

Knowledge

Organisers

Year 8 PC3 (June Exam)

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to **recall** from a particular topic. That means that it **does not have everything on it** for a unit of study but it does have **the most essential things to learn.**

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that **the more you know** the **more you can learn.** By being able to recall the facts, you are able to understand more complicated ideas because you **already know what the key words mean.** You will also already have a set of ideas in your mind that the new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!

Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.

7A Cells, Tissues, **Organs and Systems**

1	1. Life Processes	
Life	If something can do all 7 life	
	processes it is considered a	
	'living thing'	
Processes	They are; movement,	
FIOCESSES	reproduction, sensitivity,	
	growth, respiration,	
	excretion and nutrition.	
Organism A living thing.		
Movement	Being able to move from	
	place to place or move part	
	of themselves.	
Penroduction	Being able to make more	
Reproduction	living things like themselves.	
Soncitivity	Being able to sense and react	
Sensitivity	to things around them.	
Growth	Being able to increase in size.	
Posniration	Being able to release energy	
Nespiration	through respiration.	
Excration	Being able to get rid of waste	
excretion	materials.	
	Taking in substances (such as	
Nutrition	food) to help carry out the	
	other processes.	

2. Organs	
Organ	A part of animals or plants that does an important job- made up of different tissues
Function	The job or role something has.
Brain	Controls the body.
Skin	The bodies biggest organ- used for protection and sensing things.

	Take in oxygen for
Lungs	respiration and excrete
	carbon dioxide.
lloort	Pumps blood around the
Tieart	body.
Livor	Makes and destroys
Livei	substances.
Kidneys	Clean the blood and
	produce urine to excrete
	waste.
Bladder	Stores urine.
Stomach	Breaks up food.
Small Intesting	Breaks up food and
Small Intestine	absorbs it.
Large Intestine	Removes water from
	unwanted food.
Rectum	Stores faeces (waste
	material)

	Made up of muscle tissue so		
	it can move and pump the		
The Heart	blood as well as fat tissue to		
	protect it.		
	Small hairs on the outside of		
Root Hair	roots which help to take in as		
Tissue	much water as possible.		
	The tissue which carries		
Xvlem Tissue	water up through plants from		
,	the roots.		
	4. Cells		
	The basic units from which		
Cells	all tissues and living things		
	are made from.		
	When something has		
Specialised	features that allow it to do a		
	particular job.		
Cell Surface	Controls what enters and		
Membrane	leaves the cell.		
Nucleus	Controls the cell.		
C	Jelly like substance where		
Cytoplasm	chemical reactions happen.		
	(mitochondrion- singular)		
witochondria	Where respiration happens.		
	Make food for the plant		
Chloroplasts	using photosynthesis-		
	contains chlorophyll.		
	Strengthens and supports		
Cell Wall	the cell- made of cellulose.		
	Storage space filled with cell		
Vacuole	sap.		
Plant Cell	100p.		
Cytoplasm			
Nucleus			
Cell membrane			
Minechandrian			
Mirochondrion			
Chloropla	st		

5. Organ Systems	
Organ	A collection of organs
Systems	working together.
Cinculatoriu	Heart, blood vessels
System	Carries oxygen and nutrients
System	around the body.
Digostivo	Gullet, stomach, intestines
System	Breaks down food and takes
System	nutrients into the blood.
Locomotor	Muscles, bones
System	Enables the body to move.
Urinary System	Kidneys, bladder
	Gets rid of waste materials
	produced in the body.
Broathing	Lungs, trachea
System	Allows exchange of gases
	between blood and lungs.
Nervous	Brain, nerves, spinal cord
System	Allows the body to sense
System	things and react to them.
Water	Roots, stem, leaves
Transport	Transports water around the
System	plant.

Lesson	Memorised?
1. Life Processes	
2. Organs	
3. Tissues	
4. Cells	
5. Organ Systems	

Indicator

Litmus

7F Acids and Alkalis

4 Useenda		
	L. Hazaros	
lazard	Something that could cause	
	harm.	
Risk	The chance that a hazard will	
	cause harm.	
Jazard	Internationally agreed symbols	
iazai u Symbolc	representing the type of risk	
yinbuls	from using a substance.	
	Dangerous to Environment	
〈 ¥∠₂〉	Can cause long term damage to	
$\overline{}$	animal and plant life.	
\land	Тохіс	
	Poisonous and can cause death	
\mathbf{V}	if taken into the body.	
$\mathbf{\Lambda}$	Corrosive	
T.S.	Attacks certain substances like	
$\mathbf{\nabla}$	metals, stonework & skin.	
	Explosive	
	Heating may cause an explosion.	
À	Flammable	
	These substances catch fire	
\checkmark	easily.	
	Caution	
	similar to toxic/corrosive but	
\checkmark	less serious- may cause skin	
	irritation	
	Dangerous substances are	
Diluted	mixed with water to make them	
	less dangerous.	
2. Indicators		
	A substance that changes	

colour in solutions of

type of lichen.

different acidity/alkalinity.

An indicator made from a

Acid	Turns litmus indicator red .
Alkali	Turns litmus indicator blue .
Neutral	A substance that is neither acidic or alkaline.
Red Cabbage	Can be used as an indicator.

4	. Neutralisation	
A reaction where an acid		
	and alkali are mixed	
Neutralisatio	n together forming a neutral	
	substance.	
	A change in which one or	
Chemical	more new substance is	
Reaction	formed.	
Word	Used to model chemical	
Equation	reactions.	
•	The starting substances-	
Reactants	written on left of word	
	equation.	
	The new substances made-	
Products	written on right of word	
	equation.	
Neutralisation General Word Equation		
Acid + alkali 🕂	→ salt + water	
Neutralisatio	n Word Equation Example	
Hydrochloric a	acid + sodium hydroxide $ ightarrow$	
sodium chloride + water		
	Formed when acids and	
Colto	alkalis react. Different acids	
Sails	and alkalis will form	
	different salts.	
Sodium	The chemical name for	
Chloride	common/table salt.	
5. Neut	railsation in Daily Life	
D	Any substance that	
ваѕе	neutralises an acid forming a	
AUL 11	salt and water.	
Alkali	A soluble base	
Antacids	Remedy for indigestion that	
	neutralise the stomach acid	
Antacid Word	Antacid Word Equation Example	
Magnesium h	ydroxide + hydrochloric acid	
→ magnesium chloride + water		
	Contains bases that	
Toothpaste	neutralise acids in your	

mouth from food that you

eat.

Bee Sting	A bee sting, being acidic can
Remedy	be treated with a weak alkali
	like baking soda.
Wasp Sting Remedy	A wasp sting, being alkali,
	can be treated with a weak
	acid like vinegar.
Cleaning Metals	Acids clean the rust off
	metals using a neutralisation
	reaction.
Waste Gases	Acidic waste gases from
	industries are sprayed with
	calcium hydroxide to
	neutralise them.

Lesson	Memorised?
1. Hazards	
2. Indicators	
3. Acidity & Alkalinity	
4. Neutralisation	
5. Neutralisation in Daily Life	

7I Energy

	1. Energy from Food
Energy	Needed to live, helps us to grow and repair our bodies, move and keep warm. Food is a source of energy.
Joule	A unit for measuring energy.
Kilojoule	1000J = 1kJ
Diet	The food that a person eats.
Weight	The amount of force with which gravity pulls things- measured in Newtons (N).
Balanced Diet	Eating a variety of foods to provide all the things that the body needs.
Nutrients	Substances needed from food.

Z. Ellerg	y stores and transfers	
Transferred	When energy is moved from	
	one store into another.	
Forces	A push, pull or twist and a	
	type of energy transfer.	
Ele etuisite :	A way of transferring energy	
Electricity	through wires.	
Other Energy	By bosting, cound and light	
Transfers	by nearing, sound and light.	
Stand	When energy is captured	
	within an object and can be	
Storeu	moved to another store by	
	energy transfers.	
Chemical	Energy stored in chemicals	
Energy	(such as food, fuel and	
Ellergy	batteries).	
Kinetic	Energy stored in moving	
Energy	things.	
Thermal	Energy stored in hot objects	
Energy	Energy stored in not objects.	

Strain	Energy stored in stretched or					
Energy	squashed objects. Also called					
Ellergy	elastic potential energy.					
Gravitational	Energy stored in objects in					
Potential	high places that can fall					
Energy	down.					
Nuclear	Energy stored inside					
Fnorgy	materials (also called atomic					
Lifergy	energy).					
law of	The idea that energy can					
Conservation	never be created or					
of Energy	destroyed, only transferred					
or Energy	from one store to another.					
2 Eucle						
	A substance that contains a					
	store of chemical or nuclear					
Fuel	approve that can pasily be					
	transferred					
	Lised in nuclear nower					
Nuclear	stations to generate					
Fuels						
	A radioactive metal that can					
Uranium	he used as a nuclear fuel					
Generate	To produce electricity.					
Generate	A fuel formed from the dead					
Fossil Fuels	remains of organisms over					
10331110213	millions of years					
	A fossil fuel made from the					
Coal	remains of plants					
	A fossil fuel made from the					
	remains of microscopic dead					
Oil	plants and animals that lived					
	in the sea.					
	A fossil fuel made from the					
	remains of microscopic dead					
Natural Gas	plants and animals that lived					
	in the sea.					
	An energy resource that will					
Non-	run out because we cannot					
Renewable	renew our supplies of it.					

	An energy resource that will			
Renewable	never run out (such as solar			
	power)			
Biofuels	A fuel made from plants or			
biolueis	animal droppings.			
	Can be used as a fuel by			
Hydrogen	combining with oxygen from			
	the air to produce electricity.			
4. Oth	er Energy Resources			
	Generating electricity using			
Solar Power	energy from the Sun.			
	Elat plats that use energy			
Solar Panel	from the Sun to heat			
	water.			
	Flat panels that use energy			
:	transferred by light from			
Solar Cell	the Sun to produce			
	electricity.			
	A large power station using			
Solar Power	the Sun to heat water to			
Station	make steam which then			
	generates electricity.			
	Generates electricity using			
Wind Turbine	energy transferred from			
	the wind.			
	Electricity generated by			
Hydroelectric	moving water turning			
Power	turbines and generators.			
- ·· ·	Electricity generated using			
Geothermal	heat from rocks			
Power	underground.			
	. Carbon dioxide + water \rightarrow			
hotosynthes	is glucose + oxygen			
5.	Using Resources			
Fossil Fuel	Cheap compared to the			
Advantages	others and convenient to			
	use in cars/vehicles.			
Fossil Fuel Disadvantages	Non-renewable			
	Releases polluting gases			
	when burnt.			

luclear	No polluting gases
Advantages	generated.
Nuclear	Non-renewable
	Very expensive
Jisauvantages	Dangerous waste materials
Renewable	No polluting gases
Advantages	Renewable
Ponowabla	Most not available all the
kenewable Sizeduceteres	time and only available in
Jisauvantages	specific locations.
	Fossil fuels are making the
limate	earth warmer due to the
Change	carbon dioxide given off
	when they are burnt.
	How much of the energy
fficiency	transferred by a machine is
	useful.
	Using efficient appliances,
Sing Less	insulating homes, public
	transport/walking/cycling

Lesson	Memorised?
1. Energy from Food	
2. Energy Stores and Transfers	
3. Fuels	
4. Other Energy Resources	
5. Using Resources	

K	8B Plants and their	Inhe Varia Gam
Kettering	Reproduction	Zygo
1. Classifi	cation and Biodiversity	
Classification	Sorting organisms into groups based on their characteristics.	Asex Repr
Kingdoms	The five largest groups (each can be split into smaller groups)- animals, fungi, protoctists, prokaryotes and plants.	Runr
Plants	Members of the plant kingdom have cellulose cell walls, are multicellular and make their own food.	
Scientific Name	We give organisms scientific names using the names of the last two groups- the genus and the species.	Tube
Scientific Name Advantages	Scientific names are agreed around the world so there is no confusion. Some species have the same common	Usin Repr
Biodiversity	name in different places. The number of difference species in an area.	Plant
Advantages of High Biodiversity Extinct	Recover faster from disasters and useful substances can be found (medicines). When an organism dies out	carpel – the fema reproduc organ
2. Typ	completely.	

2. Types of Reproduction	
Two organisms breeding to	
produce offspring.	
The offspring of two	
different species- they are	
not fertile.	
Can produce offspring.	

rited	Characteristics inherited		
ation	from parents (due to DNA).		
ietes	Sex cells		
	The fertilised egg cell		
ote	formed when the male and		
	female gamete join.		
	Reproduction involving		
cual	only one parent- produces		
roduction	offspring identical to the		
	parent (clones).		
	An example of asexual		
	reproduction used by		
norc	strawberry plants. They		
ners	spread over the ground		
	and sprout roots to grow		
	new identical plants.		
	An example of asexual		
	reproduction used by		
	potato plants. They are		
ers	underground stems		
	(potatoes) that contain a		
	store of food that can grow		
	into a new plant.		
	Gardeners take cuttings of		
roduction	leaves/stems to grow new		
	plants quickly and cheaply.		

Plant scent and no	
	ectar attract
Adaptations animals (ma	inly insects). The
for Animal structure al	so makes it easier
Pollination for animals	to pick up / leave
pollen grain	S
Pollen is sm	ooth and light to
float throug	h air. large
anthers and	stigmas hang
outside the	flower to catch
the wind.	
Pollen grain	s from a plant
land on the	stigma of the
same plant.	
Cross- Pollen trans	ferred from one
Pollination plant to and	other.
4 Fortilication and	Disporcal
4. Fertilisation and	
Formed whe	n a pollen grain
Pollen Tube	gma of the same
species. it gi	ows down to the
	Lubra anala
The egg cen	and the male
Fertilisation	the pollen grain
Join togethe	r to form a
Zyguie.	
Cell Division	by which the cen
Splits into tw	/0.
Embryo	n the cells divide
	jain.
	comes a seeu.
Seed Inside the se	ed is the empryo
and a roou s	ource.
Seed Coat	oating of seed to
protect it.	
Germinate The seed sta	rts to grow.
The ovary sv	vells up and
Fruit forms the tru	uit around the
seed.	
Seed The spreading	ng of seeds away
Dispersal from the par	ent plant.

Attracting	Fru	uits are fleshy, soft, juicy		
	and taste good to attract			
	animals for seed dispersal.			
	Se	eds are passed out by		
Egested	an	imals in their faeces.		
	Wi	ind, water and explosions-		
Other Seed	useful so that new plants			
Dispersal	aren't in competition with			
Methods	the	e parent plant.		
5. Ger	mi	nation and Growth		
Resources		What a plant needs to		
Resources		grow/germinate.		
Respiration		The process of releasing		
Respiration		energy from glucose.		
Respiration V	Vor	d Equation		
glucose + oxy	ger	\rightarrow carbon dioxide + water		
	-			
Dormant		Slow life processes but still		
Dormant		alive- such as in a seed.		
Dhotoountho	.:.	A process that plants use		
Photosynthes	SIS	to make their own food.		
Photosynthe	sis '	Word Equation		
carbon dioxido +	wate			
	wate	giucose + oxygen		
Chanab		Glucose is converted to		
Starch		starch to store it.		
		Traps light energy		
Chloroplasts		needed for		
-		photosynthesis.		
		Organisms that depend		
Interdepende	ent	on one another.		
Lesson		Memorised?		
1. Classificat	ior	1 &		
Biodiversity				

Lesson	Memorised?
1. Classification &	
Biodiversity	
2. Types of Reproduction	
3. Pollination	
4. Fertilisation &	
Dispersal	
5. Germination & Growth	

8F The Periodic Table

1. 0	Dalton's Atomic Model	Con
Matter	All things are made of matter.	Mas
John	(1766-1844)	
Dalton	An English chemist.	
	 all matter is made up of atoms. atoms in an element are identical. Each element has its 	Che Fori
Dalton's Atomic Theory	 own type of atom. atoms cannot be destroyed or created. In compounds each atom is always joined to a fixed 	Rati
	number of other atoms	
	 atoms rearrange during chemical reactions to form new substances. 	Joha Döh
Atoms	Small particles that all matter is made up of.	200
Element	A substance made up of one kind of atom.	lohi
Compound	Contains atoms of two or more different elements chemically joined together.	Nev
Physical Properties	The properties that describe a substance on its own. (colour, strength, density, etc.)	Dmi
Physical	A change in which no new	Mei
Changes	substances are formed.	
Symbols	Letters used to represent the elements.	
		^ -
2.	Chemical Properties	Gap
Chemical	How a substance reacts with	

Properties other substances.

	An idea about how something
Hypothesis	works that can be tested using
	experiments.
Prodiction	What you think will happen in
Frediction	experiment and why.
Concording	The mass of the products of a
Conserving	reaction will be the same as the
IVIdSS	mass of the reactants.
	The combination of symbols
	and numbers that shows how
Chemical	many atoms of different
Formulae	element are in a particular
	molecule.
	e.g. water is H₂O
	Comparison of the proportion
Datia	of two quantities <i>e.g. in water</i>
κατιο	there are 2 hydrogens for every
	oxygen, the ratio is 2:1
3	. Mendeleev's Table
	(1780-1849)
Johann	German chemist who
Döbereiner	highlighted some groups of 3
	elements had similar physical /
	chemical properties.
	(1837-1898)
	()
John	English chemist who ordered
John Newlands	English chemist who ordered elements by the mass of atoms
John Newlands	English chemist who ordered elements by the mass of atoms and noticed every 8 th element
John Newlands	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties.
John Newlands	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907)
John Newlands	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published
John Newlands Dmitri	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by
John Newlands Dmitri Mendeleev	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by
John Newlands Dmitri Mendeleev	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their
John Newlands Dmitri Mendeleev	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of
John Newlands Dmitri Mendeleev	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties.
John Newlands Dmitri Mendeleev	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties. Mendeleev left gaps in his
John Newlands Dmitri Mendeleev Gans	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties. Mendeleev left gaps in his table for undiscovered
John Newlands Dmitri Mendeleev Gaps	English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties. Mendeleev left gaps in his table for undiscovered elements and predicted their

	A vertical column in the	
Group	Periodic Table- contains	
Group	elements with similar	
	properties.	
Alkali	Group 1	
Alkali	Very reactive metals, they even	
IVIELAIS	react with water.	
	Group 7	
Halogens	React with most metals to form	
	solid compounds.	
Noble	Group 0	
Gases	Unreactive gases	

4. Physical Trends When a substance changes Melting Point from a solid into a liquid Boiling When a substance changes Point from a liquid into a gas. When a substance changes Freezing from a liquid into a solid- the Point same as the melting point. Heating Substances How temperature depends on time (as sulfur is heated) At the melting point, the extra energy being supplied by heating

Temperature (°C)	500- 400- 300- 200- 100-	the solid di temperatur particles to fixed arran each other	bes not increases the but allows the break away fro gement and mo	the m their ve over	Th lic be al es	he temperat juid stays th bils. The ext eing supplie lows the pa scape as a s	gas gas ture of the the same as it tra energy d by heating rticles to gas.	
	0-+	10	20 Ti	30 me heated	40 (minute	50 s)	60	70
° e	rio	ds	The hor Periodio	izonta c table	al ro e.	ws in	the	
Transition Metals		ition Is	Block of of the P the eigh	f elem eriod nt mai	ient ic ta in gr	s in th ble- s oups.	e midd eparato	lle es
Metal Properties		l erties	High melting points, strong, flexible, malleable, shiny, good conductors.					
Nc Pro	n-l ope	Metal erties	Low me dull. po	lting or co	poin nduc	ts, bri tors.	ittle,	

5.	Chemical Trends
Alkali Metals & Water	Alkali metals produce metal hydroxides and hydrogen when reacting with water. (sodium + water → sodium hydroxide + hydrogen)
Alkali Metals & Oxygen	Alkali metals produce metal oxides when reacting with oxygen. (lithium + oxygen → lithium oxide)
Reactivity	How quickly / vigorously something reacts.
Alkali Metal Reactivity	As you move down the group the reactivity increases.
Oxides	Formed when elements react with oxygen.
Oxide Trends	When we dissolve oxides in water there is a trend in their pH. Further to the left of the Periodic table oxides formed are more alkaline. Further to the right they are more acidic.

Lesson	Memorised?
1. Dalton's Atomic	
Model	
2. Chemical	
Properties	
3. Mendeleev's Table	
4. Physical Trends	
5. Chemical Trends	

8H Rocks

1. F	Rocks and Their Uses
Geologist	A scientist who studies rocks
deologist	and the Earth.
Rocks	Naturally occurring substances
NOCKS	made up of different grains.
Grains	Made from one or more
Grains	chemical compounds.
	The chemical compounds in
Minerals	rocks- rocks are mixtures of
	different minerals.
Toyturo	The combination of sizes and
Texture	shapes of grains in a rock.
Intorlocking	The grains all fit together with
Crystals	no gaps. They are hard and do
Ci ystais	not wear away easily.
	Some rocks have rounded
Rounded	grains with gaps in between.
Grains	They are not strong and can be
	worn away more easily.
	Rounded grain rocks can
Porous	absorb water because it gets
	into the gaps.
Permeable	Water can run through.
Comont	A building material made from
Cement	limestone.
Graval	A mixture of cement, sand and
Glaver	gravel.

•	Formed when molten rock				
Igneous	cools down				
ROCKS	e.g. basalt, granite				
Magma	Molten rock				
	Magma that reaches the				
Lava	Earth's surface.				
	Formed when molten rock				
Small	cools down fast due to less				
Crystals	time for particles to become				
-	ordered.				
	Formed when molten rock				
Large	cools down slowly due to				
Crystals	more time for a large grid				
	pattern to form.				
	Igneous rocks formed from				
Extrusive	cooling lava above the				
	surface.				
	Igneous rocks formed				
Intrusive	underground.				
	Formed by pressure and				
	heat changing other rocks.				
Metamorphi	c e.g. Schist, gneiss (both				
Rocks	formed from granite) slate				
	(from mudstone) and marble				
	(from limestone)				
	Always made from				
Nietamorphi	interlocking crystals which				
ROCK LEXTURE	may form coloured bands.				
2.14					
3. We	eathering and Erosion				
14/+L ·	when rocks are broken up by				
weathering	physical, chemical or				
	biological processes.				
	when rocks are broken up by				
	chemical reactions.				
Cnemical	e.g. gases in air making				
weathering	rainwater slightly acidic which				
	then reacts with minerals in				
	rock wearing them away.				
	When rocks are broken up by				
Biological	living organisms.				
Weathering	e.g. growing plants splitting				
	rocks apart with their roots.				

Physical Weathering	When rocks are broken up by physical processes. e.g. changes in temperature causing expansion and contraction over time, cracking rocks.		The Rock Cycle
Expanding	Rocks get bigger when they are heated.		
Contracting	Rocks get smaller when they are cooled.		
Freeze- Thaw Action	Water gets into cracks in rocks, freezes, expands and then forces the crack to get bigger.	1	5 Native State
Erosion	The movement of loose and weathered rock.	(Ores
Abrasion	When rock fragments bump into each other and are worn away.	I	Extracting Ores
Sediment	Bits of rock and sand in streams or rivers.	ļ	
Glacier	Rivers of ice that move slowly but can transport large pieces		Problems
	of rock.		Rare
4. 9	Sedimentary Rocks	H	Vietals
Sedimentary Rocks	Formed when layers of sediment build up over time followed by compaction then cementation. <i>e.g. sandstone, mudstone</i>		Recycling Recycling Advantag
Compaction	Pressure forces water out from the gaps between grains squashing the grains closer together.		Lesson 1. Rocks Uses
Cementation	Dissolved minerals between the gaps act as a glue and 'cement' the grains together.		Metamo 3. Weat Erosion
Sedimentary Rock Texture	rounded grains. Properties depend on the type of		4. Sedim
	sediment that forms them.		5. Mate Earth

5. N	Aaterials in th	e Earth		
Native	Metals found a	s pure elements		
State	in rocks.			
Ores	Rocks that contain enough of a metal / metal compound to be worth mining.			
Extracting Ores	Ores are obtain then crushed a reactions used metal.	ned by mining, nd chemical to obtain the		
Mining Problems	Damages the environment by destroying habitats and causes pollution.			
Rare	Hard to obtain which makes			
Metals	them expensive.			
Recycling	Using a material again.			
	Cuts down on I	pollution from		
Recycling	mining and lan	dfill sites, allows		
Advantages	supplies to last requires less er	longer and hergy.		
Lesson		Memorised?		
1. Rocks a Uses 2. Igneous Metamory 3. Weather	nd their and ohic ering and			
Erosion				
4. Sedime	ntary Rocks			

Kettering	8l Fluids	Brownian Motion	An erratic movement of small specks of matter caused by being hit by the moving particles that make up liquids or gases.	Mixtures Changing State	Occurs over a range of temperatures as it contains substances with different melting/boiling points. Contracts as it is cooled up	Upthrust Weight	4. Floating and Sinking The force of water pushing upwards. The amount of force with which gravity pulls on a mass
States of	L. The Particle Model The three forms that a substance can be in; solid, liquid	Expanding	Materials expand when heated because the particles vibrate more, taking up more space.	Water	until 4°c and then it expands slightly. Ice takes up more space than water and is less dense	Water Floating	The density of water is 1 g/cm ³ If something has a density less than water it will float in water.
Solid	or gas. Do not flow, fixed shape, fixed	Contract	because the particles vibrate less and take up less space.	3.	Pressure in Fluids	Sinking	than water it will sink in water.
Properties Liquid	volume, cannot be compressed Can flow, no fixed shape, fixed		The mass of a certain volume of a material.	Fluids	Liquids and Gases The force of particles hitting	Air	around 0.001 g/cm ³
Properties Gas	volume, cannot be compressed Can flow, no fixed shape, no fixed volume, can be	Density	$density = \frac{mass}{volume}$	Pressure	things- comes from all directions in gases and liquids.	Hot Air Balloons	the balloon is less than the air around it.
Properties Particle Theory	compressed Used to explain the different properties and observations of	Changes of	2. Changing State Changing from one state of matter to another. Physical	Pressure Units	Pascals (Pa) One pascal is the force of one newton on every square	Drag	5. Drag A resistance force acting on a object to slow it down.
	Fixed arrangement of particles held closely together that	Melting	changes because no new chemicals are made. Turning from a solid to a	Atmospheric Pressure	The pressure of the air- 100,000 Pa	Water Resistanc Air	Type of drag that occurs in water. Type of drag that occurs in ai
Solid Particle Properties	cannot move over each other but vibrate.	Freezing	liquid- occurs at melting point Turning from a liquid to a solid- occurs at freezing point	Tyres	Contain air under high pressure because they are pumped with extra air	Resistanc Friction	Partly causes the drag on a moving object.
		Condensing	Turning from a gas into a liquid.		causing more particles to hit the inside walls.	Streamlin	Med Smooth shape to reduce air /
Liquid Particle	Held closely together but not in a fixed arrangement and can move over each	Sublimatio Evaporatio	n Turning from a solid to a gas. Turning from a liquid into a n gas. Can occur at the surface	Temperature	Pressure in fluids increases as you increase temperature because particles move faster	Speed Balanced	The faster an object is moving the greater the drag. Equal forces acting in opposit
Properties	Ear apart from each other and	Boiling	When evaporation occurs within a liquid- occurs at the		If you compress a gas into a	Forces Engine	directions. Forward force of an engine needs to balance the drag.
Gas Particle	free to move about in all directions.	Pure	A substance made up of a single type of atom or	Volume	increases because the particles hit the walls more.	Lesson 1. The P	Memorised
Properties	The movement of particles	Pure Substances	Occurs at a set temperature. The temperature stays	Pressure From Above	there is more water above you so pressure increases. As	2. Chan 3. Press	ging State sure in Fluids
Diffusion	spreading out and mixing with each other without anything moving them.	State	as bonds are broken or made.		is less air above you so pressure decreases.	4. Float 5. Dr <u>ag</u>	ing & Sinking

Kettering	8J Light	Translucent	Material that lets light through but scatters it. You cannot see things clearly through translucent materials.	Ray diagram	A diagram that represents the path of light using arrows. An imaginary line at right angles to the surface of a mirror or	Lens	A curved piece of glass or other transparent material that can change the direction of rays of light.
1. Vacuum	Light on the move A completely empty space,	Opaque	Material that does not let light through. It is not possible to see through an opaque substance	Incident	other object where a ray of light hits it. A ray of light going towards the mirror or other object	Convergin lens Angle of	g A lens that makes rays of light come together. The angle between the normal and a ray of light that
Matter	containing no particles. All things are made of matter. There are three states of matter: solid, liquid, gas.	Scattered	Scattering occurs when light or other energy waves pass through an imperfect medium (such as air filled with	Reflected ray Angle of incidence	A ray of light bouncing off a mirror. The angle between an incoming light ray and the normal.	refraction Focal poin	 has been refracted. The place where parallel rays t of light are brought together by a converging lens.
Longitudinal	vibrate in the same direction as the wave is travelling.		particles of some sort) and are deflected from a straight path.	Angle of reflectio n	The angle between the normal and the ray of light leaving a mirror.	Focal leng	The distance between the centre of the lens and the focal point.
wave		Reflected ray	A ray of light bouncing off a mirror.		When light is reflected evenly, so that all reflected light goes off in the same direction. Mirrors	Digital	4. Cameras and eyes A camera that uses electronics
Transverse	are at right angles to the direction the wave is travelling.	Source	Where a sound wave or other wave begins. A picture that forms in a	Specular reflectio n	oduce specular reflection.	camera Sensor	An instrument that detects something. In a digital camera, the sensors detect light and
	A parrow beam of light or an	Image	made by a lens. You see an image when looking down a microscope.		B specular reflection Reflection from a rough surface,	Memory card	change it to electrical signals. Part of a digital camera that stores the images.
Ray	arrow beam of light, of an arrow on a diagram representing the path of light and the direction in which it is	Pinhole	A piece of apparatus that forms an image of an object on a screen when light rays	Diffuse reflectio	where the reflected light is scattered in all directions.	Aperture	A hole in a camera that controls how much light goes to the sensor.
	travelling. A material that light can travel through without scattering.	Shadow	travel through a tiny hole in the front A place where light cannot get	n Laur af		Shutter	A device that shields and protects the sensor in a digital camera. It opens when the picture is taken.
Transparent	(Note: transparent substances may be coloured or colourless.)	Shadow	is blocking the light.	reflectio n	The angle of incidence is equal to the angle of reflection.		Lens Vitreous humor Pupil Macula
Transmit i Reflect	To pass through a substance. To bounce off a surface instead of passing through it	Plane A mirror	smooth, flat mirror.		3. Refraction The change in direction when	Human	Forea
	or being absorbed.	Ray box pr	roduces a narrow beam of light. method of investigating what	Refraction	transparent material to another.	eye	Iris Optic nerve
Absorb	'To soak up' or 'to take in'.	tracing	ath of a light ray.	Interface	materials.		Sclera Retina

RetinaThe part at the back of the eye that changes energy transferred by light into nerve impulses.PupilThe hole in the front of the eye that light can pass through.Rod cellA cell in the retina that detects low levels of light. It cannot detect different colours.Cone cellA cell in the retina that detects different colours of light.Cone cellA cell in the retina that detects different colours of light.Cone cellA cell in the retina that detects different colours of light.Filter (phy)IrisThe transparent front part of the eye, which covers the iris and pupil.IrisThe coloured part of the eye.OpticThe nerve that takes impulses from the retina to the brain.Primary colourQuest Colour made when two primary colours mix. The secondary colours are magenta, cyan and yellow.			
Retinathat changes energy transferred by light into nerve impulses.PupilThe hole in the front of the eye that light can pass through. A cell in the retina that detects low levels of light. It cannot detect different colours.Dispun nRod cellA cell in the retina that detects different colours.Dispun nCone cellA cell in the retina that detects different colours of light.PrismCone cellA cell in the retina that detects different colours of light.PrismItThe transparent front part of the eye, which covers the iris and pupil.Filter (phyIrisThe coloured part of the eye.LesOpticThe nerve that takes impulses nerve1. LPrimary colourQetected by the cone cells in our eyes. The primary colours are red, green and blue.3. Filter (a colour made when two secondary primary colours mix. The secondary colours are magenta, cyan and yellow.5. C		The part at the back of the eye	
by light into nerve impulses.PupilThe hole in the front of the eye that light can pass through.A cell in the retina that detectsRod celllow levels of light. It cannot detect different colours.Cone cellA cell in the retina that detects different colours of light.Cone cellA cell in the retina that detects different colours of light.The transparent front part of the eye, which covers the iris and pupil.Filter (phy)IrisThe coloured part of the eye.OpticThe nerve that takes impulses nerveLesPrimary colourQuest the primary colours are red, green and blue.3. FSecondary colourA colour made when two magenta, cyan and yellow.4. C	Retina	that changes energy transferred	
PupilThe hole in the front of the eye that light can pass through.Disput nRod cellA cell in the retina that detectslow levels of light. It cannot detect different colours.PrismCone cellA cell in the retina that detects different colours of light.Cone cellA cell in the retina that detects different colours of light.CorneaThe transparent front part of the eye, which covers the iris and pupil.IrisThe coloured part of the eye.OpticThe nerve that takes impulses nervePrimarydetected by the cone cells in our eyes. The primary colours are red, green and blue.A colour made when two Secondary primary colours mix. The secondary colours are magenta, cyan and yellow.		by light into nerve impulses.	
Pupilthat light can pass through. A cell in the retina that detects low levels of light. It cannot detect different colours.nRod cellA cell in the retina that detects different colours.PrismCone cellA cell in the retina that detects different colours of light.PrismCorneaThe transparent front part of the eye, which covers the iris and pupil.Filter (phyIrisThe coloured part of the eye.LesOpticThe nerve that takes impulses from the retina to the brain.1. LPrimary colourQuest. The primary colours are red, green and blue.3. FSecondary colourA colour made when two magenta, cyan and yellow.5. O	Dunil	The hole in the front of the eye	Disper
A cell in the retina that detects low levels of light. It cannot detect different colours.PrismCone cellA cell in the retina that detects different colours of light.PrismCorneaThe transparent front part of the eye, which covers the iris and pupil.Filter (phyIrisThe coloured part of the eye.LesOpticThe nerve that takes impulses nerve1. LPrimary colourOne of three colours that are red, green and blue.2. FSecondary colourA colour made when two primary colours mix. The secondary colours are magenta, cyan and yellow.4. O	Pupii	that light can pass through.	n .
Rod celllow levels of light. It cannot detect different colours.Cone cellA cell in the retina that detects different colours of light.CorneaThe transparent front part of the eye, which covers the iris and pupil.IrisThe coloured part of the eye.OpticThe nerve that takes impulses from the retina to the brain.Primary colourOne of three colours that are eyes. The primary colours are red, green and blue.Secondary colourA colour made when two magenta, cyan and yellow.		A cell in the retina that detects	
detect different colours.Cone cellA cell in the retina that detects different colours of light.The transparent front part of the eye, which covers the iris and pupil.Filter (phy)IrisThe coloured part of the eye.OpticThe nerve that takes impulses nervePrimary colourOne of three colours that are eyes. The primary colours are red, green and blue.Secondary colourA colour made when two The secondary colours are magenta, cyan and yellow.	Rod cell	low levels of light. It cannot	
Cone cellA cell in the retina that detects different colours of light.PrismThe transparent front part of the eye, which covers the iris and pupil.Filter (phyIrisThe coloured part of the eye.OpticThe nerve that takes impulses from the retina to the brain.Primary colourOne of three colours that are detected by the cone cells in our eyes. The primary colours are red, green and blue.Secondary colourA colour made when two The secondary colours are magenta, cyan and yellow.		detect different colours.	
Cone celldifferent colours of light.PrismThe transparent front part of the eye, which covers the iris and pupil.Filter (phyIrisThe coloured part of the eye.Filter (phyOpticThe nerve that takes impulses from the retina to the brain.LesOpticThe nerve that takes impulses from the retina to the brain.1. LPrimarydetected by the cone cells in our eyes. The primary colours are red, green and blue.3. FSecondaryA colour made when two The secondary colours are magenta, cyan and yellow.5. O		A cell in the retina that detects	
CorneaThe transparent front part of the eye, which covers the iris and pupil.IrisThe coloured part of the eye.OpticThe nerve that takes impulses from the retina to the brain.Primarydetected by the cone cells in our eyes. The primary colours are red, green and blue.SecondaryA colour made when two primary colours mix. The secondary colours are magenta, cyan and yellow.	Cone cell	different colours of light.	Prism
Corneathe eye, which covers the iris and pupil.Filter (phyIrisThe coloured part of the eye.CopticThe nerve that takes impulses nerveLesOpticThe nerve that takes impulses from the retina to the brain.1. LOne of three colours that are detected by the cone cells in our eyes. The primary colours are red, green and blue.2. FSecondaryA colour made when two The secondary colours are magenta, cyan and yellow.4. C		The transparent front part of	
and pupil.(phyIrisThe coloured part of the eye.OpticThe nerve that takes impulsesnervefrom the retina to the brain.One of three colours that arePrimarydetected by the cone cells in ourcoloureyes. The primary colours arered, green and blue.A colour made when twoSecondaryprimary colours mix.colourThe secondary colours aremagenta, cyan and yellow.	Cornea	the eye, which covers the iris	Filter
IrisThe coloured part of the eye.OpticThe nerve that takes impulses nerveLesnervefrom the retina to the brain.1. LOne of three colours that are detected by the cone cells in our eyes. The primary colours are red, green and blue.3. FSecondaryA colour made when two primary colours mix. The secondary colours are magenta, cyan and yellow.5. C		and pupil.	(physi
Optic nerveThe nerve that takes impulses from the retina to the brain.LesOne of three colours that are detected by the cone cells in our eyes. The primary colours are red, green and blue.1. LSecondary colourA colour made when two primary colours mix. The secondary colours are magenta, cyan and yellow.5. O	Iris	The coloured part of the eye.	
nervefrom the retina to the brain.1. LOne of three colours that are detected by the cone cells in our eyes. The primary colours are red, green and blue.2. FSecondaryA colour made when two primary colours mix. The secondary colours are magenta, cyan and yellow.4. C	Optic	The nerve that takes impulses	Lesso
Primary colourOne of three colours that are detected by the cone cells in our eyes. The primary colours are red, green and blue.2. FA colour made when two3. FSecondary colour4. CSecondary magenta, cyan and yellow.5. C	nerve	from the retina to the brain.	1. Lie
Primary colourdetected by the cone cells in our eyes. The primary colours are red, green and blue.2. FA colour made when two3. FSecondary colourA colour made when twoThe secondary colours are magenta, cyan and yellow.5. C		One of three colours that are	
coloureyes. The primary colours are red, green and blue.3. FA colour made when two4. CSecondaryprimary colours mix.colourThe secondary colours are magenta, cyan and yellow.	Primary	detected by the cone cells in our	2. Re
red, green and blue.3. FA colour made when two4. 0Secondaryprimary colours mix.colourThe secondary colours are magenta, cyan and yellow.	colour	eyes. The primary colours are	2 Do
A colour made when two Secondary primary colours mix. colour The secondary colours are magenta, cyan and yellow. 4. 0 5. 0		red, green and blue.	5. NE
Secondary primary colours mix. colour The secondary colours are 5. C magenta, cyan and yellow.		A colour made when two	4. Ca
colour The secondary colours are 5. C magenta, cyan and yellow.	Secondary	primary colours mix.	
magenta, cyan and yellow.	colour	The secondary colours are	5. Co
\mathbf{v}		magenta, cyan and yellow.	

5. Colour		
White	Normal daylight, or the light	
light	from light bulbs, is white light.	
Frequency	The number of vibrations (or	
	the number of waves)	
	per second. Different	
	frequencies of light have	
	different colours.	
Spectrum	The seven colours that make up	
	white light.	

	The separating of the colours in light, for example when white light passes through a prism.
ersio	Red Orange
	White Light Glass Prism
	A block of clear, colourless glass

 Prism
 A block of clear, colouriess glass or plastic. Usually triangular.

 Filter (physics)
 Something that only lets certain colours through and absorbs the rest.

Lesson	Memorised?
1. Light on the move	
2. Reflection	
3. Refraction	
4. Cameras and eyes	
5. Colour	

9A Genetics and **Evolution**

Environment Characteristics Variation	An organisms surroundings - affected by physical environmental factors and living organisms. The features of an organism. The differences between characteristics of
Environment Characteristics	- affected by physical environmental factors and living organisms. The features of an organism. The differences between characteristics of
Characteristics	environmental factors and living organisms. The features of an organism. The differences between characteristics of
Characteristics	living organisms. The features of an organism. The differences between characteristics of
Characteristics Variation	The features of an organism. The differences between characteristics of
Variation	organism. The differences between characteristics of
Variation	The differences between characteristics of
Variation	characteristics of
variation	
	organisms.
	Variation caused by an
Environmental	organism's environment
Variation	e.g. hairstyle
Continuous	Variation that can have any
Continuous	value between two points
variation	e.g. height, mass
	Variation that can only
Discontinuous	have a value from a limited
Variation	set of values
	e.g. eye colour
Classification	Sorting organisms into
Classification	groups.
	The smallest group an
	organism is classified into.
Spacios	Members of the same
species	species can reproduce
	together and produce
	fertile offspring.

2. Inherited Variation	
Inherit	Offspring / children get a mixture of characteristics
	from their parents.
	The variation in
Inherited	characteristics inherited
Variation	from parents
	e.g. blood group

Generationcharacteristics stored inside the nuclei of cells.GametesSex cells (sperm and egg)Sexual ReproductionTwo gametes fuse together ReproductionZygoteFertilised egg cell formed during fertilisation. Contains genetic material from both parents.Normal DistributionBell shape usually given by plotting characteristics that show continuous variation.Normal DistributionUsed data from themselves and other scientists to build the first model of DNA in 1953.Watson and CrickTook x-ray images of DNA and showed it was a spiral structure.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.	IL-OBOTIC	The instructions for inherited	
Internationthe nuclei of cells.GametesSex cells (sperm and egg)Sexual ReproductionTwo gametes fuse together ReproductionZygoteFertilised egg cell formed during fertilisation. Contains genetic material from both parents.Normal DistributionBell shape usually given by plotting characteristics that show continuous variation.Normal DistributionUsed data from themselves and other scientists to build the first model of DNA in 1953.Watson and CrickTook x-ray images of DNA and showed it was a spiral structure.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.Human DNAHuman cell nuclei contain 46 chromosomes.GenesA gene is a section of DNA (a chromosome.	Information	characteristics stored inside	
GametesSex cells (sperm and egg)Sexual ReproductionTwo gametes fuse together ReproductionZygoteFertilised egg cell formed during fertilisation. Contains genetic material from both parents.Normal DistributionBell shape usually given by plotting characteristics that show continuous variation.Normal DistributionSet and the show continuous variation.Normal DistributionVariation in height of Year 9 students and other scientists to build the first model of DNA in 1953.Watson and CrickTook x-ray images of DNA and showed it was a spiral structure.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA (a chromosome.		the nuclei of cells.	
Sexual Reproduction Two gametes fuse together during fertilisation. Zygote Fertilised egg cell formed during fertilisation. Contains genetic material from both parents. Normal Distribution Bell shape usually given by plotting characteristics that show continuous variation. Normal Distribution Example Variation in height of Year 9 students show continuous variation. Watson and Crick Used data from themselves and other scientists to build the first model of DNA in 1953. Rosalind Franklin Took x-ray images of DNA and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. DNA is found in structures (23 pairs). Genes A gene is a section of DNA /a chromosome.	Gametes	Sex cells (sperm and egg)	
Reproductionduring fertilisation.ZygoteFertilised egg cell formed during fertilisation. Contains genetic material from both parents.Normal DistributionBell shape usually given by plotting characteristics that show continuous variation.Normal Distribution ExampleJob transmissionNormal Distribution ExampleJob transmissionNormal Distribution ExampleJob transmissionNormal Distribution ExampleJob transmissionNormal Distribution ExampleJob transmissionNormal Distribution ExampleUsed data from themselves and other scientists to build the first model of DNA in 1953.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.DNA is found in structures called chromosomes inside nuclei of cells.Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.	Sexual	Two gametes fuse together	
ZygoteFertilised egg cell formed during fertilisation. Contains genetic material from both parents.Normal DistributionBell shape usually given by plotting characteristics that show continuous variation.Normal Distribution ExampleImage: Content of the state o	Reproduction	during fertilisation.	
Zygoteduring fertilisation. Contains genetic material from both parents.Normal DistributionBell shape usually given by plotting characteristics that show continuous variation.Normal Distribution ExampleUsed data from themselves and other scientists to build the first model of DNA in 1953.Watson and CrickTook x-ray images of DNA and showed it was a spiral structure.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.Used chromosomes called chromosomesDNA is found in structures called chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.		Fertilised egg cell formed	
Zygote genetic material from both parents. Normal Distribution Bell shape usually given by plotting characteristics that show continuous variation. Normal Distribution Example Jacobia Structure State Stat		during fertilisation. Contains	
Normal Distribution Bell shape usually given by plotting characteristics that show continuous variation. Normal Distribution Example Just State (State (Zygote	genetic material from both	
Normal DistributionBell shape usually given by plotting characteristics that show continuous variation.Normal Distribution ExampleImage: Characteristic shape show continuous variation.Normal Distribution ExampleImage: Characteristic shape show continuous variation.Watson and CrickUsed data from themselves and other scientists to build the first model of DNA in 1953.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral 		parents.	
Normal Distributionplotting characteristics that show continuous variation.Normal Distribution ExampleImage: Characteristics that show continuous variation.Normal Distribution ExampleImage: Characteristics that show continuous variation.Watson and CrickUsed data from themselves and other scientists to build the first model of DNA in 1953.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.DNA is found in structures called chromosomes inside nuclei of cells.Human DNAHuman cell nuclei contain 46 chromosome.GenesA gene is a section of DNA /a chromosome.		Bell shape usually given by	
Distributionshow continuous variation.Normal Distribution ExampleImage: Continuous variation.Normal Distribution ExampleImage: Continuous variation.3. DNA Used data from themselves and other scientists to build the first model of DNA in 1953.Watson and CrickTook x-ray images of DNA and showed it was a spiral structure.DNA is found in structures called chromosomes inside nuclei of cells.Human DNA GenesHuman cell nuclei contain 46 chromosome.	Normal	plotting characteristics that	
Normal Distribution Example120 up get	Distribution	show continuous variation.	
Normal Distribution ExampleImage: state of the sta		Variation in height of Year 9 students	
Normal Distribution ExampleImage: Construction Distribution ExampleImage: Construction Distribution Distribution Distribution Distribution Distribution ExampleImage: Construction Distribution		100 pormal distribution	
Distribution Example 3. DNA Watson and Crick Bosalind Franklin Chromosomes Chromosomes Chromosomes Chromosomes A gene is a section of DNA /a chromosome.	Normal	80	
Example Image: Constraint of the second	Distribution	ເຮັດ 60	
Watson and Crick Used data from themselves and other scientists to build the first model of DNA in 1953. Rosalind Franklin Took x-ray images of DNA and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. DNA is a section of DNA in 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome. A gene is a section of DNA /a chromosome.	Evample	40 Z	
Support of the set of t	Lvallible	20	
Heidrit crouts from Heidrit crouts from Watson and Watson and Used data from themselves and other scientists to build the first model of DNA in 1953. Rosalind Franklin Took x-ray images of DNA and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human DNA Human cell nuclei contain 46 chromosomes (23 pairs). Genes A gene is a section of DNA /a chromosome.		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
3. DNAWatson and CrickUsed data from themselves and other scientists to build the first model of DNA in 1953.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.ChromosomesDNA is found in structures called chromosomes inside nuclei of cells.Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.	Heiaht aroups (cm)		
Watson and CrickUsed data from themselves and other scientists to build the first model of DNA in 1953.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.Chromosomes ChromosomesDNA is found in structures called chromosomes inside nuclei of cells.Human DNA GenesHuman cell nuclei contain 46 chromosome.	3. DNA		
Watson and Crickand other scientists to build the first model of DNA in 1953.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.Chromosomes called chromosomes inside nuclei of cells.DNA is found in structures called chromosomes (23 pairs).Human DNA GenesHuman cell nuclei contain 46 chromosome.		Used data from themselves	
Crickthe first model of DNA in 1953.Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.ChromosomesDNA is found in structures called chromosomes inside nuclei of cells.Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.	Watson and	and other scientists to build	
1953. Rosalind Took x-ray images of DNA and showed it was a spiral structure. Franklin DNA is found in structures called chromosomes inside nuclei of cells. Human DNA Human cell nuclei contain 46 chromosomes (23 pairs). Genes A gene is a section of DNA / a chromosome.	Crick	the first model of DNA in	
Rosalind FranklinTook x-ray images of DNA and showed it was a spiral structure.ChromosomesDNA is found in structures called chromosomes inside nuclei of cells.Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.		1953.	
Rosalind and showed it was a spiral structure. Franklin DNA is found in structures called chromosomes called chromosomes inside nuclei of cells. Human DNA Human cell nuclei contain 46 chromosomes (23 pairs). Genes A gene is a section of DNA /a chromosome.		T (D) 4	
Franklin structure. Chromosomes DNA is found in structures called chromosomes inside nuclei of cells. Human DNA Human cell nuclei contain 46 chromosomes (23 pairs). Genes A gene is a section of DNA / a chromosome.		TOOK X-ray images of DNA	
Chromosomes DNA is found in structures called chromosomes inside nuclei of cells. Human DNA Human cell nuclei contain 46 chromosomes (23 pairs). Genes A gene is a section of DNA /a chromosome.	Rosalind	and showed it was a spiral	
Chromosomes called chromosomes inside nuclei of cells. Human DNA Human cell nuclei contain 46 chromosomes (23 pairs). Genes A gene is a section of DNA /a chromosome.	Rosalind Franklin	and showed it was a spiral structure.	
nuclei of cells.Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.	Rosalind Franklin	and showed it was a spiral structure.	
Human DNAHuman cell nuclei contain 46 chromosomes (23 pairs).GenesA gene is a section of DNA /a chromosome.	Rosalind Franklin Chromosomes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside	
Human DNA 46 chromosomes (23 pairs). Genes A gene is a section of DNA /a chromosome.	Rosalind Franklin Chromosomes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells.	
Genes A gene is a section of DNA /a chromosome.	Rosalind Franklin Chromosomes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain	
Genes /a chromosome.	Rosalind Franklin Chromosomes Human DNA	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs).	
	Rosalind Franklin Chromosomes Human DNA	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs).	
Determines sev of offenring	Rosalind Franklin Chromosomes Human DNA Genes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome	
Sex Girls have two X	Rosalind Franklin Chromosomes Human DNA Genes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome.	
Chromosomes chromosomes hove have ar	Rosalind Franklin Chromosomes Human DNA Genes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome. Determines sex of offspring. Girls have two X	
V and a V	Rosalind Franklin Chromosomes Human DNA Genes Sex	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome. Determines sex of offspring. Girls have two X	
	Rosalind Franklin Chromosomes Human DNA Genes Sex Chromosomes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome. Determines sex of offspring. Girls have two X chromosomes, boys have an	
Cell Division	Rosalind Franklin Chromosomes Human DNA Genes Sex Chromosomes	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome. Determines sex of offspring. Girls have two X chromosomes, boys have an X and a Y.	
to form two daughter cells.	Rosalind Franklin Chromosomes Human DNA Genes Sex Chromosomes Cell Division	and showed it was a spiral structure. DNA is found in structures called chromosomes inside nuclei of cells. Human cell nuclei contain 46 chromosomes (23 pairs). A gene is a section of DNA /a chromosome. Determines sex of offspring. Girls have two X chromosomes, boys have an X and a Y. The splitting of a parent cell	

Zygote Formation	egg-making cell a b b b b b b b b b b b b b b b b b b b	Ge Na Se
	The zygote contains 46 chromesomes 23 from the sperm cell and 23 from the egg cell.	
4. G	enes and Extinction	Pe
Adaptations	Features of an organism to	M
	help it survive in its habitat.	
Ecosystem	All the physical environmental factors and living organisms in a habitat.	
Endangered	When a species is at risk of becoming extinct.	Ev
Extinct	When a species no longer exists.	Ne
Competition	Organisms fighting over the resources that are available.	Da
Native	A species that has always lived in an area.	Ev
Squirrels	Red squirrels are native to the UK and grey squirrels came to the UK in the 1870's. Grey squirrels can store more fat to survive the winter and can digest unripe acorns unlike red squirrels. This has meant grey populations have increased leaving less food for red squirrels.	L 1 V 2 3
Biodiversity	The number of different	E
Preserving Biodiversity	Banning hunting, set up nature reserves, start breeding programmes and gene banks.	5

	Storing parts of organisms
Gen Banks	(seeds, gametes etc.) to grow
	if they become extinct.
5.	Natural Selection
	A change in the environment
Natural	causes certain characteristics
Selection	to be 'selected' to pass on to
	the next generation.
	Most peppered moths were
	pale in the 1850's. Then
	factories started churning
	out soot, turning trees black.
Peppered	Birds could now easily spot
Moths	the pale moths to eat them.
	More black moths survived
	and reproduced, increasing
	their numbers. This is an
	example of natural selection.
Evolution	A change over time in the
Evolution	characteristics of organisms.
Now Crosses	As populations evolve they
New Species	can become new species.
Demainle	Charles Darwin and Alfred
Darwin's	Russel Wallace developed a
Theory of	hypothesis that natural
Evolution	selection causes evolution.

Lesson	Memorised?
1. Environmental	
Variation	
2. Inherited Variation	
3. DNA	
4. Genes and	
Extinction	
5. Natural Selection	

9B Plant Growth

1. Reactions in Plants		
Poostants	The substances that take	
Reactants	part in a chemical reaction.	
Droducto	The new substances made	
Products	in a chemical reaction.	
Dhotosunthosis	A process that plants use	
Photosynthesis	to make their own food.	
Photosynthesis	Word Equation	
carbon dioxide + water		
	Where photosynthesis	
Chloroplasts	occurs inside plant cells.	
	A substance inside	
Chlorophyll	chloroplasts that captures	
	the light energy needed for	
	photosynthesis.	
Limiting Factor	A variable that slows down	
	the rate of photosynthesis.	
Aerobic	The process by which living	
Pospiration	organisms release energy	
Respiration	stored in glucose.	
Aerobic Respiration Word Equation		
glucose + oxygen \rightarrow carbon dioxide + water		
Phloom	The vessels inside plants	
Philoem	that transport glucose.	

2. Plant Adaptations		
Adaptations	Features that something has to enable it to do a certain job.	
Root Adaptations	They are branched and spread out, helping them to get a large volume of water.	
Root Hair Cells	Increase the surface area of roots so that more water can be absorbed.	

Vulom	The vessels inside plants that	
луют	transport water.	
	- photosynthesis	
Uses of	 keeping leaves cool 	
Water	- filling up cells to keep them	
	expanded and firm	
Palicado	Cells in a leaf adapted to	
Colle	carry out photosynthesis by	
Cells	having lots of chloroplasts.	
	A waxy layer on the outside	
Cuticle	of a leaf that stops them	
	from losing too much water.	
	Small holes in a leaf that	
Stomata	open and close to allow gas	
	exchange.	
Cuard Calls	The cells that open and close	
	the stomata.	
Gas	The swapping of different	
Uas Evolution	gases from inside the leaf	
Exchange	and the atmosphere.	
Structure of a Leaf		

3. Plant Products			
ipids	Insoluble substances that		
	include fats and oils.		
	- Found in the cuticle, making		
Jses of ipids	it waterproof		
	- make parts of the cell like		
	cell membranes		
	 energy store found in seeds 		
	A substance made up of a		
olymer	long chain of repeating		
	groups of atoms (monomers).		

Starch	A polymer formed by linking together glucose molecules.	
	Stored in the chloroplast until photosynthesis stops then	Bree
Uses of Starch	broken down into sugars to be transported. It can then be converted to starch and stored in storage organs or	Selec Bree
	used to make cellulose.	
Testing for	Iodine solution will turn blue-	
Starch	black is starch is present.	
Proteins	Polymer formed by joining long chains of amino acids.	Ferti
Nitrates	Needed to make amino acids.	Prob
	Water and oxygen enter seed allowing molecules to move around. Enzymes released	
Germination	that digest starch into glucose which enters the	Pesti Prob
	and grow	
	and grow.	Varie
		F 1 1 1 1
4	. Growing Crops	
4 Vield	. Growing Crops The amount of useful	The (
4 Yield	. Growing Crops The amount of useful product you get from a crop.	The (
4 Yield Increasing Yield	Growing Crops The amount of useful product you get from a crop. Forests are cut down, hedgerows removed, machines used	The
4 Yield Increasing Yield Fertilisers	Growing Crops The amount of useful product you get from a crop. Forests are cut down, hedgerows removed, machines used Contain mineral salts that plants need to grow.	The
4 Yield Increasing Yield Fertilisers Decomposers	Growing Crops The amount of useful product you get from a crop. Forests are cut down, hedgerows removed, machines used Contain mineral salts that plants need to grow. Microorganisms that break down manure and release mineral salts.	The
4 Yield Increasing Yield Fertilisers Decomposers Pesticides	Growing Crops The amount of useful product you get from a crop. Forests are cut down, hedgerows removed, machines used Contain mineral salts that plants need to grow. Microorganisms that break down manure and release mineral salts. Kill pests	The
4 Yield Increasing Yield Fertilisers Decomposers Pesticides Insecticides	Growing Crops The amount of useful product you get from a crop. Forests are cut down, hedgerows removed, machines used Contain mineral salts that plants need to grow. Microorganisms that break down manure and release mineral salts. Kill pests Kill insect pests	The
4 Yield Increasing Yield Fertilisers Decomposers Pesticides Insecticides Fungicides	Growing Crops The amount of useful product you get from a crop. Forests are cut down, hedgerows removed, machines used Contain mineral salts that plants need to grow. Microorganisms that break down manure and release mineral salts. Kill pests Kill insect pests Kill fungi that cause plant disease	Less
4 Yield Increasing Yield Fertilisers Decomposers Decomposers Pesticides Insecticides Fungicides Herbicides	Growing CropsThe amount of useful product you get from a crop.Forests are cut down, hedgerows removed, machines usedContain mineral salts that plants need to grow.Microorganisms that break down manure and release mineral salts.Kill pestsKill insect pestsKill fungi that cause plant diseaseKill weeds (weedkillers) that compete with crops for resources- they are selective so only kill the weeds	Less 1. R 2. P 3. P 4. G

	Breeding different varieties		
'OSS-	together to produce		
reeding	offspring with characteristics		
	of both.		
	Choosing organisms to breed		
elective	based on the characteristics		
reeding	that you want in the		
	offspring.		
_			
5.	Farming Problems		
	Can wash into rivers causing		
	fast growth of algae which		
ertiliser	blocks out the light causing		
oblems	plants to die. Decomposers		
	break down dead material		
	using up oxygen.		
	Some do not break down in		
esticide	the environment (they are		
roblems persistent) so move up t			
	food web.		
arieties	They are identical so a		
ohlems	disease will affect them all.		
Obieins	Biodiversity is reduced.		
ne Carbon C	ycle		
COMBUSTION-	➤ carbon dioxide (CO₂) < RESPIRATION → in the air <		
RESPIRA	PHOTOSYNTHESIS		
Some plants -	carbon compounds carbon compounds		
(e.g. trees) are burned.	In certain conditions		
1	fossil fuels. Most dead plants, dead animals and animal dropping are		
ET	broken down by decomposers (e.g.		
	i fungi). Decomposers ♥ ♥ also respire. coal and oil oil and		
power station -	natural gas		

Lesson	Memorised?
1. Reactions in Plants	
2. Plant Adaptations	
3. Plant Products	
4. Growing Crops	
5. Farming Problems	

9F Reactivity

1. Types of Explosion			
	Sudden increase in volume of		
Explosion	gas and huge transfer of energy		
	to the surroundings.		
Physical	Changes where no new		
Changes	substances were made.		
Chemical	Changes where one or more		
Reaction	new substances are made.		
Flammable	A substance that catches fire		
Fiammable	easily.		
	The starting substances-		
Reactants	written on left of word		
	equation.		
	The new substances made-		
Products	written on right of word		
	equation.		
Gas	The force gas particles exert by		
Drossuro	hitting the walls of the		
riessure	container they are in.		
Increasing	 Increasing number of particles 		
Gas	 Decreasing size of container 		
Pressure	 Increasing temperature 		

2. Reactivity			
Reactivity	List of metals in order of		
Series	reactivity		
	React to form metal		
Metals &	hydroxides and hydrogen.		
Water	sodium + water \rightarrow sodium		
	hydroxide + hydrogen		
Metals & Acids Word Equation			
metal + acid → salt + hydrogen			
magnesium + sulfuric acid \rightarrow magnesium			
sulfate + hydrogen			
Naming	The first word in the salt is		
Naming	the metal the second		
Saits	depends on the acid used.		

Hydrochloric		Forms salts ending in chloride							
Acid									
Sulfuric Acid		For	ms sa	alts	ending	in	sulf	ate	
Nitric Acid			For	ms sa	alts	ending	in	nitr	ate
Μ	letals &		Rea	ict to	fo	rm meta	al c	oxid	es
0	xvgen		Zind	c + ox	va	$en \rightarrow zi$	nc	oxic	le
_	78-1		Rea	ction	in	which		uhst	ance
0	xidation)	gair		vge	n.			anec
R	eactivity	/ Se	ries	10 0/	10				
		Rea	ction	Poacti	on	Position			
	Metal	w oxyg	rith gen in air	with co wate	old	with dilute acid			
	potassium	1	12	*		*			
	sodium	1	•	11.	1		4		
	lithium	1	•	11		111			
	calcium		•	11		111			
	magnesium	1	*	1		11		>	
	aluminium	1	11	• • •		11		ctivit	
	zinc	~	1	•••		11		read	
	iron	~	1	•••		1		asing	
	tin		/	•••		1		ncrea	
	lead	,	/	/ •••		1		-	
	copper	,	/ X			×			
	mercury	•	••	• X		×			
	silver	•	••	×		×			
	gold		X	x x		×			
	platinum		X			×			
	Key								
	👐 explosi	ve	h ca	n catch	11	reacts ver	Ŋ	1	
	/ reacts	-	✓ reacts		slow or pa	artial			
	v quickly		reaction						
	reactio	n	F a u		b	+			- f
Rı	ust		FOR	iiieu Saad	υγ		US	1011	01
ir			iron and steel.						
Pı	reventin	g	USE	Use a barrier such as paint/				π/	
Rust		plastic/oil to keep away							
		air/	wate	r					
Sacrificial Protection		More reactive metals are							
		attached to react with water							
& oxygen instead of the iron.									
	3	E	nerg	v an	d	Reactio	ns	:	
			Ofto		ad c	neticitie	nv		
0	wace		Untern needed in many						
	vygen	ľ	ovel		199		.11d	ι Cd	use
	e			USION	5.				

	1		-		
Oxidising	A substance that provides		Thermite rea	ction needs an	
Agent	oxygen to oxidise another	Energy	input of ener	gy by lighting a	
Agent	substance.		fuse.		
	Oxidising	Thormito	Used on a la	rge scale to join	
	The hazard symbols for	Beestien	two sections	of railway track	
	substances which are	Reaction	as molten iro	on runs into the	
\sim	oxidising.	Uses	gap and solid	lifies.	
Dotoccium	Oxidising agent mixed with		Displacemen	t reactions also	
Nitroto	powdered charcoal to make	Solutions	occur in solu	tions.	
minate	gunpowder.		e.g. zinc in co	opper sulfate	
Oxygen	Oxygen will relight a glowing	-		latala	
Test	splint.	5.	Extracting IV	letais	
	Small pieces of solid have a	Native State	When a meta	l is found in the	
	greater surface area over		Earth as an e	ement.	
Surface	which a chemical reaction can		Rock that cor	itains enough of	
Area	occur. Explosives react more	Ore	a metal/metal compound to		
	quickly if the solid fuel is		be worth min	ing.	
	broken into tiny pieces.	Extracting	Iron is found as iron oxide.		
	Cannot be created or	Iron	Oxygen is ren	noved by	
Energy	destroyed only transferred and		heating with carbon.		
	stored.	Extracting Iron Word Equation			
	Energy stored in the reactants	Iron oxide + o	$arbon \rightarrow iron$	+ carbon dioxide	
Exothermic	is transferred to the	Reduced	When a substance has lost		
Reactions	surroundings.		oxygen.		
	e.g. combustion, neutralisation		Used to extract reactive		
	Energy is transferred from the	Electrolysis	metals (e.g. aluminium) from		
Endothermic	surroundings to the reactants		their ores using electricity.		
Reactions	e.g. thermal decomposition	Extracting Aluminium Word Equation			
	Compound containing only	Aluminium ox	$kide \rightarrow alumin$	ium + oxygen	
Hydrocarbon	hydrogen and carbon.	Potassium -	Extracted through		
-	e.a. methane (CH₄)	Aluminium	electrolysis		
		Zing Connor	Extracted by I	neating with	
	4. Displacement	Zine - copper	carbon.		
	Reaction where a more	Silver-	Found in nativ	vo stato	
Displaceme	nt reactive metal displaces	Platinum	Found in native state.		
Reaction	(takes the place of) a less	Lannan		Managianda	
reactive one.		Lesson	- • •	wemorised?	
Displaceme	nt Reaction Word Equation	1. Types of	Explosion		
Aluminium +	iron oxide \rightarrow aluminium oxide + iron	2. Reactivit	t y		
Thermite	Displacement reaction	3. Energy 8	Reactions		
Reaction	petween aluminium and iron	4. Displace	ment		
	onde.	5. Extractin	ng Metals		
		STEATICT	Binetais	1	

9J Force Fields and Electromagnets

	1. Force Fields		•	
	The area around something		Sta	
Force Field	where a non-contact force		Fle	
	can affect things.			
Non-Contact	A force which can affect			
Force	something from a distance.		NU	
Magnotic	The space around a magnet			
Field	where it can affect magnetic		Ele	
riela	materials or other magnets.			
	To push away.			
Repel	Two of the same poles will			
	repel each other.			
	To draw together.		At	
Attract	A north and a south pole will			
	attract each other.			
Earth's	Protects the Earth from	1		
Magnetic	charged particles emitted by			
Field	the Sun			
	The amount of matter that		Ch	
Mass	something is made up of-			
11035	measured in grams /			
	kilograms.			
Crewitetional	The space around any object		EI/	
Field	with mass where its gravity		LIC	
rielu	attracts other masses.			
	The force with which a			
Gravitational	gravitational field pulls on	-		
Field	each kilogram of mass. Earths	s Ele Cu Cu		
Strength	gravitational field strength is			
	approximately 10 N/Kg.			
	The amount of force with		Se	
	which gravity pulls things.		Cu	
Weight	Measured in Newtons.		Pa	
	Weight = mass x gravitational	n L		
	field strength			

Gravitational	Energy stored in objects in		
Potential	high places that can fall		
Energy (GPE)	down.		
2	Static Electricity		
2.	A positive or negative charge		
	on an insulating material		
Static	caused when rubbing		
Electricity	transfers electrons from one		
	material to another.		
	The central part of an atom-		
Nucleus	has a positive charge.		
	Small particles moving		
Electrons	around the nucleus in an		
	atom- have a negative charge		
Atom	electrons		
Charges	Something with a charge of static electricity can attract uncharged objects. Two charged objects can attract or repel each other.		
	The space around an object		
	with a charge of static		
Electric Field	electricity where it can affect		
	other objects.		
3	Current Electricity		
Electric	The flow of electrons in a		
Current	circuit.		
Current in	The current is the same		
Series	everywhere in a series circuit.		
Current in Parallel	The current through the cell splits up when it comes to a junction in a parallel circuit.		

to measure the current flowing through a circuit- measured in amperes (A).		
flowing through a circuit- measured in amperes (A).		
measured in amperes (A).		
How much energy is		
transferred by electricity by a		
cell / component.		
Connected in parallel and		
used to measure the voltage		
of a component- measured in		
volts (V)		
4. Resistances		
How difficult it is for		
electricity to flow through		
something.		
A component that makes it		
difficult for electricity to		
flow. Used to reduce the		
size of the current in a		
circuit.		
Increasing the length of a		
wire or decreasing the		
thickness will increase the		
resistance.		
Do not conduct electricity-		
they have very high		
resistances.		
The units for measuring		
resistance- Ω		
Voltage = current x		
resistance		

5. E	lectromagnets
Electromagnets	A coil of wire with
	electricity flowing in it that
	has a magnetic field
	around it.

Increasing Electromagnet Strength	Increasing the number of
	coils.
	Increasing the current in
	the wire.
	Using a magnetic material
	as a core.
Relays	A small current is used to
	switch on a circuit that
	carries a much bigger
	currne.t
Motor Effect	The force produced when
	a wire carrying a current is
	placed in a magnetic field.
Electric Motor	A coil of wire in a magnetic
	field. The coil spins when a
	current flows through it.

Lesson	Memorised?
1. Force Fields	
2. Static Electricity	
3. Current Electricity	
4. Resistances	
5. Electromagnets	