	volume 1450 cm ^{3.}	
**Ardipithecus	Aka 'Ardi'. 4.4 million years	
ramidus	ago, walked upright and	
	climbed trees, 350 cm ³ skull	
	volume.	
**Australopithecus	Aka Lucy. 3.2 million years	
afarensis	ago, walked upright, skull	
	volume 400 cm ³ .	
**Homo habilis	2.4-1.4 million years ago,	
	walked upright, skull	
	volume 5-600 cm ³ .	
*8Homo erectus	1.8 to 0.5 million years ago,	
	walked upright, skull	
	volume 850 cm³.	
*Fossil evidence	Many fossils have been	
	found showing a gradual	
	transition from 'ape-like' to	
	'human-like'.	
**Stone tool	Older stone tools are	
evidence	simpler requiring less	
	intelligence to make,	
	younger stone tools are	
	more complex requiring	
	more intelligence to make.	
**The Leakeys	Mary and Louis discovered	
	Homo habilis, their son	
	Richard worked on <i>Homo</i>	
	erectus.	

© 2005 Encyclopædia Britannica, Inc.		
2. The	theory of evolution	
*Charles Darwin	Develop the theory of	
	evolution.	
*Evolution	The way that species develop	
	by gradual changes over many	
	generations due to natural	
	selection.	
*Variation	Natural differences between	
	members of a species that	
	affect the chance of survival.	
**Mutations and	Changes in DNA cause	
evolution	variation.	
**Environmental	Change to factors such as	
change	food supply, climate or	
	predators.	
*Competition	The fight to eat, survive and	
	breed.	
*Natural	Organisms with the best	
selection	genes and characteristics are	
	more likely to survive, breed	
	and pass on their better	
	genes.	
*Inheritance	Gaining your genes from your	
	parents.	
**Well adapted	An organism has features that	
	make it better able to survive	
	and breed.	
**Evolution and	An individual does not evolve	
the individual	during its lifetime,	
	populations of organisms	
	evolve over many lifetimes.	
**Human	Humans did not evolve from	
evolution	chimpanzees, we both	
	evolved from a common	
	ancestor.	
2 Paristance		
3. Resistance		

*Resistance	The natural ability of some	
Resistance	members of a species to survive	
	•	
	poisons that would kill the other members.	
*F l !		
*Evolution	Evolution of organisms that stops	
of	them from being affected by	
resistance	poisons.	
**Rats and	Warfarin is used to kill rats. Some	
warfarin	rats were naturally resistant,	
resistance	survived the warfarin, bred and	
	passed on their resistance genes.	
**Antibiotic	Antibiotics are used to kill bacteria.	
resistance	Some bacteria were naturally	
	resistant, survived the antibiotics,	
	bred and passed on their	
	resistance genes.	
**The	Antibiotic resistance means that	
problems of	many infections that used to be	
resistance	simple to treat may become too	
	resistant to treat, causing major	
	health problems.	
4. Classification		
*Carl	Developed the modern system of	
Linnaarra	ala a sifi a a tia a	

	4. Classification
	1
*Carl	Developed the modern system of
Linnaeus	classification.
*How to	Based on similarities, group things
classify	into smaller and smaller groups
	with fewer and fewer similarities.
*Problems	Sometimes organisms that look
with	similar are not actually related.
classification	
*Kingdoms	Old idea, classifying living things
_	into five kingdoms (including
	plants, animals and fungi)
**Carl	Developed the modern system of
Woese	classification with three domains.
*Domains	Modern idea of classifying living
	things into three main groups:
	bacteria, Archae, Eukarya.
**Bacteria	Single-celled organisms with no
	nucleus and no unused sections of
	DNA.
**Archae	Single-celled organisms with no
	nucleus but with unused sections
	of DNA.


**Eukarya	(Often) multi-cellular organisms
	with a nucleus and unused
	sections of DNA. Includes plants,
	animals, fungi and protists.

	. How to modify species
*Artificial	When humans (normally farmers)
selection	select the animals/plants to breed
	with the best characteristics.
*Selective	Developing new breeds of plants or
breeding	animals with better characteristics
	by selective breeding over many
	generations.
**Selective	Choose parents with the best
breeding in	characteristics, breed them
practice	together, choose from their
	offspring with the best
	characteristics, breed them
	together, repeat for many
	generations.
*Genetic	Changing the characteristics of
engineering	organisms by giving them genes
	from another organism.
*GMO	Genetically modified organism: an
	organism that has had its genes
	changed.
**Bt corn	Corn containing a gene from
	Bacillus thuringiensis that makes it
	produce a substance called Bt
	which kills insects.
*Medical	GM bacteria are used to make
GMOs	insulin (for diabetes) and some
	antibiotics.
**Pros and	Quicker than selective breeding
cons of GM	and can introduce more different
	characteristics but is expensive.

6. Problems with modifying species	
Over-	Farmers focussing too much on
selection	breeding for one characteristic (such as chicken breast size), don't spot problems with other characteristics
	as chicken breast size), don't spot
	problems with other characteristics
	(such as weak leg bones) causing
	suffering.

Gene	The concern GMOs could breed with
leakage	wild relatives, enabling the modified
	genes to escape into the wild. This
	could have ecological impacts.
Resistance	The concern that in areas growing Bt
	corn, insects simply evolve
	resistance to Bt.
Insulin	Insulin made by GM bacteria is not
	identical to human insulin, and some
	people suffer bad reactions to it.

D	
7. Genetic er	ngineering of bacteria (HT)
**Plasmid DNA	Small loops of DNA containing
	a few genes.
***Restriction	Enzymes that cut DNA, leaving
enzyme	sticky ends at each end of the
	piece of DNA.
***Sticky end	A short sequence of unpaired
	bases at the end of a piece of
	DNA.
***Ligase	An enzyme that joins two
	pieces of DNA by matching up
	the bases on their sticky ends.
***Recombinant	DNA produced by combining
DNA	together two of more pieces
	of DNA.
***How to	Cut out gene using restriction
genetically	enzymes, remove plasmids
engineer	from bacteria and open with
bacteria	restriction enzymes, use ligase
	to join gene and plasmid
	together, return plasmids to
	bacteria.

B5: Health, Disease & the Development of Medicines

1. Health and Disease	
Health	A state of complete physical, social and mental wellbeing.
Physical Health	Being free from disease, active, fit, sleeping well and no substance abuse.
Mental Health	How you feel about yourself.
Social Health	Having healthy relationships and how your surroundings affect you.
Disease	An illness that prevents the body from functioning normally.
Communicable Disease	Diseases caused by pathogens, can be spread from one person to another.
Non- Communicable Disease	Diseases caused by genes or lifestyle. Cannot be spread from one person to another.
Correlated Diseases	Getting one disease increases your chance of another due to diseases weakening organ systems, damaged immune system, and weaker defences.
Pathogen	A microorganisms that causes disease.

2. Non-Communicable Diseases	
Genetic	Diseases caused by inheriting
Disorders	faulty genes from parents.
Malnutrition	Getting too little or too much of
	a particular nutrient.
Deficiency	Disease caused by the lack of a
Disease	certain nutrient.
	Lack of iron. Causes fewer and
Anaemia	smaller red blood cells and low
	energy.
Kwashiorkor	Lack of protein. Swollen belly,
	small muscles, stunted growth.

Rickets	Lack of calcium or vitamin D.
	Causes weak bones leading to
	bowed legs.
	Lack of vitamin C. Swollen
Scurvy	bleeding gums, muscle and joint
	pain, lack of energy.
Device	Chemical that changes the way
Drug	the body works.
	Fatal liver disease caused by
Cirrhosis	drinking too much alcohol over
	a long period of time.
Impact of Liver Disease / Alcohol	Fifth largest causes of death in
	the UK, increasing 450% in the
	last 30 years. Costs £500 million
	each year to treat.

,		
3. Cai	rdiovascular Disease	
Obesity	A condition in which someone is overweight for their height and large amounts of fat builds up around major organs.	
Cardiovascular	Disease in which the heart or	
Disease	circulatory system is affected.	
Heart Attack	When the heart stops pumping due to a lack of oxygen reaching it.	
вмі	Body mass Index $BMI = \frac{\text{(weight in kilograms)}}{\text{height in meters}^2}$ $BMI \text{ over 30 is obese}$	
Waist:hip Ratio	Waist measurement ÷ hip measurement Better method of measuring abdominal fat which is linked with cardiovascular disease.	
Smoking	Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and increase risk of blood clots.	
Stent	A small mesh tube that is inserted into a narrowed artery and opened up to widen it.	
Treating Heart	More exercise and a better diet	
Disease with	can treat cardiovascular disease	
Lifestyle	and giving up smoking.	

4. Pathogens	
Types of Pathogen	Bacteria, virus, protist, fungi.
Tuberculosis	Bacteria. Damages lungs causing bloody cough, fever and weight loss.
Cholera	Bacteria. Sever life-threatening diarrhoea.
Chalara Ash Dieback	Fungi. Kills the leaves of ash trees, killing the tree.
Malaria	Protist. Multiplies inside red blood cells and liver cells and causes fever and weakness.
Haemorrhagic Fever	Virus, e.g. Ebola. Liver and kidney damage, internal bleeding and fever.
ніV	Human immunodeficiency virus attacks white blood cells, causing AIDS.
AIDS	Acquired Immunodeficiency Syndrome. Weakened immune system making simple infections deadly. Caused by HIV.
Hidden Pathogens	Many types of bacteria live in our bodies. Some are essential for health, others may not affect us most of the time. <i>Helicobacter pylori</i> can cause stomach ulcers some of the time.

5. Spreading Pathogens	
Airborne	Spread through the air. Colds/flus/TB by infected droplets in saliva being passed into the air
	by coughing or sneezing. Chalara ash dieback by fungal spores carried by wind.
Waterborne	Spread through contaminated water. Cholera
Oral Route	Pathogen enters body through the mouth by eating/drinking.
Vectors	Organisms that carry a pathogen from one person to the next. Mosquitos are vectors for malaria.

Bodily Fluids	Spreading through contact with bodily fluids such as blood or semen. HIV
Hygiene	Keeping things clean to remove or kill pathogens.
Epidemic	When many people over a large area are infected with the same pathogen at the same time.

6. Physical & Chemical Barriers	
Chemical Defences	Kill pathogens or make them inactive before they can infect us.
Lysozyme	Enzyme found in mucus, tears and sweat that kills some bacteria.
Hydrochloric Acid	Found in the stomach, reducing pH to 2, killing most pathogens.
Physical Barrier	Block or trap pathogens so they cannot enter the body.
Mucus	Sticky secretion that traps pathogens- found in most body openings (nose, mouth, etc.).
Ciliated Cells	Specialised cells with hair like cells that sweep mucus out of the body.
Skin	Blocks pathogens from entering the body.
STIs	Sexually transmitted infections – pathogens spread via sexual activity.
Preventing STIs	Use barrier contraception (such as condoms) to prevent mixing of fluids.
Screening	Large scale testing of people to check if they have an STI so they can be treated. This helps to reduce the spread of STIs.

7. The Immune System		
Immune	Destroys pathogens that	
System	manage to infect us.	
Antigens	Chemical markers on the	
	surface of pathogens that	
	identify them as a pathogen.	
	Unique to each pathogen.	

	White blood cells that produce
Lymphocyte	antibodies. Each lymphocyte
	produces a different antibody.
	Molecules with a specific shape
	that can attach to a specific
Antibodies	antigen on a pathogen and kill
	it.
	When an antigen sticks to an
Activated	antibody, it activates the
Lymphocyte	lymphocyte causing it to make
Lymphocyte	many copies of itself that make
	the same antibodies.
	Lymphocytes left over after an
Memory	infection that retain the ability
Lymphocyte	to fight the pathogen.
	The body has memory
_	lymphocytes to fight the
Immune	pathogen if it returns so it can't
	be harmed by it.
Primary Resno	nse vs. Secondary Response
, 1	ise to secondary nesponse
plood	
cm³ of	secondary response
Per cm³ of blood	primary
0 10	response 20 100 110
first infection with pathogen	Time (days) second infection with the same pathogen
\/:	A weakened or inactive version
Vaccine	of a pathogen.
	Vaccines are harmless versions
	of pathogen that still have the
How vaccines	antibodies on them, so the
work	immune response is triggered
	without any risk of disease.
How the Immu	ne System Attacks Pathogens
1 Pathogens have antig	gens These lymphocytes
on their surface that are unique to them.	are not activated.

	7 / / /
	THE THE PARTY
2	A lymphocyte with an antibody
th	A lymphocyte with an antibody at perfectly fits the antigen is titvated.
th	at perfectly fits the antigen is
th	at perfectly fits the antigen is
th	at perfectly fits the antigen is
4 Some of the lymphoc	at perfectly fits the antigen is citivated.
4 Some of the lymphoc large amounts of antibo antibodies stick to the s.	ytes secrete dides. The intigen is 3 This lymphocyte
4 Some of the lymphoc large amounts of antibe antibodies stick to the c destroy the pathogen. C remain in the blood as 1	ytes secrete dides. The nitigens and ther lymphocytes memory divides over and over
4 Some of the lymphoc large amounts of antibe antibodies stick to the destroy the pathogen. C remain in the blood as lymphocytes, ready to immediately if the same	ytes secrete dides. The nitigens and ther hymphocytes memory despond of identical hymphocyte divides over and over again to produce clones of identical hymphocyte.
4 Some of the lymphoc large amounts of antibodies stick to the edestroy the pathogen. Cremain in the blood as lymphocytes, ready to 1	ytes secrete dides. The nitigens and ther hymphocytes memory despond of identical hymphocyte divides over and over again to produce clones of identical hymphocyte.

8. Antibiotics	
Antibiotics	Substances that kill bacteria or inhibit their processes without harming human cells.
Penicillin	The first antibiotic discovered by Alexander Fleming. Produced by a mould.
Resistance	Widespread use of antibiotics has led to resistance, meaning many antibiotics don't work as well as they once did.
Drug Development	Developing new medicines involves many stages that take a lot time and money.
Discovery Phase	Developing new chemicals that might work as medicines.
Pre-Clinical Phase	Testing on cells grown in the lab, or on animals, to see if the chemical has any useful effect.
Small Clinical Trial	Testing on a few healthy people to check for safety.
Large Clinical Trial	Testing on many patients to discover how effective the drug is and determine the dose.
Side Effects	Unwanted effects of the medication that can be quite harmful.
Dose	The correct amount of the medicine that needs to be given to the patient.

Lesson	Memorised?
1. Health and Disease	
2. Non-Communicable Diseases	
3. Cardiovascular Disease	
4. Pathogens	
5. Spreading Pathogens	
6. Physical & Chemical Barriers	
7. The Immune System	
8. Antibiotics	

C3 & 4: Atoms and the periodic table

- 20. Structure of atoms
- 21. Detailed structure of atoms
- 22. Isotopes
- 23. Mendeleev's periodic table
- 24. The modern periodic table
- 25. Electron configuration

1. Structure of atoms	
*Particle	The tiny pieces that all matter is
	made from.
*Atom	The smallest independent particle.
	Everything is made of atoms.
**Size of	About 1 x 10 ⁻¹⁰ m in diameter.
atoms	
**Dalton's	- Tiny hard spheres
model of	- Can't be broken down
atoms	- Can't be created or destroyed
	- Atoms of an element are identical
	- Different elements have different
	atoms
*Subatomic	Smaller particles that atoms are
particles	made from.
*Proton	Mass = 1
	Charge = +1
	Location = nucleus
*Neutron	Mass = 1
	Charge = 0
	Location = nucleus
*Electron	Mass = 1/1835 (negligible)
	Charge = -1
	Location = shells orbiting nucleus
*Nucleus	Central part of an atom, 100,000
	times smaller than the overall atom

2. Detailed structure of atoms	
**Alpha	Small positively charged particle
particle	made of two protons and two
	neutrons.
**Scattering	When particles bounce back or
	change direction.
**Rutherford's	Fired alpha particles at gold leaf,
experiment	used a phosphor-coated screen
	to track where they went.

**Rutherford's	Most alpha particles went						
results	through, some scattered						
	(changed direction).						
**Rutherford's	Scattered particles hit a solid						
explanation	nucleus. Most did not hit it,						
	therefore nucleus is small						
*Atomic	The bottom number on the						
number	periodic table, gives the number						
	of protons and electrons.						
*Atomic mass	The top number on the periodic						
	table, gives the total protons						
	and neutrons together.						
*Number of	The atomic number.						
protons							
*Number of	The atomic number.						
electrons							
*Number of	Atomic mass minus atomic						
neutrons	number.						
*Number of	Equal, because each negative						
protons and	electron is attracted to a						
electrons	positive proton in the nucleus.						

	3. Isotopes			
**Isotopes	Atoms with the same number of			
	protons but different number of			
	neutrons.			
**Describing	Mass after the name (e.g. boron-			
isotopes	10) or superscript mass before			
	the symbol (10B).			
*Nuclear	Large unstable atoms break into			
fission	two smaller stable ones.			
**Uses of	Nuclear power, nuclear			
fission	weapons.			
**Relative	The weighted average of the			
atomic mass,	masses of all of the isotopes of			
A _r	an element.			
***Isotopic	The percentage of an element			
abundance	that is made of a particular			
	isotope.			
***Calculating	- Multiply each mass by the			
A _r	decimal %			
	- Add these up			
	Note: (decimal % = %/100)			

4. Mendeleev's periodic table					
	Russian chemist, developed the				
Mendeleev	periodic table.				

periodic table elements switched according to their properties. *Chemical Includes reaction with acid and formula of oxide. *Physical Includes melting point and density. **Gaps in Mendeleev left gaps where no known element fitted and predicted these would be filled with newly discovered elements. **Eka- An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	*Mendeleev's	Ordered by increasing A _r , some
*Chemical formula of oxide. *Physical Includes melting point and density. **Gaps in Mendeleev's periodic table with newly discovered elements. **Eka-aluminium Includes meaction with acid and promula of oxide. Includes meating point and density. **Gaps in Mendeleev left gaps where no known element fitted and predicted these would be filled with newly discovered elements. **Eka-aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when		_
roperties formula of oxide. *Physical Includes melting point and density. **Gaps in Mendeleev left gaps where no known element fitted and predicted these would be filled with newly discovered elements. **Eka-aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when		their properties.
**Physical properties density. **Gaps in Mendeleev's known element fitted and predicted these would be filled with newly discovered elements. **Eka-aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	*Chemical	Includes reaction with acid and
properties density. **Gaps in Mendeleev left gaps where no known element fitted and predicted these would be filled with newly discovered elements. **Eka-aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	properties	formula of oxide.
**Gaps in Mendeleev left gaps where no known element fitted and predicted these would be filled with newly discovered elements. **Eka- aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	*Physical	Includes melting point and
Mendeleev's periodic table predicted these would be filled with newly discovered elements. **Eka- aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	properties	density.
**Eka- aluminium predicted these would be filled with newly discovered elements. An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	**Gaps in	Mendeleev left gaps where no
**Eka- aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	Mendeleev's	known element fitted and
**Eka- aluminium An element that Mendeleev thought would fill a gap. He predicted its properties, which matched gallium when	periodic table	predicted these would be filled
aluminium thought would fill a gap. He predicted its properties, which matched gallium when		with newly discovered elements.
predicted its properties, which matched gallium when	**Eka-	An element that Mendeleev
matched gallium when	aluminium	thought would fill a gap. He
		predicted its properties, which
l		matched gallium when
discovered.		discovered.

5. T	he modern periodic table
*Noble	Gases that do not react: He, Ne,
gases	Ar, Kr.
**Moseley's	Fired electrons at samples of
experiment	elements and measured X-rays
	produced.
**Moseley's	Energy of x-rays produced
results	proportional to the positive charge
	of the element.
**Conc.	The atomic number must be the
from	number of protons in the atoms.
Moseley's	
work	

1	2			Kev			1 H rokum 1					3	4	5	6	7	4 He Notes
7 Li 3	Be system 4		ato	re stomic omic sym (proton) r	bol							11 B tem 5	12 C	14 N Wages 7	16 0	19 F 15 mm	20 Ne 10
23 Na 11	24 Mg											27 Al merce 13	28 Si 14	31 P 715	32 S shr 16	33.5 CI 17	40 Ar 18
39 K 19	40 Ca cross 20	45 Sc sorder 21	48 Ti Becom 22	51 V eration 23	52 Cr storiun 24	56 Mn rangama 25	56 Fe 25	50 Co cost 27	56 Ni 100 28	63.5 Cu 29	65 Zn 20 30	70 Ga prior 31	73 Ge presit-1	75 As 33	79 Se strice 34	80 Br 35	84 Kr 50 36
85 Rb ration 37	88 9r 38	89 Y 7000	91 Zr 40	93 Nb ston 41	96 Me 42	[98] Te screen 43	101 Ru 44	103 Rh 45	106 Pd 108 46	108 Ag 47	112 Od 48	115 In 1601 45	119 Sn 50	122 Sb 51	128 Te 52	127 1 odes 53	131 Xe 54
133 Os 56	137 Ba sto 56	139 La* Interve 57	178 Hf white 72	181 Ta train 73	154 W 1.786 74	186 Re 1075	100 Os 76	192 ly 198-1 77	105 Pt return 78	107 Au 500 79	201 Hg 80	204 TI estro 81	207 Pb last 82	209 Bi timus 83	Po Po sterior 84	[210] At ### 85	[222] Ra wor 86
[223] Fr 87	[226] Ra 88	[227] Ac* 89	[261] Rf 104	[262] Db 105	[266] Sg 106	[264] Bh	[277] Hs 108	[268] Mr 109	[271] Ds 110	[272] Rg 111	Borrens with atomic numbers 112-116 have been reported outnot fully authoritisated						

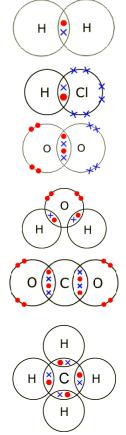
	Elements (like Ar and K) that are
reversals	not in order of increasing mass.
**Explaining	It means elements should be order
pair	elements by increasing atomic
reversals	number instead.

6.	Electron configuration
*Shells	Electrons orbit atoms in shells.
*First shell	Holds up to two electrons.
*Second	Holds up to eight electrons.
shell	
*Third shell	Holds up to eight electrons.
*Number of	Given by the atomic number.
electrons	
*Filling shells	Fill shells from the first shell out.
	Move up a shell when current one
	is full.
*Electron	The number of electrons in each
configuration	shell (e.g. Al is 2.8.3).
*Outer shell	The last shell with any electrons
	in it.
**Groups	Columns in the periodic table, tell
	you the number of electrons in
	the outer shell.
**Periods	Rows in the periodic table, tell
	you the number of electron
	shells.

C5-7: Bonding

- 26. Ionic bonding
- 27. Ionic compounds
- 28. Properties of ionic compounds
- 29. Covalent bonding
- 30. Covalent structures
- 31. Allotropes of carbon
- 32. Metallic bonding
- 33. Classifying materials

	1. Ionic bonding
*Bond	An attraction between two atoms
	that holds them together.
*Ion	An atom that has gained a charge
	by gaining or losing electrons.
*Charge	Whether an ion is positive or
	negative.
*Cation	Positive ion formed by losing
	electrons. Formed by metal
	atoms.
*Anion	Negative ion formed by gaining
	electrons. Formed by non-metal
	atoms.
**Size of	The number of electrons
charge	transferred affects the size of
	charge: losing two electrons
	makes a 2+ charge, gaining three
	electrons makes a 3- charge.
•	Metals: however many electrons
electrons are	are in the outer shell
gained or	Non-metals: however many
lost?	electrons are needed to fill the
	outer shell.
*Flootroctatio	A force of attraction between a
force	
*Ionic bond	positive and negative particle. When two oppositely charged
וטווכ טטוום	ions are held together by an
	electrostatic force.
	Ciccui ostatic ioi ce.

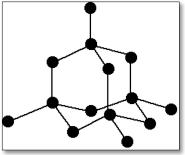

**Forming	Electrons are transferred from a					
ionic bonds	metal atom to a non-metal atom					
	to form a positive metal cation					
	metal atom to a non-metal atom to form a positive metal cation and a negative metal anion. The					
	oppositely charged ions are					
	oppositely charged ions are attracted to each other.					

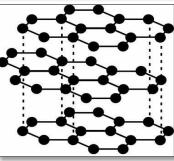
2	. Ionic compounds
*Chemical	Shows the number of atoms of
formula	each element present in one
	'unit' of a compound.
*Writing	- Each chemical symbol starts
formulae	with a capital letter.
	- The number of each atom
	present is shown with a
	subscript number after the
	symbol. E.g. H ₂ SO ₄ .
**Determining	- Ensure the total number of
ionic formulae	positive and negative charges
	balance.
	- Change the number of each ion
	present by changing the
	subscript numbers.
*Compound	An ion made from two or more
ions	atoms that share a charge.
*Common	Hydroxide: OH-
compound	Nitrate: NO ₃ -
ions	Sulfate: SO ₄ ²⁻
	Sulfite: SO ₃ ²⁻
	Carbonate: CO ₃ ²⁻
	Ammonium: NH₄+
**Including	If you need more than one, put
compound	brackets around it. E.g. Mg(OH) ₂
ions in	
formulae	
*Ionic lattice	The structure of ionic
	compounds: a repeating 3D
	pattern of alternating positive
	and negative ions.
**Crystal	A piece of material with a
	regular shape and straight edges
	formed by the regular pattern of
	ions in an ionic lattice.

**Melting	High because melting needs a lot
point of	of energy to break strong ionic
ionic	bonds.
compounds	
*Solubility	Many ionic compounds dissolve in
of ionic	water.
compounds	
**Electrical	Solid: Do not conduct because ions
conductivity	can't move.
of ionic	Liquid (molten or solution): Do
compounds	conduct because ions can move.
**How	When they are in a liquid form, the
ionic	positive cations move to the
compounds	negative electrode (cathode) and
conduct	the negative anions move the
electricity	positive electrode (anode).

	4. Covalent bonding		
*Covalent	*Covalent An electrostatic attraction between		
bond	two atoms and a share pair of		
bolla	electrons.		

**Double	A covalent bond involving two		
bond	shared pairs of electrons.		
*Dot and	A bonding diagram showing the		
cross	electrons in the outer shell of each		
diagram	atom, with electrons drawn as dots		
	or crosses.		
*Hydrogen,	Two overlapping circles both		
H ₂	labelled H. One pair in the overlap.		
**Hydrogen	Two overlapping circles labelled H		
chloride,	and Cl. One pair in the overlap, 6		
HCI	electrons around Cl.		
**Oxygen,	Two overlapping circles both		
O ₂	labelled O. Two pairs in the		
	overlap, 4 electrons around each		
	0.		
**Water,	Three overlapping circles in a line		
H₂O	labelled H, O, H. A pair in each		
	overlap, 4 electrons around O.		
**Carbon	Three overlapping circles in a line		
dioxide,	labelled O, C, O. Two pairs in each		
CO ₂	overlap, 4 electrons around each		
_	0.		
**Methane,	Five circles with one in the centre		
CH₄	labelled C and 4 labelled H around		
	it. A pair in each overlap.		


**Valency	The number of covalent bonds an	
	atom can form.	
**Valency	Group 4 = 4 (4 electrons needed)	
and groups	Group 5 = 3 (3 electrons needed)	
	Group 5 = 3 (3 electrons needed) Group 6 = 2 (2 electrons needed)	
	Group 7 = 1 (1 electron needed)	
**Working	Find the lowest common multiple	
out	of the valency of each atom. Use	
molecular	the number of an atom required to	
formulae	reach the LCM.	



5. Covalent structures		
*Molecule	A particle made from two or	
	more atoms bonded together.	
*Simple	A structure made of small	
molecular	molecules in which a few	
structure	atoms join together to form a	
0.0.000.0	small particle.	
**Structure of	Atoms in a molecule are held	
molecular	together by strong covalent	
substances	bonds. Neighbouring	
	molecules are held close by	
	weak intermolecular forces.	
**Intermolecular		
force	that holds two neighbouring	
	molecules together.	
**Melting point	Low because melting only	
of simple	needs a little energy to break	
molecular	weak intermolecular forces.	
compounds	weak intermolecular forces.	
**Electrical	Do not conduct because there	
conductivity of	are no electrons that are free	
simple molecular	to move.	
compounds	to move.	
*Examples of	Hydrogen gas, oxygen gas,	
simple molecular	, , , , , , , , , , , , , , , , , , , ,	
substances	methane.	
*Giant molecular	A structure made of a	
structure	repeating pattern of atoms	
Structure	covalently bonded together.	
**Melting point	High because melting requires	
of giant	breaking strong covalent	
molecular	bonds.	
compounds	bolius.	
**Electrical	Do not conduct (except	
conductivity of	graphite) because there are	
simple molecular	no electrons free to move.	
compounds	no ciccitons nee to move.	
*Examples of	Silicon dioxide (silica),	
simple molecular	` "	
substances	diamona, grapinic.	
*Polymer	A large molecule made of a	
. Orymer	small unit repeated many	
	times.	
*Monomer	A small molecule that can be	
14.0110111CI	joined together many times to	
	form a polymer.	
	ioi iii a polyiiici.	

6.	Allotropes of carbon	
*Allotrope	A different structural form of an	
	element made of the same	
	atoms just bonded together	
	differently.	
*Carbon's	Graphite, diamond, graphene,	
allotropes	fullerenes	
**Graphite	Structure: stacked sheets of	
	carbon in a honeycomb pattern	
	with delocalised electrons	
	between them.	
	Properties: sheets slide apart	
	easily, excellent conductor	
	Uses: lubricants	
**Diamond	Structure: Repeating pattern of	
	4 atoms bonded to 4 others.	
	Properties: Extremely hard.	
	Uses: Cutting tools and drills	
**Graphene	Structure: A single layer of	
	atoms in a honeycomb pattern.	
	Properties: Very strong,	
	excellent conductor.	
	Uses: None yet, but potentially	
	many.	
	Structure: Ball-shaped	
fullerene	molecules of C ₆₀ .	
	Properties: Low melting point	
	Uses: None	
**Carbon	Structure: Cylinders made of	
nanotubes	carbons bonded in a honeycomb	
	pattern.	
	Properties: Very strong,	
	excellent conductors	
	Uses: Strong and flexible	
	materials, electronics.	

7. Metallic bonding		
*Structure of A lattice of positive metal ions		
metals	surrounded by a cloud of	
	delocalised electrons.	
**Delocalised	Electrons that are not bound to a	
electrons	single atom but move freely	
	around many.	
**Metallic	The electrostatic attraction	
bonding	between the lattice of positive	
	metal ions and the cloud of	
	delocalised electrons.	

**Electrical	Metals are good conductors	
conductivity	because the electrons are free to	
of metals	move.	
**Comparing	Metals with more electrons in	
the	the outer shell – such as Al – are	
conductivity	better conductors than those	
of metals	with fewer – such as Li – because	
	there are more delocalised	
	electrons that are able to move.	
*Malleable	When a substance dents when it	
	is hit instead of shattering.	
**Malleability	Metals are malleable because	
of metals	the atoms are arranged in	
	regular sheets and these sheets	
	can easily slide over each other	
	when hit.	
**Melting	High because melting them	
point of	requires breaking the strong	
metals	force of attraction between the	
	lattice of metal ions and the	
	cloud of delocalised electrons.	

	8. Bonding models		
**Classifying	The properties of a material can		
materials	be used to determine the type of		
	bonding in it.		
**Properties	High melting point, often soluble		
of ionic	in water, solid does not conduct		
compounds	electricity, liquid/solution does.		
**Properties	Low melting point, does not		
of simple	conduct electricity, sometimes		
molecular	soluble in water.		
compounds			
**Properties	High melting point, does not		
of giant	conduct electricity (except		
molecular	graphite), insoluble in water.		
compounds			
**Properties	High melting point, does conduct		
of metallic	electricity, insoluble in water.		
compounds			
**Bonding	The ideas and drawings that we		
models	use to explain the bonding of		
	atoms.		
**Problems	- Dot and cross diagrams make		
with	electrons seem different, they are		
bonding	not		
models	- Atoms appear stationary but are		
	actually vibrating		
	- Atoms don't appear to be		
	touching when they actually are.		

CC9: Quantitative chemistry

1. Relative Formula masses			
Molecular	Gives the number of atoms of		
formula	each element present in a		
	molecule.		
Empirical	The simp	plest ratio of the atoms of	
formula	each ele	ment present in a	
	compou	nd.	
Converting	Divide th	Divide the number of each atom	
molecular to	by the highest common factor of		
empirical	all of the atoms.		
formulae			
Molecular to	C ₄ H ₈	← write the formula	
empirical	4:8	/ita aa a wati a	
formula	4:8	← write as a ratio	
examples	$\frac{4}{4}:\frac{8}{4}$	\leftarrow divide by small number	
	1:2	← simplest ratio	
	CH ₂	← write as formula	
Relative	The mas	s of an atom relative to	
atomic	1/12th the mass of carbon-12. No		
mass, Ar	units.		
Relative	The mas	s of one unit of a formula,	
formula	found by adding the relative		
mass, Mr	atomic masses of all of the atoms		
	in it.		

2. Calculating empirical formulae

2. calculating empirical formula		
Steps to	1) Write each element's symbol	
calculate	with a ratio (:) symbol between	
empirical	2) Write out the amount of each	
formulae	element from the questions	
from	3) Divide each amount by the ${f A_r}$	
experimental	of the element	
data	4) Divide each answer by the	
	smallest number to get a ratio	
	5) Write the empirical formula	

To find a	1) Calculate M _r for the empirical
molecular	formula
formula	2) Divide the M _r of the molecular
from an	formula by this number
empirical	3) Multiply the empirical formula
formula	by your answer

Empirical formula example

A compound contains 14.3% hydrogen by mass and 85.7% carbon. Determine its empirical formula.

The relative formula mass of the compound is 28, determine its molecular formula.

 $\begin{aligned} &\textbf{M}_r \text{ of empirical:} & \textbf{M}_r (\text{CH}_2) = 12 \times 1 + 1 \times 2 = 14 \\ & \div \text{ molecular } \textbf{M}_r \text{ by empirical } \textbf{M}_r \text{: } 28 \div 14 = 2 \\ & \textbf{Multiply empirical formula: } \text{CH}_2 \times 2 = \text{C}_2 \text{H}_4 \end{aligned}$

3. Magnesium Oxide Experiment

Equipment	Crucible (small pot capable of withstanding high heat) Clay triangle (to put the crucible on because a gauze would melt)
Method	1) Weigh small amount of magnesium ribbon 2) Heat in a crucible to react with air 3) Reweigh once cool to find new mass.
Results	It gets heavier because the oxygen has been added to the solid
Analysis	Find the mass of oxygen added by doing new mass – old mass. Then do the empirical formula calculation
Magnesium Oxide	Is MgO

3. C	3. Conservation of mass	
Conservation	The total mass of products must	
of mass	equal the total mass of reactants.	
Precipitation	A reaction that produces An	
reaction	insoluble solid precipitate by	
	mixing two solutions.	
Closed	A system in which no chemicals	
system	can enter or leave, such as a	
	sealed test tube.	
Open system	A system in which chemicals can	
	enter or leave – such as an open	
	test tube.	
Conservation	No atoms are able to enter or	
of mass in a	leave - total mass stays the same.	
closed system	Example: precipitation in a closed	
	flask.	
Conservation	Atoms can leave – total mass	
of mass in an	appears to change.	
open system	Example: a carbonate reacting	
	with acid producing CO ₂ bubbles:	
	the mass appears to decrease	
	because you can't weigh the gas	
	that goes into the air, however it	
	is still there.	

	is still there.		
4. Calc	4. Calculating reacting masses		
Excess reactant	Any reactant which is not used up completely in a reaction because there is more of it than needed.		
Limiting reactant	Any reactant which is completely used up in a reaction. The limiting reactant determines how much product is made because it will run out of this then stop.		
Stoichiometry	Means the balancing of an equation. Use the limiting reactant to work out how much is made from balancing.		
Calculating reacting masses	1) Write out the balanced equation 2) Calculate the RFMs 3) Write the RFMs as a ratio 4) Divide both sides of the ratio by the RFM of the chemical you know the mass of 5) Scale up or down		

Calculate concentration	Concentration = $\frac{\text{mass in g}}{\text{volume in dm}^3}$
Convert cm ³ to dm ³	$\frac{\text{cm}^3}{1000} = \text{dm}^3$

Reacting masses example

What mass of iron can be produced from 50 g of iron oxide (Fe_2O_3)?

2Fe ₂ O ₃ + 3C	\rightarrow	4Fe + 3CO ₂
320	:	224
320 320	:	$\frac{224}{320}$
1	:	0.7
1 × 50	:	0.7 × 50
50g	:	<u>35g</u>

RFM calcs: **2** Fe₂O₃: 2 x (2 x 56 + 3 x 16) = 320

4 Fe: 4 x 56 = 224

5. Moles (HIGHER ONLY)		
Moles	Measures amount of substance –	
	one mole of any chemical is the same amount.	
One mole	The Avogadro number of particles	
is	(atoms, ions or molecules)	
One mole is	The mass in grams of its relative	
also	formula mass.	
Avogadro's	6.02 x 10 ²³ : the number of	
constant	atoms/molecules present in one	
	mole of a substance.	
Calculating	$moles = \frac{mass}{relative formula mass}$	
moles from	relative formula mass	
mass		
Calculating	Quantity in moles = $\frac{\text{no.particles}}{\text{no.particles}}$	
moles from	6.02 x 10 ²³	
a number of		
particles		
Calculating	No. particles = moles x 6.02×10^{23}	
the number		
of particles		
from moles		

Lesson	Memorised?
1. Relative Formula	
Masses	
2. Calculating Empirical	
Formulae	
3. Conservation of mass	
4. Reacting masses	
5. Moles	

CC13: Groups in the Periodic Table

	1. Group 1
Alkali	The name we give to group 1 –
metals	lithium, sodium, potassium and so
	on.
Group 1	Li – lithium
symbols	Na – sodium
	K – potassium
Properties	- soft
of alkali	- relatively low melting points
metals	
Reaction	Metal + water → metal hydroxide +
of alkali	hydrogen
metals	
with	E.g:
water	sodium + water → sodium hydroxide
	+ hydrogen
	$2Na + 2H_2O \rightarrow 2NaOH + H_2$
Lithium	Floats. Bubbles (of hydrogen).
and water	,
Sodium	Floats. Melts. Bubbles (of hydrogen).
	Moves more quickly
	Floats. Melts. Bubbles (of hydrogen)
and water	catch fire (lilac flame). Moves very
	quickly
Group 1	Reactivity increases as you move
reactivity	down the group.
Explaining	When metals react they lose their
group 1	outer electrons. Further down the
reactivity	group there are:
	- more shells of electrons
	- so the outer electrons are further
	from the nucleus
	- so outer electrons are less
	attracted to the nucleus
	- so outer electrons are easier to
	remove.
	ODDOCITE DATTEDN TO CDC 12 7
	OPPOSITE PATTERN TO GROUP 7

	2. Group 7
Halogens	The name given to group 7 – fluorine,
	chlorine, bromine and iodine.
Chlorine	Cl ₂ . A pale green gas.
Bromine	Br ₂ . A red-brown liquid.
Iodine	I ₂ . A shiny purple-black solid.
Reaction	Halogen + metal → metal halide
of	
halogens	E.g:
with	Bromine + sodium → sodium
metals	bromide
	Br₂ + 2Na → 2NaBr
Reaction	Halogen + hydrogen → hydrogen
of	halide
halogens	
with	E.g:
hydrogen	Chlorine + hydrogen → hydrogen
	chloride
	$Cl_2 + H_2 \rightarrow 2HCl$
Hydrogen	Hydrogen halides dissolve in water to
halides	form acids, for example hydrogen
	chloride makes hydrochloric acid.
Chlorine	Chlorine gas turns damp blue litmus
Chlorine test	Chlorine gas turns damp blue litmus red then quickly bleaches it white.
test	

3. Reactivity of halogens		
Group 7	Reactivity increases as you go up	
reactivity	the group.	
Explaining	When non-metals react they	
group 7	complete their outer shells. Going	
reactivity	up the group there are:	
	- less shells of electrons	
	- so the outer electrons are closer	
	to the nucleus	
	- so outer electrons are more	
	attracted to the nucleus	
	- so more able to hold an extra	
	outer electron	
	OPPOSITE PATTERN TO GROUP 1	

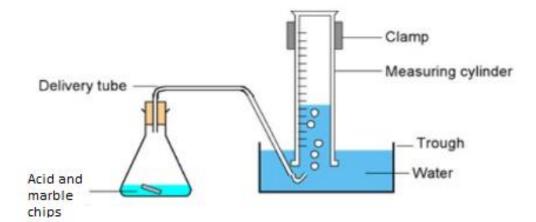
Displacement	Reactions in which a more	
reactions	reactive metal displaces a less	
	reactive metal from a salt eg:	
	copper sulfate + zinc \rightarrow zinc	
	sulfate + copper	
	Does not work backwards as	
	copper is less reactive than zinc.	
Displacement	A more reactive halogen	
reactions of	displaces a less reactive halide	
halogens	ion by taking its electrons.	
	E.g:	
	bromine + sodium iodide →	
	iodine + sodium bromide	
	$Br_2 + 2Nal \rightarrow l_2 + 2NaBr$	
	[bromine more reactive]	
Redox	Displacement reactions are	
reactions of	REDOX because the more	
halogens	reactive halogen oxidises the less	
	reactive halide by taking its	
	electrons. The more reactive	
	halogen is reduced.	
	E.g:	
	$Br_2 + 2l^- \rightarrow 2Br^- + l_2$	
OIL RIG	Oxidation Is Loss (of electrons)	
	Reduction Is Gain (of electrons)	

	4. Group 0
Noble	The name given to group 0 – helium,
gases	neon, argon, krypton and xenon.
Melting	They are all gases at room
point of	temperature but the melting and
noble	boiling point increase down the
gases	group.
Reactivity	The noble gases do not (easily) do
of group 0	any reactions – they are inert.
Explaining	When elements react they try to
reactivity	complete their outer shells. Because
of group 0	group O's outer shells are already
	complete, they do not react.
Uses of	-Helium is used in airships because it
noble	is inert and has low density
gases	- Argon is used in fire extinguishers
	because it is inert and denser than
	air.
	- Neon is used in lighting because it
	glows red when electricity is passed
	through it.

Lesson		Memorised?
1.	Group 1	
2.	Group 7	
3.	Reactivity of	
	halogens	
4.	Group 0	

C14 Rates of Reaction

Lesson sequence


- 34. Rates of reaction
- 35. Collision theory
- 36. Core practical rates of reaction (CP11)
- 37. Catalysts

1. Rates of reaction		
*Rate of	The rate at which reactants are	
reaction	used up or products are made.	
*Reactants	Starts high and curves downward,	
vs time	decreasing rapidly at first and	
graph	then more gently. Steeper line =	
	faster rate.	
*Products vs	Starts low and curves upwards,	
time graph	increasing rapidly at first and then	
	more gently. Steeper line = faster	
	rate.	
**Measuring	- Collect gas in a gas syringe and	
rates –	measure the volume every 30	
reactions	secs.	
that produce	- Collect gas over water (up-	
gas	turned measuring cylinder full of	
	water) and measure volume every	
	30 secs.	
	- Do reaction on a balance and	
	record the change in mass every	
	30 secs.	
**Measuring	Do the reaction in a beaker placed	
rates –	on piece of paper with a cross	
reactions	marked on it. Looking down	
that go	through the beaker, time how it	
cloudy	takes for the cross to disappear.	

2. Collision theory
States that for two particles to
react they must:
- Collide with each other
- Collide with enough energy to
react
The minimum energy that two
particles must have when they
collide in order to react.

**Effect of	• Increased concentration means
concentration	that there are more particles in
on rate	the same volume
	• So there are more collisions per
	second.
	So a faster reaction
**Effect of	Increased surface area means
surface area	that there are more particles at
on rate	the surface able to collide
	• So there are more collisions per
	second.
	 So a faster reaction
**Effect of	• Increased gas pressure means
pressure on	that there are more particles in
rate	the same volume
	• So there are more collisions per
	second.
	So a faster reaction
**Effect of	• Increased temperature means
temperature	that that particles have a
on rate	higher kinetic energy and move
	faster
	• So there are more collisions per
	second.
	But these collisions also are at
	higher energy so more
	collisions result in reactions
	So a faster reaction

*CP11 – Aim	To explore how particle size and
	concentration affect the rate of
	reaction
*CP11 – Gas	See diagram
collection –	S .
setup	
*CP11 – Gas	Record the volume of gas
collection –	collected few seconds until it
measurements	stops.
*CP11 – Gas	Repeat with a different size of
collection –	marble chips.
independent	
variable	
*CP11 – Gas	The amount of gas collected
collection –	increases quickly at first and
results	then more slowly. The smaller
	marble chips produce gas more
	quickly, but the same amount in
	total.
*CP11 -	You could keep the chip size the
similar	same and use different
experiments	temperatures, or different
	concentrations
*CP11 -	Gas escaping, so the reaction
common	looks slower than it really is
problems	
*CP11 -	Use a gas syringe (CO ₂ dissolves
improvements	in water so you don't get a
	perfect reading)
	·

Draw a cross on a piece of paper
and place a beaker on it.
Measure out 50 cm ³ of sodium
thiosulfate solution and 5 cm ³ of
hydrochloric acid into two test
tubes and leave to warm in a
water bath at 30°C.
Quickly pour both test tubes
into the beaker, mix and start
the stopwatch. Looking down
through the beaker, stop when
you can no longer see the cross.
Repeat with water baths set to
35°C, 40°C, 45°C and 50°C.
The cross disappears most
quickly at 50°C and least quickly
at 30°C.

4. Catalyst	
*Catalyst	A substance that speeds up a
	chemical reaction without being
	used up.
**Effect of	Catalysts increase the rate of
catalysts	reaction by reducing the activation
on rate	energy so that a greater proportion
	of collisions lead to reactions.
	A graph that shows the changes in
profile	energy during a reaction. Starts with
	large 'hump' that represents the
	activation energy.
**Effect of	The 'hump' representing the
catalysts	activation energy is smaller.
on	
reaction	
profiles	
*Enzyme	A protein that works as a catalyst to
	speed up the reactions in our cells.
*Enzymes	Alcoholic drinks are produced using
in alcohol	enzymes found in yeast which
production	catalyse a reaction that turns
	glucose into ethanol.

3. Core practical – rates of reaction (CP11)

CC15: Groups, rates and heat changes

- 38. Exothermic and endothermic reactions
- 39. Explaining energy changes

1. Endothe	ermic and exothermic reactions
*Exothermic	A reaction that transfers energy
reaction	to the surroundings (gets hotter,
	temperature up).
*Endothermi	A reaction that absorbs energy
c reaction	from the surroundings (gets
	colder, temperature down)
**Exothermi	
c reaction	. Activation
profile	↑ energy
	Reactants energy released Product
	Reaction Progress
	Exothermic reaction
**Endother	
mic reaction	. Activation
profile	energy Products energy absorber
	Reaction Progress
	Endothermic reaction

**Measuring	-Sit a polystyrene beaker inside a
energy	glass beaker (insulation)
changes	- Measure the starting
	temperature of the reactants.
	- Mix the reactants in the
	polystyrene beaker
	- Cover with lid fitted with a
	thermometer
	- Monitor and record the peak
	temperature change.
** Most	Heat escaping. Solution is more
common	insulation.
problem	

**Energy	The energy change in a reaction
changes and	is the difference between the
bond	energy required to break the
formation	old bonds and the energy
	released by making the new
	ones.
**Exothermic	Exothermic reactions break
reactions and	weaker bonds and make
bonds	stronger ones.
**Endothermic	Endothermic reactions break
reactions and	stronger bonds and make
bonds	weaker ones.
***Bond	The energy required to break
strength	one mole of a particular
	covalent bond in kJ/mol.
***Calculating	Add up the total strength of old
energy	bonds broken and subtract the
changes from	total strength of new bonds
bond strengths	made. A negative answer is
	exothermic.
1	

2. Explaining energy changes	
**Chemical	During chemical reactions, old
bonds in	chemical bonds are broken and
reactions	new ones are formed.
**Breaking	Endothermic. Breaking bonds
bonds	absorbs energy, breaking
	stronger bonds absorbs more
	energy.
**Making	Exothermic. Making bonds
bonds	releases energy, making
	stronger bonds releases more
	energy.

C16 Fuels / C17 Earth and Atmospheric science

C16a Hyd	C16a Hydrocarbons in crude oil and natural gas	
Hydrocarbon	A compound containing only	
	hydrogen and carbon atoms.	
Crude oil	A thick brown liquid made of a	
	mixture of many different	
	hydrocarbons found in deposits	
	underground.	
Crude oil as a	There is a limited amount: at	
finite	some point, it will run out.	
resource		
Molecules in	Hydrocarbons in many different	
crude oil	forms with carbons joined	
	together into both chain- and	
	ring-shaped molecules.	
Properties of	Most of the hydrocarbons in	
hydrocarbons	crude oil are liquids, but each of	
in crude oil	them has a different boiling	
	point.	
Hydrocarbons	Mostly alkanes.	
in crude oil		
Non-	A resource that will eventually	
renewable	run out.	
Uses of crude	Fuel, feedstock (supply of basic	
oil	chemicals) for the chemical	
	industry.	

C16b Fractional distillation of crude oil	
Fractional	A type of distillation used to
distillation	separate mixtures of two or
	more liquids.
Separation in	Fractional distillation separate
fractional	compounds according to their
distillation	boiling point.
Heating crude	Crude oil is passed through a
oil	heater to heat it to about 400°C
	so that nearly everything is a
	gas.

Separating	The hot gases rise up the
crude oil in a	fractionating column until cool
fractionating	enough to condense.
column	
Fractions of	The separated liquids and gases
crude oil	collected at different
	temperatures. The main ones
	are gases, petrol, kerosene,
	diesel oil, fuel oil, and bitumen.
Fractions in	Gases, petrol, kerosene, diesel,
order	fuel oil, bitumen:
	- Smallest to biggest molecules
	- Lowest to highest boiling point
	- Lowest to highest viscosity
	- Easiest to hardest ignition
Viscosity	How easily a fluid flows – higher
	viscosity = runnier.
Ease of	How easily a substance catches
ignition	fire.
Gases	Used for domestic heating and
	cooking.
Petrol	Used as a fuel for cars.
Kerosene	Fuel for aircraft.
Diesel oil	Fuel for larger vehicles such as
	lorries and trains.
Fuel oil	Fuel for large ships and power
	stations.
Bitumen	Surfacing roads and roofs.

C16c The alkane homologous series		
Homologous	A family of closely related	
series	compounds with molecular	
	formulae that differ only in	
	the number of 'CH ₂ 's.	
Physical	Vary gradually, for example	
properties in a	the boiling point gradually	
homologous	increases.	
series		
Chemical	Very similar with a gradual	
properties in a	variation.	
homologous		
series		
General formula	Describes the number of each	
	atom in any member of a	
	homologous series.	

Alkanes		Hydroc	arbons containing only
		single b	onds. The names end
		with '-a	
First three	9	Methar	ne – CH ₄
alkanes		Ethane	− C ₂ H ₆
		Propan	e − C ₃ H ₈
General fo	ormula	C _n H _{2n+2}	
of alkanes	s		
Name	Molecular	formula	Structural formula
methane	CH ₄		H
			H—Ċ—H
			Ĥ
ethane	C ₂ H ₆		H H
			H H
propane	C ₃ H ₈		H H H H_C_C_C_H

C16d Complete and incomplete	
	combustion
Combustion	When a compound reacts with
	oxygen producing a flame.
Complete	Combustion that produces
combustion	only water and carbon dioxide
	and releases the most
	possible energy.
Complete	Fuel + oxygen → carbon
combustion	dioxide + water
equation	E.g:
	Ethane + oxygen → carbon
	dioxide + water
	$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
Carbon dioxide	Limewater turns
test	milky/cloudy.
Incomplete	Combustion that produces a
combustion	mixture of carbon dioxide,
	carbon monoxide, carbon and
	water and produces less
	energy.
Why incomplete	When there is not enough
combustion	oxygen for all of the reactants
happens	to be fully oxidised.
Carbon	CO. A colourless odourless a
monoxide	highly toxic gas.

How carbon	It sticks to haemoglobin in the
monoxide kills	blood, which prevents it from
	carrying oxygen.
Soot	The small particles of carbon
	produced by incomplete
	combustion.
Problems with	- Causes lung problems when
soot	breathed in.
	- Blackens and dirties
	buildings.
Preventing	It is important that boilers at
incomplete	home have a good air supply
combustion	to prevent incomplete
	combustion. For this reason, a
	boiler's flue pipe should be
	checked for blockages every
	year.

C16e Combu	stible fuels and pollution
Sulfur	An impurity that is naturally
	present in small amounts in oil
	and coal.
Sulfur dioxide	SO ₂ . A gas formed from the
	sulfur in oil and coal when it is
	burnt.
Acid rain	Rain with a pH lower than 5.2
Formation of	Sulfur dioxide dissolves in
acid rain	water in clouds to form
	sulfurous acid (H ₂ SO ₃) which
	oxidises to become sulfuric
	acid (H ₂ SO ₄).
Effects of acid	- Soil becomes too acidic for
rain	crops and plants to grow well.
	- Acid in rivers and lakes
	prevents fish eggs from
	hatching and kills some insects.
	- Acid rain increases corrosion
	of limestone, which damages
	buildings and statues.
Nitrogen oxides	NO _x . Various gases formed at
	high temperatures inside
	internal combustion engines.
Problems of	- Can dissolve in clouds to form
nitrogen oxides	acid rain
	- NO₂ causes lung damage
	- NO _x can cause smog to form

C16f Break	ing down hydrocarbons
Cracking	Breaking down longer less
	useful hydrocarbons into
	shorter more useful ones.
How to crack	Heat the hydrocarbons and
hydrocarbons	pass the vapours over an
	aluminium oxide catalyst
	heated to 650°C.
Products of	An alkane and an alkene.
cracking an	E.g:
alkane	Hexane → butane + ethene
	$C_6H_{14} \rightarrow C_4H_{10} + C_2H_4$
Alkene	A hydrocarbon containing a
	C=C double bond.
Usefulness of	There is more demand for
cracking	shorter hydrocarbons – such as
	petrol and gas – than longer
	ones such as bitumen. Cracking
	turns the less useful ones into
	more useful ones.
Hydrogen gas	H ₂ . Hydrogen has the potential
as a fuel	to be used as a fuel for cars.
Advantages of	- It only produces H ₂ O when
hydrogen as a	burnt so does not directly
fuel	contribute to global warming
	- It can be produced using
	renewable energy
Disadvantages	- Most of it is currently
of hydrogen as	produced in ways that also
a fuel	produce CO ₂ which contributes
	to global warming
	- It is difficult to store

C17a The early atmosphere		
The early Earth	4.5-3.5 billion years ago the	
	Earth was extremely hot and	
	there were many volcanoes.	
The early	Little or no oxygen, a lot of	
atmosphere	carbon dioxide, water vapour,	
	small amounts of other gases	
	such as nitrogen.	
Origin of the	Gases from volcanoes.	
early		
atmosphere		

Evidence for a	The oldest rocks on Earth
lack of oxygen	contain compounds such as
	iron pyrite that cannot form in
	the presence of oxygen.
Formation of	As the Earth cooled, water
the oceans	vapour in the air condensed to
	liquid water, forming the
	oceans.

C17b The changing atmosphere		
Changes to the	The amount of carbon dioxide	
atmosphere	decreased, water vapour	
	decreased, oxygen increased.	
Photosynthesis	Photosynthesis – by	
and the	cyanobacteria and plants –	
atmosphere	consumes carbon dioxide	
	(decreasing it) and produces	
	oxygen (increasing it).	
Oceans and	Carbon dioxide dissolves in the	
carbon dioxide	ocean and is used by sea	
	creatures to make their shells,	
	enabling even more CO ₂ to	
	dissolve.	
Test for oxygen	A glowing splint (stick) placed	
	in oxygen will relight.	

C17c Th	C17c The atmosphere today	
Greenhouse	Infrared radiation (heat) from	
effect	the sun travels through the	
	atmosphere and warms the	
	ground. The ground re-emits	
	slightly different infrared	
	radiation that is not able to	
	pass back through the	
	atmosphere and is trapped by	
	gases called greenhouse gases.	
Greenhouse	Gases that trap re-emitted	
gases	infrared radiation – including	
	carbon dioxide, methane and	
	water vapour.	
Importance of	The greenhouse effect is	
the greenhouse	extremely important; without	
effect	it the average global	
	temperature would be 32 °C	
	lower and most life could not	
	exist.	

Increased	Human activities are increasing
greenhouse	the concentration of
effect	greenhouse gases such as
	carbon dioxide and methane,
	meaning the greenhouse effect
	is strong and traps more heat.
Global warming	An increase in global
	temperatures caused by the
	increased greenhouse effect.
Climate change	Change in global weather
	patterns caused by global
	warming.
Correlation	In Earth's history, every time
between	CO ₂ concentrations have been
carbon dioxide	high, the temperature has also
and	been high. This makes
temperature	scientists think that the current
	increase in CO₂ is what is
	increasing the temperature.
Uncertainty in	Scientists measurements of
the data	past temperature and CO ₂ are
	not perfect which makes some
	people doubt them. However,
	many different sets of data say
	very similar things, so most
	scientists believe them.

C17d Climate change	
Two main	- Carbon dioxide produced by
causes of	burning fossil fuels
climate change	- Methane produced by
	farming (especially cows)
	- rice paddy fields produce
	significant amounts of
	methane
Effects of	- Rising average global
climate change	temperature
	- Increased sea level from
	melting ice
	- Increased drought in some
	areas and flooding in others
	- Increase in dangerous
	weather

Effect of	Living organisms are adapted
climate change	to the conditions where they
on life	live. If these conditions change,
	they may struggle to survive.
	Climate change is causing
	many species to struggle and
	some to go extinct.
Ocean	The carbon dioxide we produce
acidification	dissolves in the oceans,
	lowering the pH making it
	harder for many sea-creatures
	to build their shells.
Limiting climate	- Reduce emissions of
change	greenhouse gases by using
	renewable energy and eating
	less meat.
	- Geoengineering – perhaps
	placing giant mirrors in space
	to reflect some of the sun's
	heat.

Lesson	Memorised?
C16a Hydrocarbons in	
crude oil and natural	
gas	
C16b Fractional	
distillation of crude oil	
C16c The alkane	
homologous series	
C16d Complete and	
incomplete combustion	
C16e Combustible fuels	
and pollution	
C16f Breaking down	
hydrocarbons	
C17a The early	
atmosphere	
C17b The changing	
atmosphere	
C17c The atmosphere	
today	
C17d Climate change	

CP1/SP1 Motion

1. Vectors and Scalars		
Magnitude	The size of something, such as	
	the size of a force or the	
	measurement of a distance.	
Scalar	A quantity that has a magnitude	
quantity	(size) only, but not a direction.	
Scalar	Distance – 10 m	
examples	Speed – 25 m/s	
	Mass – 50 kg	
	Energy – 300 J	
Vector	A quantity that has both a	
quantity	magnitude (size) and a direction.	
Vector	Displacement – 10 m north	
examples	Velocity – 25 m/s east	
	Force – 30 N left	
	Acceleration – 3 m/s ² south	
	Momentum – 400 N m/s right	
	Weight – 600N down	
Vector	Vectors can be represented by	
arrows	arrows, with the length of the	
	arrow representing the	
	magnitude.	
Displacement	The distance travelled in a	
	particular direction.	
Velocity	The speed of an object in a	
	particular direction.	

2. Speed		
Speed	A measure of the distance an	
	object travels in a given time.	
Units of speed	Metres per second (m/s)	
Some typical	Walking – 1.4 m/s	
speeds	Cycling – 6 m/s	
	Speed limit in towns – 10.5 m/s	
	Ferry 18 m/s	
	Motorway speed limit – 31 m/s	
	Commuter train – 55 m/s	
	High speed train – 90 m/s	
	Airliner – 250 m/s	

Constant and	C
Speed – word	Speed = distance / time
equation	Speed (m/s)
	Distance (m)
	Time (s)
	$s \times t$
Speed –	v = x/t
symbol	
equation	v = speed
	x = distance
	t = time
Instantaneous	The speed at one particular
speed	moment in a journey.
Average	The speed worked out from the
speed	total distance travelled divided
	by the total time taken for a
	journey. $v = x/t$.
Calculating	Distance = average speed x time
distance	x = v x t
travelled -	
word	Distance (m)
equation	Average speed (m/s)
	Time (s)
Measuring	Measure the distance between
speed	two points and time how long an
	object takes to pass, then
	calculate using v = x/t.
Light gates	A piece of apparatus containing
	an infrared beam that is
	transmitted from a source onto
	a detector. If the beam is cut,
	the light gate measures how
	long it is cut for, giving a reading
	for time.

3. Distance-Time Graphs		
Distance-time	A graph showing the distance	
graph	travelled against time for a	
	moving object.	
	Time is on the x-axis and	
	distance on the y-axis.	
Distance-time	Horizontal line	
graphs –		
stationary	C on diagram below	

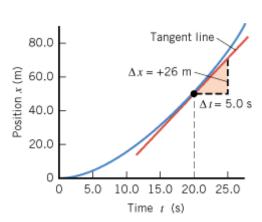
Distance-time	Forwards – line sloping up	
	' ' '	
graphs –	A and B on diagram below	
constant	Backwards – line sloping down	
speed	D on diagram below	
Distance-time	A measurement describing the	
graphs – line	steepness of the line on a graph.	
gradient	Steeper line = faster, so	
	A is faster than B below	
Calculating	Speed = change in distance/	
speed from	change in time =gradient	
the gradient	_	
of a distance-	gradient = change in y / change	
time graph	in x	
	(m)	
Distance (m)		
20 C		
B		
15 D		
10 A		
5		
0 5 10 15 20 25 30 Time (seconds)		
Time (seconds)		
Aller in well in the	B C	
She travels 80 m in	ne park. Alice stops to chat Alice is now late, 100s. to a friend for 100s. so she has to jog.	
220		
200		
distance		
160 travelled: 240 m - 80 m =		
E 140 220 m = 80 m = 160 m		
istan 100		
80		
60	time taken:	
40	280s - 200s = 80s gradient = speed	
20	= 160 m = 2 m/s	
0 20 40 60 8	80 s 2 1183 80 100 120 140 160 180 200 220 240 260 280	
Time (s)		
D The gradient of a dista	ance/time graph gives the speed.	

4. Acceleration		
Acceleration	A measure of how quickly the	
	velocity of something is changing. Rate of change of	
	velocity. It is positive if an	
	object is speeding up and	
	negative if it is slowing down.	
	A vector quantity.	
An object	- Speeds up	
accelerates	- Slows down	
when it	- Changes direction	

Units of	Metres per second squared
acceleration	(m/s^2)
Positive and	Positive acceleration =
negative	speeding up
acceleration	Negative acceleration =
	slowing down
Deceleration	Slowing down, negative
	acceleration.
Acceleration –	Acceleration = change in
word equation	velocity / time
	Acceleration (m/s ²)
	Change in velocity (m/s)
	Time (s)
Acceleration –	a = (v – u)/ t
symbol equation	
	(v-u) $a \times t$
	a = acceleration
	v = final velocity
	u = initial velocity
	t = time
Linking	Use the equation:
acceleration and	$v^2 - u^2 = 2ax$ to find distance
distance	
travelled	$x = (v^2 - u^2) / 2a$
	x = distance travelled
	a = acceleration
	v = final speed
	u = initial speed
Acceleration due	Ť
to gravity	
(free fall)	

5. Velocity-Time Graphs		
Velocity-time	A graph of velocity against time for a moving object.	
graph	for a moving object.	
	Time is on the x-axis, velocity is	
	on the y-axis.	
Velocity-time	Horizontal line	
graphs –		
constant speed		

Velocity-time	Speeding up – line sloping up	
graphs –		
acceleration	Slowing down – line sloping	
	down	
Velocity-time	Horizontal line on the x-axis	
graphs –		
stationary		
Velocity-time	Steeper line = greater	
graphs – line	acceleration	
gradient		
Calculating	Acceleration = change in	
acceleration on	velocity / change in time =	
a velocity-time	gradient	
graph		
	gradient = change in y / change	
	in x	
Calculating	Distance = area under the	
distance	graph.	
travelled from a		
velocity-time	Divide the graph into	
graph	rectangles and triangles, find	
	the area of each and add them	
	together.	
are	ea of triangle = $\frac{1}{2}$ x base x height	
area = 5 s x 10 m/s	= 1/2 x 5 s x 30 m/s area = 5 s x 10 m/s	
= 50 m	= 75 m = 50 m	
(s) 30		
> 20		

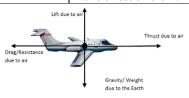

3 4 5 6 7 8 9 10 11 12 Time (s)

The total distance travelled by the object in graph D is the sum of all the areas.

total distance travelled = 50 m + 50 m + 75 m = 175 m

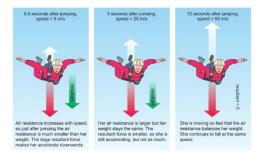
Calculating instantaneous speed (HIGHER ONLY) Draw a tangent to the curve of the graph at the time you want to calculate the instantaneous speed for. Find the gradient of the tangent line by calculating the change in distance on the y axis and the change in time on the x axis. Instantaneous speed =

gradient of tangent = change in distance / change in time

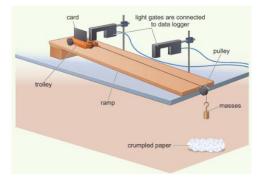

Lesson	Memorised?
1. Vectors and Scalars	
2. Speed	
3. Distance-Time Graphs	
4. Acceleration	
5. Velocity Time Graphs	
6. Calculating instantaneous speed (HIGHER ONLY)	

CP2/SP2 Forces and Motion

- 40. Resultant forces
- 41. Newton's first law
- 42. Mass and weight
- 43. Newton's second law
- 44. Core practical investigating acceleration (CP12)
- 45. Newton's third law
- 46. Momentum (HT ONLY)
- 47. Stopping distances
- 48. Car safety
- 49. Braking distance and energy (TRIPLE ONLY)


4.5 10 16	
1.Resultant forces	
Scalar	A quantity with magnitude (but
quantity	no direction).
Vector	A quantity with magnitude and
quantity	direction.
Force arrows	Arrows can be used to represent
	forces:
	- Direction = direction of force
	- Length = size of force
Resultant	The force left over when forces
force	acting in opposite directions are
	cancelled out.
Calculating	Subtract the total force in one
resultant	direction from the total force in
force	the other direction.
Balanced	When the resultant force is zero
forces	(because forces acting in opposite
	directions are the same size).
Unbalanced	When the resultant force is non-
forces	zero (because there is more force
	in one direction than another).

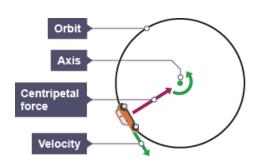
2. Newton's first law	
Newton's first	An object will move at the same
law of motion	speed and direction unless it
	experiences a resultant force.
The effect of	Resultant forces cause
resultant	acceleration: speeding up,
forces	slowing down or changing
	direction
The effect of	Forces make you start moving,
forces on	stop moving or change direction,
motion	they are not needed to keep you
	moving!


3. Mass and weight	
Mass	The quantity of matter in an
	object is made of.
	Units = kilograms (kg)
Weight	A force caused by gravity pulling
	downward on an object.
	Units = newtons (N)
Force meter	An instrument for measuring
	forces. They usually have a
	spring that stretches more the
	greater the force applied.
Gravitational	The strength of gravity, which is
field strength	different on different planets.
	Units = newtons per kilogram
	(N/kg)
Gravitational	10 N/kg
field strength	
on Earth	
Calculating	Weight = mass x gravitational
weight	field strength
	$W = m \times g$
	Weight (N) Mass (kg)
	Gravitational field strength
	(N/kg)

Air resistance	A force caused by the air
	pushing against you as you
	move. Faster movement >
	greater air resistance.
Motion whilst	Falling objects accelerate until
falling	the air resistance is equal to the
	weight; now there is no
	resultant force so speed stays
	constant (terminal velocity).

4. Newton's second law	
Newton's	Force = mass x acceleration
second law of	
motion	
Acceleration is	- The force is greater
greater when	- The mass is smaller
Calculating	Force = mass x acceleration
forces	F = m x a
	m × a
	Force (N)
	Mass (kg)
	Acceleration (m/s²)
Calculating	Acceleration = mass / force
acceleration	a = F / m
	Force = N
	Mass = kg
	Acceleration = m/s ²

5. Core practical – investigating	
acceleration (CP12)	
CP12 - Aim	To investigate how changing
	force changes acceleration.
CP12 - Setup	A trolley on a ramp with 9 x
	10g masses.
	10 g mass hanger attached to
	trolley via a string over a
	pulley.
CP12 – Data	Release the trolley, use light
collection	gates to measure the
	acceleration.
CP12 -	Move 10 g of mass from the
Variations	trolley to the mass hanger each
	time.
CP12 -	The force: each 10 g mass = 0.1
Independent	N force
variable	
CP12 – Control	Move the 10 g masses from the
variables	trolley to the mass hanger to
	keep the total mass in the
	system the same.
	Daisa tha garage alighthy watil
	Raise the ramp slightly until
	the car only just starts to move
	freely to eliminate the effects of friction.
CP12 - Results	
CP12 - Results	More mass pulling on the string → more force → greater
	acceleration.
	المددونون مداناتا.



ewton's third law
For every action force there is
an equal but opposite reaction
force.
The force you push or pull
with.
A force of the same size but
opposite direction to an action
force.
If, A applies an action force to
B, B applies a reaction force of
same size and opposite
direction to A.
Similarities: same sizes,
opposite directions
Differences: balanced forces
act on one object, action-
reaction act on two different
objects

8. St	8. Stopping distances	
Stopping	The total distance travelled	
distance	from when a hazard is seen to	
	when you fully stop.	
Thinking	The distance travelled from	
distance	when a hazard is seen to when	
	you brake.	
Braking	The distance travelled from	
distance	when you brake to when you	
	fully stop.	
Calculating	Stopping distance = thinking	
stopping	distance + braking distance	
distance		
Thinking	Slower reactions = greater	
distance and	thinking distance	
reaction time		
Thinking	Higher speed, tiredness, illness,	
distance	drugs, distractions, old age	
increased by		
Braking	Higher speed, poor brakes,	
distance	poor tyres, wet/icy/gravelly	
increased by	road, downhill, heavier load	

9. Car safety	
Crash danger	Crashes involve large decelerations, creating large forces which can injure you.
How car safety features work	Increase the time a collision takes, reducing deceleration and forces.
Three car safety features	Crumple zones, (stretchy) seat belts, air bags

2. Circular motion	
(HIGHI	ER AND TRIPLE ONLY)
Circular motion	Moving in a circle is a type of acceleration because you are changing velocity (your direction changes even if your speed does not).
Centripetal force	A force acting towards the centre of a circle that enables objects to move in a circle.
Sources of centripetal force	Gravity – keeps the Earth orbiting the Sun Tension – lets a bucket swing in circles on a rope Friction – keeps cars turning round a roundabout

4. Inertial mass (HIGHER AND TRIPLE ONLY)	
Inertial mass	The mass calculated by measuring the acceleration produced by force, using the equation m = F / a
The point of inertial mass	Inertial mass is the same as mass measured with a mass balance, but it gives us a way to measure mass where there is no gravity, such as in space.

6. Collisions	
(HIGHER AND TRIPLE ONLY)	
Action-	E.g. kicking a ball: the foot
reaction	pushes the ball, the ball pushes
	back on the foot.
collisions	

7. Momentum	
(HIGHI	ER AND TRIPLE ONLY)
Momentum	The tendency of an object to
	keep moving.
Calculating	Momentum = mass x velocity
momentum	p = m x v
	p m × v
	Momentum (kg m/s)
	Mass (kg)
	velocity (m/s)
Momentum	Force = change in momentum /
and force	time
calculations	F = (mv - mu)/t
	Force (N)
	Mass (kg)
	Velocity (m/s)
	Time (s)
Conservation	Total momentum before and
of momentum	after a collision is the same.

9. Collision forces (HIGHER AND TRIPLE ONLY)	
Collision	Greater momentum change →
forces	greater force
Calculating	Force = change in momentum /
collision	time
forces	F = (mv – mu)/t
	Force (N)
	Mass (kg)
	Velocity (m/s)
	Time (s)

Lesson	Memorised?
1. Resultant forces	
2. Newton's first law	
3. Mass and weight	
4. Newton's second	
law	
5. Core practical –	
investigating	
acceleration (CP12)	
6. Newton's third law	
8. Stopping distances	
9.Car safety	
(HIGHER AND TRIPLE	
ONLY)	
2. Circular motion	
4. Inertial mass	
6. Collisions	
7. Momentum	
9.Collision forces	
10. (TRIPLE ONLY)	
Braking distance and	
energy	

10. Braking distance and energy (TRIPLE ONLY)		
Work done	The energy transferred by a force acting over a distance is called work done. Measured in joules (J)	
Calculating work done	Work done = force x distance moved in the direction of the force	
	work done force × distance	
	Work done (J) Force (N) distance (m)	
Kinetic energy	Energy stored in a moving object Measured in joules (j)	
Calculating	kinetic energy = $\frac{1}{2}$ × mass × (speed) ²	
kinetic energy	Kinetic energy (J) Mass (kg) (Speed) ² (m/s) ²	
Estimating stopping distance using mass, braking force and speed	See worked example below. Remember that work done and energy transferred are the same.	

Worked example W3

A 1500 kg car is travelling at 10 m/s. The driver applies a braking force of 10000N. How far does the car travel before it comes to a stop?

kinetic energy = 1 × mass × velocity?

$$= \tfrac{1}{2} \times 1500 \, \mathrm{kg} \times (10 \, \mathrm{m/s})^{\circ}$$

-75000)

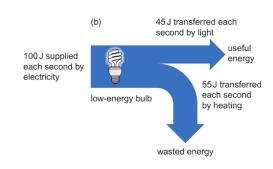
Work done to stop the car is 75 000 J.

 $distance = \frac{work\ done}{force}$

 $-\frac{750001}{10000N}$

= 7.5 m

CP3 Conservation of Energy


- 50. Energy stores and transfers
- 51. Energy efficiency
- 52. Keeping warm
- 53. Stored energies
- 54. Non-renewable energy resources
- 55. Renewable energy resources

1. Energy	stores and transfers
Energy	The capacity to do work.
Joules	The units of energy, symbol
	= J
Kilojoules	1000 J, symbol = kJ
Thermal energy	Energy stored in hot
	objects.
Kinetic energy	Energy stored in moving
	objects.
Chemical energy	Energy stored in chemicals
	such as fuels.
Nuclear energy	Energy stored in the
	nucleus of atoms. Also
	called atomic energy.
Gravitational	Energy stored in objects
potential energy	based on how high they
	are.
Elastic potential	Also called strain energy.
energy	Energy stored in bent or
	stretched objects.
Energy stores	Light, thermal(heat),
examples	sound, electrical, kinetic (movement)
Law of	<u>'</u>
conservation of	Energy cannot be created or destroyed, just
	transferred from one
energy	energy store to another.
Energy transfers	Say from what store the
Lifeigy transiers	energy starts as and what
	its new store is.
energy stored in	anarmy stored in
moving car	energy transferred by hot brakes (thermal energy)

Sankey diagram	Shows energy transfers.
	The thickness of the arrow
	relates to the amount of
	energy.

2.	Energy efficiency
Dissipation	The way energy spreads out into
	the surroundings, becoming less
	useful as it does.
Wasted	Energy that is transferred into
energy	stores that aren't useful.
Friction	Causes thermal energy loss as
	heat when two surfaces rub
	together.
Lubrication	Allows surfaces to move
	smoothly, reduces energy loss
	from friction.
Electrical	Causes wires to heat up, wasting
resistance	electrical energy.
Calculating	efficiency = (useful energy transferred by the device) (total energy supplied to the device)
efficiency	Efficiency is expressed as a
	decimal.
Energy	Efficiency is between 0 and 1.
efficiency	1 = no energy wasted
numbers	0 = all energy wasted

3	3. Keeping warm	
Convection	Heat transfer caused when hot	
	fluids (gas or liquid) rise because	
	they are less dense.	
Conduction	Heat transfer through solids	
	caused by vibrating particles	
	bumping into each other.	
Radiation	Heat transfer by infrared	
	radiation which heats objects up	
	when they absorb it.	
Radiation and	Infrared radiation is absorbed	
surfaces	(taken in) and emitted (given	
	out) easily by dull, dark surfaces.	
	Radiation is absorbed and	
	emitted poorly by shiny, light	
	surfaces.	
Insulation	Materials that contain lots of	
	tiny air pockets that prevent	
	heat loss by conduction.	
Thermal	A measure of how well a	
conductivity	material conducts heat.	
Reducing the	Increase thickness of material	
rate of energy	Decrease thermal conductivity	
transfer	Decrease temperature	
	difference	

4. Stored energies	
Gravitational field strength g	The strength of gravity. Different on different planets. On Earth g = 10 N/kg.
Calculating gravitational potential energy	$GPE = mg\Delta h$ $M \times g \times \Delta h$ GPE is gravitational potential
	energy (J) m is mass (kg) g is gravitational field strength (N/kg) Δh is height change (m)

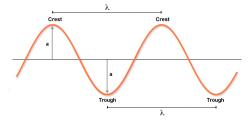
Calculating kinetic energy	$KE = \frac{1}{2}mv^2$
	$\frac{1}{2} \times m \times v^2$
	KE is kinetic energy (J)
	m is mass (kg)
	v is velocity (m/s)
Calculating v	2KE
from KE	$v = \sqrt{\frac{2KE}{m}}$

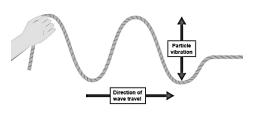
5. Non-renewable energy resources	
Non-renewable	A resource that will one day
resource	run out because it is being
	used faster than it is being
	made.
Fossil fuels	Coal, oil, natural gas. All are
	non-renewable.
Harm from	Carbon dioxide gas is released
burning fossil	which causes global warming.
fuels	Sulfur dioxide is released which
	causes acid rain.
Nuclear power	Electricity generated from non-
	renewable nuclear fuels such
	as uranium.
Nuclear power	Casts a long time, releases
pros and cons	no carbon dioxide
	Produces very harmful
	waste, expensive to
	decommission, although rare,
	accidents are very dangerous.
Climate	Changes that happen to
change	global weather patterns as
	a result of global warming.
	<u> </u>

6. Renewable energy resources	
Renewable	A resource will not run out.
resource	
Wind power	Large turbines spun by the
	wind turn kinetic energy into
	electrical energy.
	© No CO₂
	Lots needed, ugly?, no wind
	no power
Solar power	Solar cells turn light energy
	from the Sun into electrical
	energy.
	© No CO₂
	😕 No sun no power, need lots
	of space, not suitable for all
	countries
Tidal power	Uses kinetic energy from water
	movement from tides to spin
	turbines and produce electrical
	energy.
Tidal barrage	A damn built across an estuary
	that fills up when tide goes in. When stored water is released
	its kinetic energy produces
	electrical energy.
	Huge amounts of energy,
	no CO ₂
	Destroys important mudflat
	habitats
Hydroelectricity	A damn is built across a river
,,	valley, water released from the
	damn spins turbine and its
	kinetic energy produces
	electrical energy.
	©Lots of energy, no CO₂
	😕 Destroys habitat by
	flooding
Biofuels	Fuels made from recently plant
	or animal matter, often waste,
	are a store of chemical energy.
	©Carbon neutral
	😕 Needs a lot of land,
	increases food prices

Carbon neutral	When burning a fuel releases
	the same CO ₂ it absorbed
	when it was growing, so there
	is no CO₂ increase.

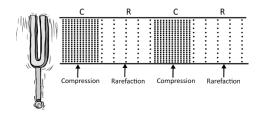
7. Reducing energy losses		
(HIGHER ONLY)		
Reducing energy losses	Increases the efficiency of a device or process, e.g. engines. This can be by reducing friction; by making sure all fuel is burned; or by using energy that	
	would otherwise be wasted.	

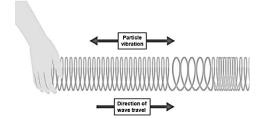

Lesson	Memorised?
1. Energy stores and	
transfers	
2. Energy efficiency	
3. Keeping warm	
3. Recping Warm	
4. Stored energies	
5. Non-renewable	
energy resources	
6. Renewable energy	
resources	
7. Reducing energy	
losses	
(HIGHER ONLY)	


P4 Waves

	1. Describing waves
Waves	Transfer energy without
	transferring matter.
Oscillate	When particles vibrate backwards
	and forwards or up and down.
Transverse	Waves in which particles oscillate
waves	at right angles to the direction of
	energy movement. E.g., waves on
	the surface of the water, some
	seismic waves and light waves (all
	electromagnetic waves).
Longitudinal	Waves in which particles oscillate
waves	parallel to the direction of energy
	movement. E.g., sound waves
	and some seismic waves.
Medium	The material that waves travel
	through. Light (all
	electromagnetic waves) waves
	are the only waves that have no
	medium.
Seismic	Waves of vibrating rock caused by
waves	earthquakes.
Frequency, f	The number of waves that pass a
	point every second.
Hertz, Hz	The unit of frequency. 1 Hz = 1
	wave per second.
Period, T	The length of time it takes for a
	single wave to pass.
Wavelength,	The distance in m from the top of
λ	one wave to the top of the next.
Amplitude, a	The maximum distance a particle
or A	vibrates away from its resting
	point,
Velocity, v	The speed of a wave in m/s.

Transverse wave


Transverse wave


Longitudinal wave

teachoo.com

Compression and rarefactions of a longitudinal wave

Longitudinal wave

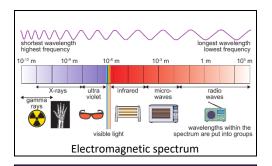
2. Wave speeds	
Speed,	wave speed (m/s)
distance and	$=\frac{distance\ (m)}{}$
time	time (s)
	Wave speed = v Distance = x Time = t
Spood	
Speed, frequency and	wave speed $\left(\frac{m}{s}\right)$
wavelength	= frequency(Hz)
Wavelength	\times wavelength (m)
	$f \times \lambda$
	Wave speed = v
	Frequency = f
	Wavelength = λ
Measuring	Time how long they take to
wave speed	travel a certain distance.
	(stopwatch)
	Distance between two
	points.(tape measure)
Changing	Waves travel at a different
speed	speed in a different medium.
	Light is slower in water than air.

3. Core practical – Investigating waves		
CP4 - Aim	To measure the speed of waves	
	in a liquid and a solid.	
CP4 – Water	1. Count the number of waves	
waves 1	in 10 s and use this to find	
	the frequency.	
	2. Measure the wavelength	
	with a ruler	
	Wave speed = frequency x	
	wavelength	
CP4 – Water	1. Time how long a wave takes	
waves 2	to pass two points, 0.3 m	
	apart.	
	Wave speed = dist / time	

P4 - Waves	1. Hit suspended metal bar
n a solid	with hammer and measure
	the frequency using an app.
	Measure the metal bar – double
	the length gives the wavelength

the length gives the wavelength		
4. Refraction		
Refraction		
Kerraction	Bending of waves when they	
	enter a new medium at an	
	angle.	
Interface	The boundary between two	
	media (mediums) such as air	
	and water.	
Normal	An imaginary line drawn at	
	90° to where light hits an	
	interface (boundary).	
Angle of	The angle between an	
incidence	incoming light ray and the	
	normal.	
Angle of	The angle between the normal	
refraction	and a ray of light that has	
	been refracted.	
Travelling from	Light bends towards the	
air to glass or	normal	
water		
Travelling from	Light bends away from the	
glass or air to	normal.	
water		
Explaining	Light waves slow down as they	
refraction	go from air to water. The	
Ciraction	'bottom' of the wave hits the	
	water and slows down first,	
	· ·	
	causing refraction.	

Lesson	Memorised?
1. Describing waves	
2. Wave speeds	
3. Core practical – Investigating waves	
4. Refraction	


P5 Light and the Electromagnetic waves

1. E	ectromagnetic waves
Electromagnetic	A group of waves that all travel
waves	at the same speed (speed of
	light) in a vacuum, and are all
	transverse.
Speed of light	300,000,000 m/s (3 x 10 ⁸ m/s)
Frequency	The number of waves that pass
	a point every second.
	One hertz (Hz) is one wave per
	second.
Wavelength	The distance between a point
	on one wave and the same
	point on the next wave.
EM wave	All are transverse, all travel at
similarities	the speed of light.
EM wave	Different frequencies, different
differences	wavelengths.
Visible light	The only type of EM radiation
	that our eyes can detect.
Interface	The boundary between two
	different materials.
Refraction and	Light travels at different
wave speed	speeds in different materials
	causing it to refract when
	hitting the interface at an
	angle.
Prisms and the	Different wavelengths slow
colour	down by different amounts
spectrum	when they hit glass causing
	each colour to refract
	differently.
Infrared	Light split into a spectrum.
discovery	Thermometer placed on every
	colour plus next to red. Red
	was hot, next to red was
	hottest.

2. Core practical – Investigating	
refraction	
Normal	A line at right angles to the interface.
	interface.

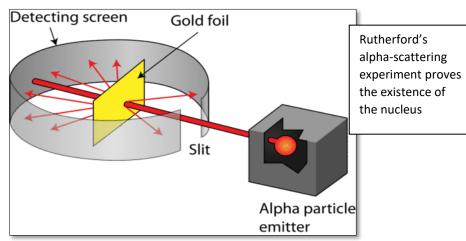
Angle of	Angle between the incident ray
incidence	and the normal.
Angle of	Angle between the refracted ray
refraction	and the normal.
CP5 – Aim	To explore how changing the
	angle of incidence changes the
	angle of refraction.
CP5 - Setup	Place a glass block on a sheet of
	paper, point a beam of light
	from a ray box at it, trace around
	the block and draw in the light
	ray.
CP5 -	Use a protractor to draw a
Measurement	normal, then measure the angles
	of incidence and refraction.
CP5 -	Repeat 5 times, from 5 different
Variations	angles, including head-on.
CP5 - Results	The greater the angle of
	incidence, the greater the angle
	of refraction.

3. The elect	romagnetic spectrum
EM spectrum	R ubbish M emories I nclude
mnemonic	<u>V</u> isiting <u>U</u> r <u>X</u> <u>G</u> irlfriend
EM spectrum –	Radio waves, microwaves,
lowest to highest	infrared, visible light,
frequency or	ultraviolet, X-rays, gamma
energy	rays.
EM spectrum –	Gamma rays, X-rays,
lowest to highest	ultraviolet, visible light,
wavelength	infrared, microwaves, radio
	waves.
EM spectrum	The full range of types of EM
	waves.
EM Radiation	Some EM radiation (visible
and the	light, radio waves) passes
atmosphere	through the atmosphere,
	most is absorbed.
Space telescopes	For radiation absorbed by the
	atmosphere, a telescope
	must be placed in space.

4. Using the long wavelengths		
Visible light uses	Illumination, photography	
Infrared uses	Short-range communications	
	(TV remotes), fibre optics,	
	cooking (grills and toasters),	
	security cameras, thermal	
	images.	
Microwave uses	Microwave ovens, mobile	
	phone and satellite	
	communications.	
Radio wave uses	Radio and TV signals,	
	communications between	
	controllers and spacecraft,	
Donaldonator and dis	satellite communications.	
Producing radio	Oscillating electricity in a	
waves	metal rod produces radio	
Receiving radio	Radio waves absorbed by a	
waves	metal rod cause electrical	
waves	oscillations.	
	osemations.	
	■ The oscillations cause ■	
	radio waves to spread	
	out from the aerial.	
(
	Radio waves	
Current moves	cause an oscillating	
up and down	current in the receiving	
in the aerial.	aerial.	
transmitting aerial	receiving aerial	
	ransmitter radio receiver cuits circuits	
C	Officials	
Prod	ucing radio waves	

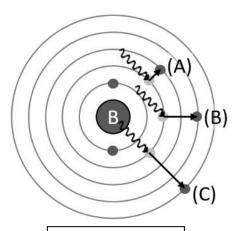
5. Using the short wavelengths	
Fluorescence	Absorbing ultraviolet and re-
	emitting it as visible light.
Ultraviolet uses	Security marking, fluorescent
	lamps, detecting forged bank
	notes and disinfecting water.
X-ray uses	Observing the internal
	structure of objects, airport
	security scanners and medical
	X-rays.
Gamma ray	Sterilising food and medical
uses	equipment, and the detection
	of cancer and its treatment.

6. EM radiation dangers	
Infrared	Surface heating causing skin
dangers	burns.
Microwave	Absorbed by water causing it
dangers	to heat up → internal heating
	of body cells.
Ionisation	High-energy radiation causes
	ions to form in our cells,
	damaging DNA and causing
	cancer.
Ultraviolet	Damage to surface cells and
dangers	eyes leading to skin cancer and
	eye conditions.
X-ray dangers	Cancer, mutation or damage to
	cells in the body.
Gamma ray	Cancer, mutation or damage to
dangers	cells in the body.

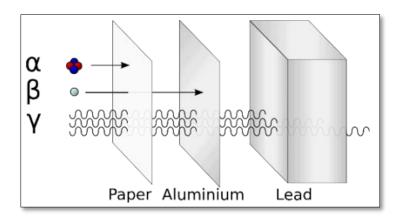

Lesson	Memorised?
1. Electromagnetic waves	
2. Core practical – Investigating refraction	
3. The electromagnetic spectrum	
4. Using the long wavelengths	
5. Using the short wavelengths	
6. EM radiation dangers	

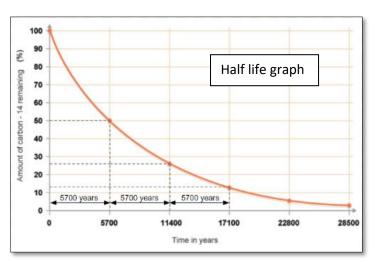
CP6: Radioactivity

Lesson sequence


- 56. Atomic structure
- 57. Subatomic particles
- 58. Electron orbits
- 59. Radiation from unstable atoms
- 60. Nuclear reactions
- 61. Half-life
- 62. Background radiation
- 63. Dangers of radioactivity

1. Atomic structure		
*Atom	Smallest particle of an element.	
**Size of	2.5 x10 ⁻¹⁰ m in diameter	
atoms		
*Element	Pure substance made of a single	
	type of atom.	
**Plum-	Atoms as a sphere of positively	
pudding	charged matter with negative	
model	electrons scattered throughout	
	it. Rutherford's experiment	
	disproves this	
**Rutherford's	Fired alpha particles at very thin	
experiment	gold leaf and used a special	
	screen to record where they	
	went.	
**Rutherford's	Most alpha particles went	
results	straight through, some	
	scattered (changed path).	
**Rutherford's	See diagram. Most α went	
explanation	through the empty space. The	
	scattered ones must have	
	bounced off the nucleus	
Rutherford's	A positive nucleus with	
model	electrons going round it	
Nucleus	The central part of an atom;	
	very small and dense, positively	
	charged. Rutherford's	
	experiment proves its existence.	
	(Made of protons and neutrons)	
Bohr's model	Same as Rutherford's, but the	
	electrons can only be in certain	
	orbits / shells	


2. Subatomic particles		
*Subatomic	Any particle smaller than atoms:	
particle	protons, neutrons and electrons.	
*Protons	+1 charge, mass = 1, located in	
	the nucleus	
*Neutrons	0 charge, mass = 1, located in the	
	nucleus	
*Electrons	-1 charge, mass = 1/1835, located	
	around nucleus in shells	
**Relative	Not the actual mass because no	
mass	units. Protons and neutrons have	
	same relative mass: their mass is	
	1.	
*Nucleons	The particles in the nucleus:	
	protons and neutrons.	
_	The number of protons	
the element	determines which element an	
	atom is.	
*Atomic	The number of protons in an	
number	atom.	
*Mass	The number of nucleons (protons	
number	and neutrons) in an atom.	
*Number of	Mass number – atomic number	
neutrons		
**Isotopes	Versions of an element with the	
	same number of protons, but	
	different number of neutrons.	
**Naming	Carbon-13, or ¹³ C, where 13 is the	
isotopes	mass number	


	3. Electron orbits
**Orbits	The shells of electrons around
	an atom.
**Orbits and	Higher orbit = higher energy
energy	
**Excited	When an electron has absorbed
electrons	energy and jumped to a higher
	orbit.
***How to	- When atoms absorb light
excite	 When electricity is passed
electrons	through gases
	 Strongly heating a material
***Absorbing	When electron absorbs light and
light	jumps up to a higher shell.
***Emitting	When electrons drop down to a
light	lower shell and emit light.
***Emission	Pattern of bands of light at
spectrum	specific wavelengths caused by
	exciting a gaseous element with
	electricity.
***Absorption	Pattern of dark band in a
spectrum	'rainbow' spectrum caused by a
	gas absorbing some of the light
***Forming	When an electron is given so
ions	much energy it leaves the atom
	entirely creating a positive ion.
**lonising	Radiation that causes ionisation:
radiation	(high energy) UV, x-rays, gamma
	rays.

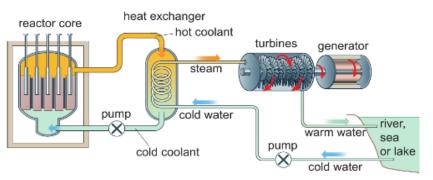
Bohr's model of the atom has electrons in 'shells' or 'orbits', around the nucleus

The electrons can be 'excited' to higher shells by absorbing energy, eg from light

4. Rad	iation from unstable atoms
*Unstable	An atom whose nucleus contains
atom	too much energy becomes
	unstable.
*Decay	When an unstable atom releases
_	its excess energy; this releases
	ionising radiation.
*Alpha	Made of alpha particles: two
radiation	protons and two neutrons.
	Symbol: α or ${}_{2}^{4}He$. Blocked by
	air/paper
*Beta-minus	Beta- particles are fast-moving
radiation	electrons . Symbol: β - or $_{-1}^{0}e$.
	Blocked by aluminium
*Beta-plus	Beta+ particles are positrons:
radiation	particles with same mass as
	electrons but a positive charge.
	Symbol: $β$ ⁺ or 0_1e .
*Gamma	electromagnetic radiation.
radiation	Extremely short wavelength / high
	frequency / high energy Symbol: γ.
	Blocked by lead/concrete
*Neutron	Fast-moving neutrons. Symbol: n.
radiation	
*Ionising	Alpha is most ionising, gamma
power	least.
	-
*Penetrating	Gamma is most penetrating, alpha
*Penetrating power	Gamma is most penetrating, alpha least

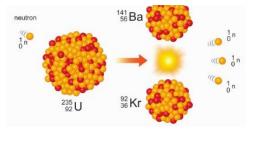
5. Nuclear reactions	
**Alpha	Atomic number decreases by two,
decay	mass number decreases by four.
**Beta-	Atomic number increases by one,
decay	mass number stays the same.
**Beta+	Atomic number decreases by one,
decay	mass number stays the same.
**Gamma	Atomic number and mass number
decay	unchanged.
**Neutron	Atomic number stays the same,
decay	mass number decreases by one.

	6. Half-life	
*Half-life	The time taken for half of the	
	undecayed atoms in a sample to	
	decay.	
Stability, half-life and activity of isotopes:		
Low stability = short half-life = high activity		
High stability = long half-life = low activity		
*Becquerels,	The unit of radioactivity:	
Bq	1 Bq = one decay per second.	
**Half-life	x-axis = time,	
graph	y-axis = radioactivity.	
	The line curves downwards but	
	never touches the x-axis.	


7. Background radiation	
*Background	Low levels of ionising radiation
radiation	that we are constantly exposed to;
	mainly natural causes.
*Radon gas	The biggest source of background
	radiation: a radioactive gas
	produced by some rocks in the
	ground
*Other	Background radiation also comes
natural	from food and space (cosmic rays)
sources	
*Artificial	Hospitals, nuclear industry
sources	
**Geiger-	Used to measure radioactivity,
Müller (GM)	produce a click each time
tube	radiation passes through it.
**Count-	The number of time a GM tube
rate	detects radiation each second.
**Measuring	Use a GM tube to take several
background	readings and then calculate the
radiation	average (mean).
**Corrected	Measure the source, subtract the
count rate	background radiation.
*Dosimeter	A badge that changes colour in
	response to radiation exposure.
*Dose	The amount of radiation received
	by a person.

8. Dang	gers of radioactivity				
*Mutations	DNA damage caused by				
	ionising radiation, can lead to				
	cancer.				
**Repairing	Cells contain proteins that can				
damage	repair DNA damage as long as				
	the radiation dose is low				
	enough.				
**Minimising	- Wear protective clothing				
radiation risk	- Handle with tongs				
	 Don't point at people 				
	- Limit time				
	 Use protective shielding 				
	- Wear dosimeter badges				
**Nuclear power	There is a small chance of				
risks	accidents causing radioactive				
	sources to escape				
**Irradiation	Exposure to radiation, stops				
	when the source of radiation				
	is removed.				
**Contamination	When particles of radioactive				
	substances are on or in the				
***	body.				
**Risks in	Using radioactivity carries				
perspective	serious risks, but so do many				
	other things, so it is safe to				
	use as long as it is treated				
	with caution.				

SP6: Radioactivity – triple only content


Rac	lioactivity in medicine			
Tracer	A radioisotope deliberately put			
	into the body, often attached to			
	glucose molecules in the blood			
Gamma	A gamma ray detector which			
camera	detects where tracers are in the			
	body, to help diagnose health			
	problems			
Tumour	A cancerous growth. Absorbs a			
	lot of glucose so the tracer will			
	be concentrated in a tumour			
	Positron emission tomography.			
	Produces a detailed 3D image of			
PET Scanner	the inside of the body			
	A positron emitting tracer is put			
	into the bloodstream			
	Positrons annihilate with			
	electrons, producing gamma			
	rays			
	Gamma rays are detected			
	outside the body, showing			
	where the tracer has been			
	concentrated.			
Radiotherapy	Using radiation to kill cancer			
	cells			
Internal	A radioisotope (beta emitter) is			
radiotherapy	put inside the body, near a			
	tumour, to kill it.			
External	Beams of gamma rays are			
radiotherapy	directed at a tumour from			
	outside the body, to kills it			

	Nuclear Fission			
Nuclear	When a nucleus splits into two or			
Fission	more daughter nuclei.			
Daughter	The nuclei created when a large			
nuclei	nucleus splits.			
U-235	The isotope used in power			
	stations: when it splits, it releases			
	a large amount of energy and 3			
	neutrons.			
Chain	When the neutrons from one			
reaction	fission event trigger more fission			
	events.			
Uncontrolled	If 3 neutrons split 3 more U-235			
chain	nuclei, 9 neutrons are released.			
reaction	These can cause 9 more fission			
	events, these cause 27 more			
	the chain reaction releases a huge			
	amount of energy very rapidly,			
	leading to an explosion (nuclear			
	bomb)			
Controlled	When neutrons are absorbed, the			
chain	chain reaction can continue			
reaction	without an explosion. Used in			
	nuclear reactor			
Nuclear	Fission of U-235 releases energy			
reactor	through a controlled chain			
	reaction			
Control rod	Absorbs neutrons to slow down			
	the chain reaction (boron)			
Moderator	Slows down the neutrons to			
	enable the chain reaction			
	(graphite or water)			
Problems	Radioactive waste is produced,			
	especially when the reactor is			
	decommissioned at the end of its			
	life			
Benefits	A reliable source of electricity,			
	with no CO ₂ to damage the			
	atmosphere			

D Radioactive fuels are used to generate electricity in nuclear power stations.

	Nuclear Fusion				
The Sun	This process is how the Sun				
	releases light and energy				
Nuclear	When two small nuclei (eg				
Fusion	hydrogen) fuse to make one				
	nucleus (eg Helium).				
Temperature	High temperature and pressure				
and pressure	are required to overcome the				
	electrostatic repulsion between				
	the nuclei, and fuse them				
	together				
Electrostatic	The force which repels like				
repulsion	charges (eg two nuclei, which are				
	both positively charged)				
Problems	Nuclear fusion is not yet useful as				
	a power source. It is too				
	expensive, and cannot yet				
	produce more energy than it uses.				
Benefits	Very cheap 'fuel' – hydrogen from				
	water. No harmful gases				
	produced, eg no CO ₂ to damage				
	the atmosphere.				

