

Knowledge

Organisers

Year 9 PC3 (June Exam)

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to **recall** from a particular topic. That means that it **does not have everything on it** for a unit of study but it does have **the most essential things to learn.**

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that **the more you know** the **more you can learn.** By being able to recall the facts, you are able to understand more complicated ideas because you **already know what the key words mean.** You will also already have a set of ideas in your mind that the new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

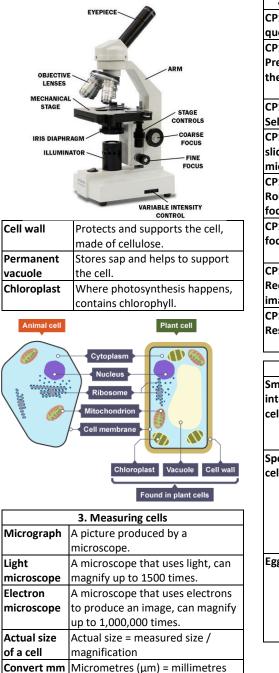
Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!


Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.

B1a: Biology key concepts		
1. Microscopes		
Magnification	The number of times bigger	
-	something appears under a	
	microscope.	
Eyepiece lens	The lens on a microscope that	
	you look through.	
Objective	The lens at the bottom of a	
lens	microscope. There are normally	
	three you can choose from.	
Total	Eyepiece lens x objective lens.	
magnification		
Resolution	The smallest distance between	
	two points so that they can still	
	be seen as two separate points.	
Stains	Dyes added to microscope slides	
-	to show the details more clearly.	
Milli	Thousandth, 1x10 ⁻³ (a millimetre	
	is a thousandth of a metre).	
Micro	Millionth, 1x10 ⁻⁶ (a micrometre is	
	a millionth of a metre).	
Nano	Billionth, 1x10 ⁻⁹ (a nanometre is a	
litano	billionth of a metre).	
Pico	Trillionth, 1x10 ⁻¹² (a picometre is	
	a trillionth of a metre).	
2. Plant and animal cells		
Cell	The basic structural unit of all	
	living things (the building blocks	
	of life).	
Parts of an	Cell membrane, cytoplasm,	
animal cell	nucleus, ribosomes,	
	mitochondria.	
Parts of a	Cell membrane, cytoplasm,	
plant cell	nucleus, ribosomes,	
	mitochondria, cell wall,	
	permanent vacuole, chloroplasts.	
Cell	Controls what enters and leaves	
membrane	the cell.	
Cytoplasm	A jelly-like substance where	
	chemical reactions take place.	
Nucleus	Contains DNA and controls the	
	cell.	
Ribosome	Produces proteins.	
Mitochondria	Releases energy by aerobic	
-	respiration.	
	· · ·	

to µm

(mm) x 1000

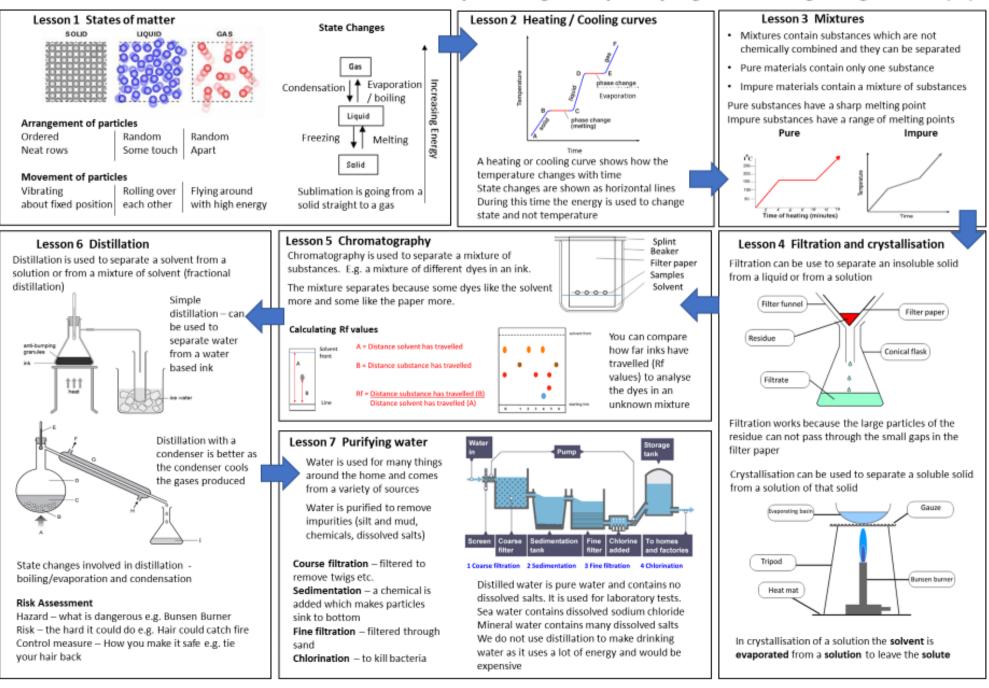
4. Core	practical – using microscopes (CP1)	Ciliated	Job: T	o clear m
CP1 – key	What do cells look like under a light			ther inte
question	estion microscope?		Adapt	ations: S
CP1 –	P1 – Collect the cells you are studying		surfac	e – callec
Prepare and place them on the slide. Add a			sweep	mucus a
he slide	drop of stain and cover with a cover			Dector
	slip.	Doute of		5. Bacteri
CP1 –	Choose between the 4x, 10x and	Parts of bacteria		All bacto
Select len	s 40x objective lenses.	bacteria	cell	cell wall
CP1 – Plac	e Place slide on microscope stage,			ribosom plasmid
slide in	adjust the coarse focus until the			•
nicroscop	e lens is just touching the slide.	Chromo	omal	Some ba Large pi
CP1 –	Looking through the eyepiece,	DNA	Soniai	
Rough	slowly adjust the coarse focus until	Plasmid		most ge Small Io
ocus	you see a rough image.	Flasillu	DINA	a few ge
CP1 – Fine	Looking through the eyepiece,	Flagellu	n	A tail us
ocus	slowly adjust the fine focus until	Eukaryo		Cells wit
	you see a sharply focussed image.	Prokary		Cells wit
CP1 –	Draw what you see, label any cell	cells	Juc	Cells wit
Record th	e parts you can recognise and repeat	Standar	form	A 14/21/ O
mage	with different objective lenses.	Stanuar	lionni	A way o terms of
CP1 -	As you increase the magnification of			terms o
Results	the objective lens, the cells appear			
	larger and more detailed.			
	5. Specialised cells			
Small	Job: To absorb small food molecules			
ntestine	produced during digestion.			The inde
ell	Adaptations: Tiny folds called			number
	microvilli that increase their surface			decimal
	area.			osomal
Sperm	Job: Fertilise an egg and deliver male		DI	A
cell	DNA.			
	Adaptations: A tail to swim,			1
	mitochondria to give energy for			
	swimming, an acrosome to break		22	
	through the egg's jelly coat, haploid		1	
	nucleus with only half the total DNA.		1	
gg cell	Job: To be fertilised by a sperm and			
	then develop into an embryo.		1000	
	Adaptations: Jelly coat to protect the			um (not present)
	cell, many mitochondria and nutrients		aiways	present)
	to provide energy for growth, haploid			
	nucleus with only half the total DNA.			Cell

ob: To clear mucus out of your lungs and other internal surfaces). daptations: Small hairs on the urface – called cilia – which wave to weep mucus along. 6. Bacterial cells All bacteria: Cell membrane, lle cell wall, cytoplasm,

plasmid DNA

ribosomes, chromosomal DNA,

Some bacteria: flagellum.


Large piece of DNA containing

	01 0
	most genes.
4	Small loops of DNA containing
	a few genes.
	A tail used for movement.
ells	Cells with a nucleus.
	Cells without a nucleus.
m	A way of writing numbers in
	terms of powers of ten. E.g.
	0.015 = 1.5 x 10 ⁻²
	0.000458 = 4.56 x 10 4
	The index of ten (the 'minus' number) tell you which
	decimal point to start on.
iromo DN	osomal IA Plasmid DNA
2	

Cell wall

Cell membrane

CC1-SC2: States of matter, separating and purifying knowledge organiser (H)

CP1/SP1 Motion

Speed – word

equation

stationary

1. Vectors and Scalars			
Magnitude	The size of something, such as		
	the size of a force or the		
measurement of a distance.			
Scalar	A quantity that has a magnitude		
quantity	(size) only, but not a direction.		
Scalar	Distance – 10 m		
examples	Speed – 25 m/s		
	Mass – 50 kg		
	Energy – 300 J		
Vector	A quantity that has both a		
quantity	magnitude (size) and a direction.		
Vector	Displacement – 10 m north		
examples	Velocity – 25 m/s east		
	Force – 30 N left		
	Acceleration – 3 m/s ² south		
	Momentum – 400 N m/s right		
	Weight – 600N down		
Vector	Vectors can be represented by		
arrows	arrows, with the length of the		
	arrow representing the		
	magnitude.		
Displacement	The distance travelled in a		
	particular direction.		
Velocity	The speed of an object in a		
	particular direction.		
	2. Speed		
Speed	A measure of the distance an		
opeeu	incusure of the distance all		

object travels in a given time.

Speed limit in towns – 10.5 m/s

Motorway speed limit – 31 m/s

Commuter train – 55 m/s

High speed train – 90 m/s

Units of speed Metres per second (m/s)

Walking – 1.4 m/s

Airliner – 250 m/s

Cycling – 6 m/s

Ferry 18 m/s

Some typical

speeds

	Time (s)
	x
	s × t
Speed –	v = x/t
symbol	
equation	v = speed
	x = distance
	t = time
Instantaneous	The speed at one particular
speed	moment in a journey.
Average	The speed worked out from the
speed	total distance travelled divided
	by the total time taken for a
	journey. ν = x/t.
Calculating	Distance = average speed x time
distance	x = v x t
travelled –	
word	Distance (m)
equation	Average speed (m/s)
	Time (s)
Measuring	Measure the distance between
speed	two points and time how long an
	object takes to pass, then
	calculate using v = x/t.
Light gates	A piece of apparatus containing
	an infrared beam that is
	transmitted from a source onto
	a detector. If the beam is cut,
	the light gate measures how
	long it is cut for, giving a reading
	for time.
3. Di	stance-Time Graphs
	A graph showing the distance
graph	travelled against time for a
0	moving object.
	Time is on the x-axis and
	distance on the y-axis.
Distance-time	Horizontal line
graphs –	
Bi apris -	

C on diagram below

Speed = distance / time

Speed (m/s)

Distance (m)

by Units of acceleration down Positive and negative acceleration or graph. Deceleration
down Positive and negative acceleration pgraph. Deceleration
negative acceleration graph. Deceleration
graph. Deceleration
graph. Deceleration
Deceleration
ce/ Acceleration –
word equation
hange
C
Acceleration –
symbol equation
Symbol equation
Linking
acceleration and
elled: m - 80 m = distance
travelled
traveneu
Acceleration due
to gravity
(free fall)
Like the
kly the 5. Vel
s Velocity-time
ge of graph
an
nd
down. Velocity-time
graphs –
constant speed

Units of	Metres per second squared			
acceleration	(m/s ²)			
Positive and	Positive acceleration =			
negative	speeding up			
acceleration	Negative acceleration =			
	slowing down			
Deceleration	Slowing down, negative			
	acceleration.			
Acceleration –	Acceleration = change in			
word equation	velocity / time			
	Acceleration (m/s ²)			
	Change in velocity (m/s)			
	Time (s)			
Acceleration –	a = (v – u)/ t			
symbol equation				
	(v - u) a × t			
	a = acceleration			
	v = final velocity			
	u = initial velocity			
	t = time			
Linking	Use the equation:			
acceleration and	-			
distance travelled	$x = (v^2 - u^2) / 2a$			
travelleu	x – (v ² – u ²) / 2a			
	x = distance travelled			
	a = acceleration			
	v = final speed			
	u = initial speed			
Acceleration due	10 m/s ²			
to gravity (free fall)				
	ocity Timo Cranks			
	ocity-Time Graphs			
	A graph of velocity against time			
	for a moving object.			
	Time is on the x-axis, velocity is			
	on the y-axis.			
Velocity-time	Horizontal line			

r		
Velocity-time	Speeding up – line sloping up	6. Cal
graphs –		
acceleration	Slowing down – line sloping	
	down	
Velocity-time	Horizontal line on the x-axis	
graphs –		
stationary		
Velocity-time	Steeper line = greater	
graphs – line	acceleration	
gradient		Instanta
Calculating	Acceleration = change in	speed
acceleration on	velocity / change in time =	
a velocity-time	gradient	
graph		
	gradient = change in y / change	
	in x	
Calculating	Distance = area under the	
distance	graph.	
travelled from a		
velocity-time	Divide the graph into	
graph	rectangles and triangles, find	
	the area of each and add them	80.0
	together.	
an	ea of triangle = $\frac{1}{2}$ x base x height	Ê 60.0
area = 5 s x 10 m/s	$=\frac{1}{2} \times 5 \text{ s} \times 30 \text{ m/s}$ area = 5 s x 10 m/s	m) <i>x</i> (0.00 0.00
= 50 m	= 75 m = 50 m	5 40.0
		11 40.0
(%))))))))))))))))))))))))))))))))))))		
		20.0
0 1 2 3	4 5 6 7 8 9 10 11 12 Time (s)	
		0
The total distance travelled	by the object in graph D is the sum of all the areas.	(
total distance travelled	= 50 m + 50 m + 75 m = 175 m	
	-	

		g instantaneous speed IGHER ONLY)	Lesson	Memorised?
		Draw a tangent to the curve of the graph at the time you	1. Vectors and Scalars	
		want to calculate the instantaneous speed for.	2. Speed	
		Find the gradient of the tangent line by calculating the	3. Distance-Time Graphs	
_	Instantaneous speed	change in distance on the y axis and the change in time on	4. Acceleration	
		the x axis. Instantaneous speed =	5. Velocity Time Graphs	
e		gradient of tangent = change in distance / change in time	6. Calculating instantaneous speed (HIGHER ONLY)	

 $\Delta t = 5.0 \text{ s}$

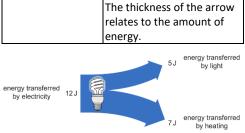
Tangent line

 $\Delta x = +26 \text{ m}$

5.0 10.0 15.0 20.0 25.0

Time t (s)

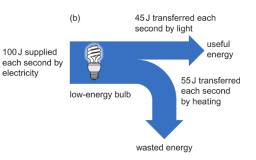
0



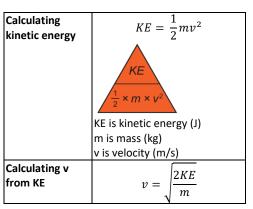
CP3 Conservation of Energy

Lesson sequence

- 1. Energy stores and transfers
- 2. Energy efficiency
- 3. Keeping warm
- 4. Stored energies
- 5. Non-renewable energy resources
- 6. Renewable energy resources


1. Energy stores and transfers			
Energy		The capacity t	o do work.
Joules		The units of e	nergy, symbol
		= J	
Kilojoules		1000 J, symbo	ol = kJ
Thermal energy	y	Energy stored	in hot
		objects.	
Kinetic energy		Energy stored	in moving
		objects.	
Chemical energ	5Y	Energy stored	in chemicals
		such as fuels.	
Nuclear energy		Energy stored	in the
		nucleus of ato	oms. Also
		called atomic	energy.
Gravitational		Energy stored in objects	
potential energy		based on how high they	
		are.	
Elastic potential		Also called strain energy.	
energy		Energy stored	in bent or
		stretched obje	ects.
Energy stores		Light, thermal(heat),	
examples		sound, electrical, kinetic	
		(movement)	
Law of		Energy cannot be created	
conservation of		or destroyed, just	
energy		transferred from one	
		energy store to another.	
Energy transfe	ſS	Say from what	t store the
		energy starts	as <i>and</i> what
		its new store	is.
energy stored in moving car (kinetic energy)		ergy transferred by	energy stored in hot brakes (thermal energy)

Shows energy transfers.


Sankey diagram

2.	Energy efficiency
Dissipation	The way energy spreads out into the surroundings, becoming less
	useful as it does.
Wasted	Energy that is transferred into
energy	stores that aren't useful.
Friction	Causes thermal energy loss as
	heat when two surfaces rub
	together.
Lubrication	Allows surfaces to move
	smoothly, reduces energy loss
	from friction.
Electrical	Causes wires to heat up, wasting
resistance	electrical energy.
Calculating	efficiency = $\frac{(\text{useful energy transferred by the device})}{(\text{total energy supplied to the device})}$
efficiency	Efficiency is expressed as a
	decimal.
Energy	Efficiency is between 0 and 1.
efficiency	1 = no energy wasted
numbers	0 = all energy wasted

3. Keeping warm		
Convection	Heat transfer caused when hot	
	fluids (gas or liquid) rise because	
	they are less dense.	
Conduction	Heat transfer through solids	
	caused by vibrating particles	
	bumping into each other.	
Radiation	Heat transfer by infrared	
	radiation which heats objects up	
	when they absorb it.	
Radiation and	Infrared radiation is absorbed	
surfaces	(taken in) and emitted (given	
	out) easily by dull, dark surfaces.	
	Radiation is absorbed and	
	emitted poorly by shiny, light	
	surfaces.	
Insulation	Materials that contain lots of	
	tiny air pockets that prevent	
	heat loss by conduction.	
Thermal	A measure of how well a	
conductivity	material conducts heat.	
Reducing the	Increase thickness of material	
rate of energy	Decrease thermal conductivity	
transfer	Decrease temperature	
	difference	
4. Stored energies		

4. Stored energies		
Gravitational	The strength of gravity.	
field strength g	Different on different planets.	
	On Earth g = 10 N/kg.	
Calculating	$GPE = mg\Delta h$	
gravitational		
potential energy	AGPE	
	$m \times g \times \Delta h$	
	GPE is gravitational potential	
	energy (J)	
	m is mass (kg)	
	g is gravitational field strength	
	(N/kg)	
	Δh is height change (m)	

5. Non-renewable energy resources			
Non-renewable	A resource that will one day		
resource	run out because it is being		
	used faster than it is being		
	made.		
Fossil fuels	Coal, oil, natural gas. All are		
	non-renewable.		
Harm from	Carbon dioxide gas is released		
burning fossil	which causes global warming.		
fuels	Sulfur dioxide is released which		
	causes acid rain.		
Nuclear power	Electricity generated from non-		
	renewable nuclear fuels such		
	as uranium.		
Nuclear power	😊 Lasts a long time, releases		
pros and cons	no carbon dioxide		
	😕 Produces very harmful		
	waste, expensive to		
	decommission, although rare,		
	accidents are very dangerous.		
Climate	Changes that happen to		
change	global weather patterns as		
-	a result of global warming.		

6. Renew	able energy resources	Carbon neutral		-
Renewable resource	A resource will not run out.		the same CO	growing
Wind power	Large turbines spun by the		is no CO ₂ incr	rease.
	wind turn kinetic energy into			
	electrical energy.			
	[☉] No CO ₂			
	BLots needed, ugly?, no wind			
	no power			
Solar power	Solar cells turn light energy			
	from the Sun into electrical		lucing energ	
	energy.	(HIGHER ON	LY)
	😌 No CO2		Increases the e	efficie
	😕 No sun no power, need lots	Reducing	device or proc	ess, e
	of space, not suitable for all	energy	This can be by	reduc
	countries		by making sure	
Tidal power	Uses kinetic energy from water	losses	burned; or by	using
	movement from tides to spin		would otherwi	ise be
	turbines and produce electrical			
	energy.			
Tidal barrage	A damn built across an estuary			
	that fills up when tide goes in.			
	When stored water is released			
	its kinetic energy produces	Lesson		Me
	electrical energy.	1. Energy st	ores and	
	😌 Huge amounts of energy,	transfers		
	no CO ₂			
	😕 Destroys important mudflat	2. Energy ef	ficiency	
	habitats			
Hydroelectricity	A damn is built across a river	3. Keeping v	warm	
	valley, water released from the	J. Keeping v		
	damn spins turbine and its			
	kinetic energy produces	4. Stored en	ergies	
	electrical energy.			
	⊖Lots of energy, no CO₂	5. Non-rene		
	😕 Destroys habitat by	energy reso	urces	
	flooding	6. Renewab	le energy	
Biofuels	Fuels made from recently plant	resources		
	or animal matter, often waste,			
	are a store of chemical energy.	7. Reducir		
	Carbon neutral	loss		
		1		
	Needs a lot of land, increases food prices	(HIGHER		

B2: Cells and Control

	1. Mitosis
Cell cycle	The life of a cell comprising of interphase and mitosis.
Interphase	Preparation for mitosis in which extra cell parts are made and DNA chromosomes are replicated (copied).
Mitosis	When one cell divides into two genetically identical daughter cells.
Prophase	The membrane of the nucleus breaks down and spindle fibres start to form.
Metaphase	Spindle fibres fully form and chromosomes line up across the m iddle of the cell.
Anaphase	Chromosome copies get pulled apart and move to each end of the cell.
Telophase	A new membrane forms around each set of chromosomes to form two nuclei.
Cytokinesis	The two new cells fully separate.
Diploid	The type of cells produced by mitosis which have two sets of chromosomes (23 pairs in humans).
Asexual	Type of reproduction with just one parent producing a clone of itself through mitosis.
Cancer	When mitosis happens out of control forming large lumps of cells called tumours.

2. Animal Growth		
Growth	Increase in size due to increased numbers of cells.	
Percentile	A measure of the growth of a child that compares them to other children of the same age.	
90 th percentile	90% of children will have a mass below this percentile on a percentile growth curve.	

50 th percen	tile Average for height/mass for the	
- Perech	age.	
	The process by which an	
Differentia	tion unspecialised cell becomes	
	specialised.	
Specialised	A cell with special features	
cell	designed for a specific job.	
	Specialised cell with no nucleus	
	(more room for haemoglohin)	
Red blood	and a large surface area	
	(allowing for quicker diffusion).	
	Specialised cell with large fat	
Fat as "		
Fat cell	droplets in the cytoplasm which	
	is stored until energy is needed.	
	Specialised cell with contractile	
Muscle Cel		
	cell.	
	2 Diant Crowth	
	3. Plant Growth	
	Cell division creates more cells,	
Plant grow	th elongation makes these cells get	
	bigger.	
	Areas in the tips of roots and	
Meristems	shoots where cell division and	
	differentiation happens.	
	Specialised cells which form a	
Xylem	hollow tube of dead cells to	
-	allow water to pass through.	
	Specialised cell with a large	
	surface area to allow roots to	
Root hair c	take in more water / mineral	
	ions.	
Dorcontoss		
Percentage		
change value) / starting value x 100		
4. Stem Cells		
	An unspecialised cell that can	
	undergo cell division and	
Stem cell	-	
Stem cell	ditterentiation to form specialised	
Stem cell	differentiation to form specialised	
Stem cell	cells.	
Embryonic	cells. A stem cell that can become any	
	cells. A stem cell that can become any kind of cell. Found in developing	
Embryonic	cells. A stem cell that can become any kind of cell. Found in developing embryos.	
Embryonic	cells. A stem cell that can become any kind of cell. Found in developing embryos. A stem cell that can only become	
Embryonic stem cell	cells. A stem cell that can become any kind of cell. Found in developing embryos.	

Stem cells in medicine	It is hoped they can be used to replace damaged cells in diseases like type 1 diabetes or leukaemia, or	V
	to grow new organs for transplant. They may potentially cause cancer,	
Problems	stem cells may be rejected if used in	
with stem	other people than where they were	
cells	taken from.	N
		tı
	5. The Nervous System	E
	Organ system made up of the CNS	Ē
Nervous	and nerves. Allows all parts of the	
system	body to work together to gather	S
	information, make decisions and	
	control responses.	
CNS	Central nervous system- The brain	N
-	and spinal cord – controls the body.	t
.	Anything your body is sensitive to	_
Stimulus	(e.g. changes inside or outside the	R
-	body).	
Sense	Contain receptor cells that detect	
organ	stimuli (e.g. eyes, ears, skin).	N
Neurone	A nerve cell	
Impulse	Electrical message carried by a	_
	neuron.	
Response	The action that the nervous system	R
•	makes happen.	
Sensory	Nerve cell that carries impulses from	
Neurone	sense organs to the CNS.	
Cell body	The central part of a nerve cell	
	containing its nucleus.	R
Dender	The long parts of a nerve cell	
Dendron	carrying impulses towards the cell	L
and axon	body (dendron) and away from it	
	(axon)	
D	Branches at the beginning of a	
Dendrites	dendron that connect to receptor	
	cells or another neuron.	
Axon	Branches at the end of an axon that	
terminals	connect to a muscle or another	
	neuron.	
	A fatty layer around the axon and	
Myelin	dendron that insulates it to prevent	
sheath	the impulse from losing energy and	
	speeds the impulse up.	

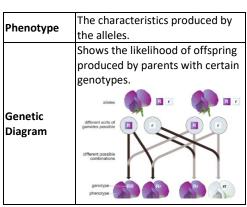
Iuntary
sponseStimulus detected by receptor \rightarrow
impulse sent along sensory neurone
 \rightarrow brain makes decision \rightarrow impulse
sent along motor neurone \rightarrow
effector carries out response.

6. Neurotransmission Speeds

Neuro-	The travelling of an impulse	
ransmission	along a neuron and into another.	
Effector	The body part that produces the	
	response, often a muscle.	
	Small gap between two neurons	
Synapse	where the axon terminals of one	
	meet the dendrites of another.	
	Chemicals released by axon	
Neuro-	terminals that diffuse across the	
ransmitter	synapse to trigger a new impulse	
	the dendrite of another neuron.	
Relay neuron	Nerve cell in the CNS that links	
Kelay neuron	sensory and motor neurones.	
	Nerve cell that carries impulses	
Motor neuron	from the CNS to effectors.	
violor neuron	Dendrites join onto cell body,	
	long axon.	
	Automatic responses that	
Reflexes	happen very quickly without	
lenexes	conscious thought to keep the	
	body safe.	
	Neurone pathway that bypasses	
	the brain.	
Reflex arc	Stimulus \rightarrow receptor \rightarrow sensory	
	neurone $ ightarrow$ relay neurone $ ightarrow$	
	motor neurone \rightarrow effector	

Lesson	Memorised?
1. Mitosis	
2. Animal Growth	
3. Plant Growth	
4. Stem Cells	
5. The Nervous System	
6. Neurotransmission	
Speeds	

B3: Genetics


1. Meiosis		
Gametes	Sex cells- egg and sperm	
Fertilisation	Sperm cell fuses with egg cell	
	and nuclei combine.	
Zygote	A fertilised egg cell	
	Length of DNA coding for a	
Gene	protein. Controls your	
	characteristics	
6	All the DNA and genes in an	
Genome	organism	
	A cell that has 2 sets of	
Diploid	chromosomes- 23 pairs of	
-	chromosomes in humans	
	A cell with 1 set of	
Haploid	chromosomes- 23 single	
	chromosomes in humans	
Meiosis	Cell division that makes gametes	
Stages of	DNA replicates, cell divides into 2	
Meiosis	diploid cells, these divide into 4	
IVIEIOSIS	haploid daughters.	
Meiosis	One division by meiosis creates	
Daughter	4, haploid, non-identical	
Cells	daughter cells.	

	2. DNA	
Chromosome	Large DNA molecule made into a small package by tightly coiling DNA around a protein.	
DNA Structure	Two strands, double helix, complementary base pairs, sugar-phosphate backbone	

DNA Bases	Adenine, A; thymine, T;	
	cytosine, C; guanine, G	
Complementary	A pairs with T	
Base Pairs	C pairs with G	
	Weak force holding the two	
Hydrogen	strands of DNA together.	
Bonds	C and G form 3 bonds	
	A and T form 2 bonds	
	Uses small differences in DNA	
DNA Analysis	to determine family	
DINA Alialysis	relationships or link people to	
	crimes.	
3. DNA Extraction Method		
Calt markers DNA aluman		

3. DNA Extraction Wethod	
	Salt makes DNA clump
Mix water, salt and	together, detergent breaks
detergent	down cell membranes to
	release DNA.
Mash fruit/veg and	Mash to increase the
add solution	surface area.
Leave in water bath	Heat makes it react
at 60°c	quicker.
Filter the mixture	Removes unwanted lumps.
and collect filtrate	nemoves unwanted rumps.
Measure out 10cm ³	
of filtrate and add	Protease breaks down
two drops of	proteins around the DNA
protease	
Gently add ice cold	DNA is insoluble in ethanol
ethanol	so precipitates.
Leave for several	So a white DNA layer
minutes	forms.

4. Alleles		
Different version of the same		
gene. We have two alleles of		
each gene.		
Two copies of the same allele		
Two different copies of an allele		
One copy needed for		
characteristic to show. Written as		
a capital.		
Two copies for the characteristic		
to show. Written as lowercase.		
The combination of alleles in an		
organism.		

5. Inheritance		
Sex	Female: XX	
Chromosomes	Males: XY	
Punnet Squares	Uses the genotypes of male and female gametes to predict the genotypes of the offspring.	
Inheriting Sex	female X XX XY female X XX XY XX X XY	
Cystic Fibrosis	Illness that affects the lungs and digestive system caused by inheriting two copies of a faulty recessive allele.	
Family Pedigree Chart	Chart showing how genotypes are inherited down through a family.	

6. Gene Mutation

gene.

Mutation

Effects of

Mutations

A change to the bases in a

Sometimes harmless, can be

harmful, very rarely beneficial

Cause of	Mistakes copying DNA during	
Mutations	cell division, DNA damage from chemicals or radiation	
Human Genome Project	(HGP) Project involving many scientists from many countries to find the order of bases in human DNA. Allows us to tailor drugs to genes to design better drugs.	
7. Variation		
Natural differences between		
Variation	members of a species that	

	Natural differences between	
Variation	members of a species that	
	affect the chance of survival.	
Genetic	Variation caused by genes.	
Variation		
Environmental	Caused by interaction with the	
Variation	surroundings.	
Acquired	Characteristics caused only by	
Characteristics	the environment.	
Continuous	Data can be any value in a range	
Variation	(height, weight, etc.)	
Discontinuous	Data can be a limited set of	
Variation	values (blood group, eye colour,	
variation	etc.)	
	Bell-shaped curve formed by	
	continuous data with more in	
	the middle and fewer either	
	side.	
Normal Distribution	Kong Market	

Lesson	Memorised?
1. Meiosis	
2. DNA	
3. DNA Extraction	
4. Alleles	
5. Inheritance	
6. Gene Mutation	
7. Variation	

Disease

Anaemia

Kwashiorkor

B5: Health, Disease & the Development of Medicines

1. H	ealth and Disease
Health	A state of complete physical,
	social and mental wellbeing.
	Being free from disease, active,
Physical Health	fit, sleeping well and no
	substance abuse.
Mental Health	How you feel about yourself.
	Having healthy relationships
Social Health	and how your surroundings
	affect you.
	An illness that prevents the
Disease	body from functioning
	normally.
Communicable	Diseases caused by pathogens,
Disease	can be spread from one person
Disease	to another.
Non-	Diseases caused by genes or
Communicable	lifestyle. Cannot be spread
Disease	from one person to another.
	Getting one disease increases
Correlated	your chance of another due to
	diseases weakening organ
1)(CD2CDC	
Diseases	systems, damaged immune
Diseases	systems, damaged immune system, and weaker defences.
	system, and weaker defences. A microorganisms that causes
Diseases Pathogen	system, and weaker defences.
Pathogen	system, and weaker defences. A microorganisms that causes disease.
Pathogen 2. Non-Co	system, and weaker defences. A microorganisms that causes disease.
Pathogen 2. Non-Co Genetic	system, and weaker defences. A microorganisms that causes disease. Diseases caused by inheriting
Pathogen 2. Non-Co	system, and weaker defences. A microorganisms that causes disease. Diseases caused by inheriting faulty genes from parents.
Pathogen 2. Non-Co Genetic	system, and weaker defences. A microorganisms that causes disease. Diseases caused by inheriting faulty genes from parents. Getting too little or too much of
Pathogen 2. Non-Co Genetic Disorders	system, and weaker defences. A microorganisms that causes disease. Diseases caused by inheriting faulty genes from parents.

certain nutrient.

energy.

Lack of iron. Causes fewer and smaller red blood cells and low

Lack of protein. Swollen belly,

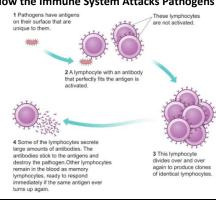
small muscles, stunted growth.

	Lack of calcium or vitamin D.
Rickets	Causes weak bones leading to
	bowed legs.
	Lack of vitamin C. Swollen
Scurvy	bleeding gums, muscle and joint
Searvy	pain, lack of energy.
	Chemical that changes the way
Drug	• ,
	the body works.
	Fatal liver disease caused by
Cirrhosis	drinking too much alcohol over
	a long period of time.
Import of Liver	Fifth largest causes of death in
Impact of Liver	the UK, increasing 450% in the
Disease /	last 30 years. Costs £500 million
Alcohol	each year to treat.
3. Car	diovascular Disease
	A condition in which someone is
	overweight for their height and
Obesity	5
-	large amounts of fat builds up
	around major organs.
Cardiovascular	Disease in which the heart or
Disease	circulatory system is affected.
	When the heart stops pumping
Heart Attack	due to a lack of oxygen reaching
	it.
	Body mass Index
вмі	BMI = (weight in kilograms)
	height in meters ²
	BMI over 30 is obese
	Waist measurement ÷ hip
	•
Waist:hip	moscuromont
Ratio	measurement
natio	Better method of measuring
παιΙυ	Better method of measuring abdominal fat which is linked
	Better method of measuring abdominal fat which is linked with cardiovascular disease.
	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke
	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels,
Smoking	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke
	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels,
	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and
	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and increase risk of blood clots.
Smoking	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and increase risk of blood clots. A small mesh tube that is
	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and increase risk of blood clots. A small mesh tube that is inserted into a narrowed artery
Smoking Stent	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and increase risk of blood clots. A small mesh tube that is inserted into a narrowed artery and opened up to widen it.
Smoking Stent Treating Heart	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and increase risk of blood clots. A small mesh tube that is inserted into a narrowed artery and opened up to widen it. More exercise and a better diet
Smoking Stent	Better method of measuring abdominal fat which is linked with cardiovascular disease. Harmful substances from smoke can damage blood vessels, increase blood pressure, make blood vessels narrower and increase risk of blood clots. A small mesh tube that is inserted into a narrowed artery and opened up to widen it.

	4. Pathogens	
Types of	Bacteria, virus, protist, fungi.	Bodily Flui
Pathogen		
Tuberculosis	Bacteria. Damages lungs causing	Hygiene
	bloody cough, fever and weight	70
	loss.	
Cholera	Bacteria. Sever life-threatening	Epidemic
Cholera	diarrhoea.	
Chalara Ash	Fungi. Kills the leaves of ash	6. P
Dieback	trees, killing the tree.	0. P
	Protist. Multiplies inside red	Chemical
Malaria	blood cells and liver cells and	Defences
	causes fever and weakness.	
	Virus, e.g. Ebola. Liver and kidney	
Haemorrhagic	damage, internal bleeding and	Lysozyme
Fever	fever.	
	Human immunodeficiency virus	Hydrochlo
ніν	attacks white blood cells, causing	Acid
	AIDS.	Physical B
	Acquired Immunodeficiency	-
	Syndrome. Weakened immune	
AIDS	system making simple infections	Mucus
	deadly. Caused by HIV.	
	Many types of bacteria live in our	
	bodies. Some are essential for	Ciliated Ce
Hidden	health, others may not affect us	
Pathogens	most of the time. Helicobacter	Skin
	pylori can cause stomach ulcers	
	some of the time.	
		STIs
5. S	preading Pathogens	
	Spread through the air.	
	Colds/flus/TB by infected droplets	Preventing
Airborne	in saliva being passed into the air	
	by coughing or sneezing.	
	Chalara ash dieback by fungal	Screening
	spores carried by wind.	_
Waterborne	Spread through contaminated	
	water. Cholera	
Oral Route	Pathogen enters body through	Immune
Oral Route	the mouth by eating/drinking.	
	Organisms that carry a pathogen	System
Vectors	from one person to the next.	
	Mosquitos are vectors for	Antigens
	malaria.	

Bodily Fluids	Spreading through contact with bodily fluids such as blood or semen. HIV	
Hvgiene	Keeping things clean to remove or kill pathogens.	
Epidemic	When many people over a large area are infected with the same pathogen at the same time.	
6. Physi	cal & Chemical Barriers	
Chemical Defences	Kill pathogens or make them inactive before they can infect us.	
Lysozyme	Enzyme found in mucus, tears and sweat that kills some bacteria.	
Hydrochloric Acid	Found in the stomach, reducing pH to 2, killing most pathogens.	
Physical Barrie	r Block or trap pathogens so they cannot enter the body.	
Mucus	Sticky secretion that traps pathogens- found in most body openings (nose, mouth, etc.).	
Ciliated Cells	Specialised cells with hair like cells that sweep mucus out of the body.	
Skin	Blocks pathogens from entering the body.	
STIs	Sexually transmitted infections – pathogens spread via sexual activity.	
Preventing STI	Use barrier contraception (such as condoms) to prevent mixing of fluids.	
Screening	Large scale testing of people to check if they have an STI so they can be treated. This helps to reduce the spread of STIs.	
7. The Immune System		
Immune System	Destroys pathogens that manage to infect us.	
<i>y</i> 3tem	manage to milet us.	

Chemical markers on the


surface of pathogens that

Unique to each pathogen.

identify them as a pathogen.

	White blood cells that produce	
Lymphocyte	antibodies. Each lymphocyte	
	produces a different antibody.	Antibi
Antibodies	Molecules with a specific shape	
	that can attach to a specific	
Antiboules	antigen on a pathogen and kill	Penici
	it.	
Activated Lymphocyte	When an antigen sticks to an	
	antibody, it activates the	
	lymphocyte causing it to make	Resist
	many copies of itself that make	
	the same antibodies.	
	Lymphocytes left over after an	Drug
Memory	infection that retain the ability	Develo
Lymphocyte	to fight the pathogen.	Discov
Immune	The body has memory	Phase
	lymphocytes to fight the	i nase
	pathogen if it returns so it can't	Pre-Cli
	be harmed by it.	Phase
Primary Respor	se vs. Secondary Response	Small

Primary Respon	ise vs. secondary Response
Antibody numbers per cm ³ of blood	prmary response
0 10 first infection with pathogen	20 100 110 Time (days) second infection with the same pathogen
Vaccine	A weakened or inactive version of a pathogen.
How vaccines work Vaccines are harmless versions of pathogen that still have the antibodies on them, so the immune response is triggered without any risk of disease.	
How the Immune System Attacks Pathogens	

	8. Antibiotics	
Antibiotics	Substances that kill bacteria or inhibit their processes without harming human cells.	
Penicillin	The first antibiotic discovered by Alexander Fleming. Produced by a mould.	
Resistance Widespread use of antibiotic has led to resistance, meaning many antibiotics don't work well as they once did.		
Drug Development	Developing new medicines involves many stages that take a lot time and money.	
Discovery Phase	Developing new chemicals that might work as medicines.	
Pre-Clinical Phase	Testing on cells grown in the lab, or on animals, to see if the chemical has any useful effect.	
Small Clinical Trial	Testing on a few healthy people to check for safety.	
Large Clinical Trial Trial Trial		
Side Effects	Unwanted effects of the medication that can be quite harmful.	
Dose	The correct amount of the medicine that needs to be given to the patient.	

Lesson	Memorised?
1. Health and Disease	
2. Non-Communicable Diseases	
3. Cardiovascular Disease	
4. Pathogens	
5. Spreading Pathogens	
6. Physical & Chemical Barriers	
7. The Immune System	
8. Antibiotics	

CC13: Groups in the Periodic Table

	1. Group 1
Alkali	The name we give to group 1 –
metals	lithium, sodium, potassium and so
	on.
Group 1	Li – lithium
symbols	Na – sodium
	K – potassium
Properties	- soft
of alkali	 relatively low melting points
metals	
Reaction	Metal + water $ ightarrow$ metal hydroxide +
of alkali	hydrogen
metals	
with	E.g:
water	sodium + water \rightarrow sodium hydroxide
	+ hydrogen
	$2Na + 2H_2O \rightarrow 2NaOH + H_2$
Lithium	Floats. Bubbles (of hydrogen).
	Moves slowly.
Sodium	Floats. Melts. Bubbles (of hydrogen).
	Moves more quickly
	Floats. Melts. Bubbles (of hydrogen)
and water	catch fire (lilac flame). Moves very
-	quickly
Group 1	Reactivity increases as you move
reactivity	down the group.
Explaining	When metals react they lose their
group 1	outer electrons. Further down the
reactivity	group there are:
	- more shells of electrons
	- so the outer electrons are further
	from the nucleus
	- so outer electrons are less
	attracted to the nucleus
	- so outer electrons are easier to
	remove.
	OPPOSITE PATTERN TO GROUP 7

		ſ	Displa
	2. Group 7		reacti
Halogens	The name given to group 7 – fluorine,		
	chlorine, bromine and iodine.		
Chlorine	Cl ₂ . A pale green gas.		
Bromine	Br ₂ . A red-brown liquid.		
lodine	I ₂ . A shiny purple-black solid.		Displa
Reaction	Halogen + metal → metal halide		reacti
of			halog
halogens	E.g:		
with	Bromine + sodium $ ightarrow$ sodium		
metals	bromide		
	Br₂ + 2Na → 2NaBr		
Reaction	Halogen + hydrogen → hydrogen		
of	halide		
halogens			
with	E.g:	-	
hydrogen	Chlorine + hydrogen → hydrogen		Redo
	chloride		reacti
	$Cl_2 + H_2 \rightarrow 2HCl$		halog
	Hydrogen halides dissolve in water to		
halides	form acids, for example hydrogen		
	chloride makes hydrochloric acid.		
Chlorine	Chlorine gas turns damp blue litmus		
test	red then quickly bleaches it white.		
3	3. Reactivity of halogens	-	OIL R
Group 7	Reactivity increases as you go up		
reactivity	the group.		
Explaining	When non-metals react they		
group 7	complete their outer shells. Going		
reactivity	up the group there are:		
-	- less shells of electrons		
	 so the outer electrons are closer 		
	to the nucleus		
	- so outer electrons are more		
	attracted to the nucleus		
	- so more able to hold an extra		
	outer electron		
	OPPOSITE PATTERN TO GROUP 1		

isplacement	Reactions in which a more		
eactions	reactive metal displaces a less		
	reactive metal from a salt eg:		4
	copper sulfate + zinc $ ightarrow$ zinc	Noble	The nar
	sulfate + copper	gases	neon, a
	Does not work backwards as	Melting	They ar
	copper is less reactive than zinc.	point of	temper
isplacement	A more reactive halogen	noble	boiling
eactions of	displaces a less reactive halide	gases	group.
alogens	ion by taking its electrons.	Reactivity	The no
		of group 0	any rea
	E.g:	Explaining	When e
	bromine + sodium iodide $ ightarrow$	reactivity	comple
	iodine + sodium bromide	of group 0	group (
			comple
	$Br_2 + 2Nal \rightarrow I_2 + 2NaBr$	Uses of	-Helium
		noble	is inert
	[bromine more reactive]	gases	- Argon
edox	Displacement reactions are		because
eactions of	REDOX because the more		air.
alogens	reactive halogen oxidises the less		- Neon
	reactive halide by taking its		glows r
	electrons. The more reactive		through
	halogen is reduced.		
	E.g:		
	$Br_2 + 2I^- \rightarrow 2Br^- + I_2$		
DIL RIG	Oxidation Is Loss (of electrons)		
	Reduction Is Gain (of electrons)		

	4. Group 0
loble	The name given to group 0 – helium,
ases	neon, argon, krypton and xenon.
1elting	They are all gases at room
oint of	temperature but the melting and
oble	boiling point increase down the
ases	group.
eactivity	The noble gases do not (easily) do
f group 0	any reactions – they are inert.
xplaining	When elements react they try to
eactivity	complete their outer shells. Because
f group 0	group 0's outer shells are already
	complete, they do not react.
ses of	-Helium is used in airships because it
oble	is inert and has low density
ases	 Argon is used in fire extinguishers
	because it is inert and denser than
	air.
	 Neon is used in lighting because it
	glows red when electricity is passed
	through it.

Lesson		Memorised?
1.	Group 1	
2.	Group 7	
3.	Reactivity of	
	halogens	
4.	Group 0	

C3 & 4: A	Atoms and the periodic table		Most alpha particles went		Ordered by increasing A _r , some	**Pair	Elements (like Ar and K) that are
	_	results	through, some scattered	periodic table	elements switched according to	reversals	not in order of increasing mass.
	Lesson sequence		(changed direction).		their properties.		
7. Struc	cture of atoms		Scattered particles hit a solid	*Chemical	Includes reaction with acid and		elements by increasing atomic
8. Deta	iled structure of atoms	explanation	nucleus. Most did not hit it,	properties	formula of oxide.	reversals	number instead.
9. Isoto			therefore nucleus is small	*Physical	Includes melting point and	6	. Electron configuration
	•	*Atomic	The bottom number on the	properties	density.	*Shells	Electrons orbit atoms in shells.
	deleev's periodic table	number	periodic table, gives the number	**Gaps in	Mendeleev left gaps where no	*First shell	Holds up to two electrons.
11. The r	modern periodic table		of protons and electrons.	Mendeleev's	known element fitted and	*Second	Holds up to eight electrons.
12. Elect	ron configuration	*Atomic mass	The top number on the periodic	periodic table	predicted these would be filled	shell	noids up to eight electrons.
		1	table, gives the total protons		with newly discovered elements.	*Third shell	Holds up to eight electrons.
	1. Structure of atoms		and neutrons together.	**Eka-	An element that Mendeleev	*Number of	Given by the atomic number.
*Particle	The tiny pieces that all matter is	*Number of	The atomic number.	aluminium	thought would fill a gap. He	electrons	Given by the atomic number.
	made from.	protons			predicted its properties, which		Fill shells from the first shell out.
*Atom	The smallest independent particle.	*Number of	The atomic number.		matched gallium when	*Filling shells	
	Everything is made of atoms.	electrons			discovered.		Move up a shell when current one is full.
**Size of	About 1 x 10 ⁻¹⁰ m in diameter.	*Number of	Atomic mass minus atomic	5 T	ne modern periodic table	*Electron	The number of electrons in each
atoms		neutrons	number.		Gases that do not react: He, Ne,		
**Dalton's	- Tiny hard spheres	*Number of	Equal, because each negative		Ar, Kr.		shell (e.g. Al is 2.8.3).
model of	 Can't be broken down 	protons and	electron is attracted to a	•	Fired electrons at samples of	*Outer shell	The last shell with any electrons
atoms	 Can't be created or destroyed 	electrons	positive proton in the nucleus.		elements and measured X-rays	dada a	in it.
	- Atoms of an element are identical		3. Isotopes		produced.	**Groups	Columns in the periodic table, tell
	- Different elements have different	**!	Atoms with the same number of		Energy of x-rays produced		you the number of electrons in
	atoms	**Isotopes	protons but different number of	-		dada — A	the outer shell.
*Subatomic	Smaller particles that atoms are				proportional to the positive charge of the element.	**Periods	Rows in the periodic table, tell
particles	made from.	***	neutrons.		The atomic number must be the		you the number of electron
*Proton	Mass = 1	**Describing	Mass after the name (e.g. boron-				shells.
	Charge = +1	isotopes	10) or superscript mass before		number of protons in the atoms.		
	Location = nucleus		the symbol (¹⁰ B).	Moseley's			
*Neutron	Mass = 1	*Nuclear	Large unstable atoms break into	work			
	Charge = 0		two smaller stable ones.	1 2			
	Location = nucleus		Nuclear power, nuclear	1 2	3 4 5 6 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1		
*Electron	Mass = 1/1835 (negligible)		weapons.	T 9 relative atomic symmetry Li Ben interaction of the symmetry atomic (puttor) 3 4 atomic (puttor)			
	Charge = -1	**Relative	The weighted average of the	3 4 atomic (pitton) (23 24 Na Mg	sumber 5 6 7 8 9 10 27 28 31 32 33.5 40 All 58 100 100 100 100 12 14 15 16 177 18		
	Location - challs orbiting nuclous	atomic mass,	masses of all of the isotopes of	11 12	12 14 15 16 17 16 20 66 66 60 69 66 m m m m m m		

an element.

- Add these up

4. Mendeleev's periodic table

periodic table.

isotope. ***Calculating - Multiply each mass by the decimal %

The percentage of an element

that is made of a particular

Note: (decimal % = %/100)

Russian chemist, developed the

30 40 K Ca xmmore 000ar

85 88 Rb Sr ratidar: 1001.0

 [222]
 [227]
 [267]
 [262]
 [268]

 Fr
 Rs
 Ac*
 Rf
 Db
 Sg

 87
 88
 89
 104
 105
 596

Borrents with alone

 112
 115
 119
 122
 128
 127
 131

 Col
 In
 Sen
 Sb
 Te
 I
 Xe

 antron
 Information
 In
 Sen
 Solution
 Information
 Information

 48
 51
 32
 55
 95
 96
 55
 635
 55
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75

 <th 75

 133
 137
 138
 148
 544
 546
 160
 162
 165
 197
 261
 201
 202
 203
 203
 213
 223
 224
 201
 202
 203
 203
 213
 223
 224
 201
 202
 203
 203
 213
 224
 201
 201
 202
 203
 203
 213
 224
 201
 201
 203
 203
 213
 224
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201</th

|277] |268| |271| |272| Hs Mt Ds Rg 108 109 110 111

108 Ag 47

89 91 93 96 [08] 101 103 106 Y Zr Nb Me Te Ru Rh Pd resource whom restance bornears accurate accurate 78 40 41 42 43 44 46 47

[264] Bh 145-145

***Isotopic

abundance

*Dmitri

Mendeleev

Ar

Ar

ti	mes smaller than the overall atom
2. De	tailed structure of atoms
**Alpha	Small positively charged particle
particle	made of two protons and two
	neutrons.
**Scattering	When particles bounce back or
	change direction.
**Rutherford'	s Fired alpha particles at gold leaf,
experiment	used a phosphor-coated screen
	to track where they went.

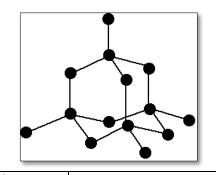
Location = shells orbiting nucleus

Central part of an atom, 100,000

*Nucleus

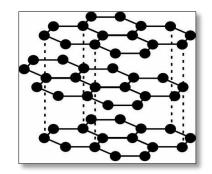
	CE 7: Rending	**Forming	Electrons are transferred from a	2 0-	operties of ionic compounds	**Valency	The number of covalent bonds an
	C5-7: Bonding	-	metal atom to a non-metal atom	**Melting	High because melting needs a lot	valency	atom can form.
	esson sequence		to form a positive metal cation	point of	of energy to break strong ionic	**Valency	Group 4 = 4 (4 electrons needed)
	-		and a negative metal anion. The	ionic	bonds.	and groups	Group $5 = 3$ (3 electrons needed)
13. Ionic b	0		oppositely charged ions are	compounds		8 P.	Group $6 = 2$ (2 electrons needed)
	ompounds		attracted to each other.	*Solubility	Many ionic compounds dissolve in		Group $7 = 1$ (1 electron needed)
15. Proper	ties of ionic compounds			of ionic	water.	**Working	Find the lowest common multiple
16. Covale	ent bonding		2. Ionic compounds	compounds		out	of the valency of each atom. Use
17. Covale	ent structures	*Chemical	Shows the number of atoms of	**Electrical	Solid: Do not conduct because ions	molecular	the number of an atom required to
	opes of carbon	formula	each element present in one	conductivity	/ can't move.	formulae	reach the LCM.
19. Metall		*14/	'unit' of a compound.	of ionic	Liquid (molten or solution): Do		
	•	*Writing	- Each chemical symbol starts	compounds	conduct because ions can move.		(н 😓 н)
20. Classif	ying materials	formulae	with a capital letter. - The number of each atom	**How	When they are in a liquid form, the		
	1. Ionic bonding		present is shown with a	ionic	positive cations move to the		\sim
*Bond	An attraction between two atoms		subscript number after the	compounds	u		~**
	that holds them together.		symbol. E.g. H ₂ SO ₄ .	conduct	the negative anions move the		
*lon	An atom that has gained a charge	**Determining	- Ensure the total number of	electricity	positive electrode (anode).		(н))сі 🕽
	by gaining or losing electrons.		positive and negative charges		4. Covalent bonding		×*
*Charge	Whether an ion is positive or		balance.	*Covalent	An electrostatic attraction between		•••••
U U	negative.		- Change the number of each ion	bond	two atoms and a share pair of		(o(š)o)
*Cation	Positive ion formed by losing		present by changing the		electrons.		V V V
I	electrons. Formed by metal		subscript numbers.	**Double	A covalent bond involving two		
I	atoms.	*Compound	An ion made from two or more	bond	shared pairs of electrons.		
*Anion	Negative ion formed by gaining	ions	atoms that share a charge.	*Dot and	A bonding diagram showing the		
l	electrons. Formed by non-metal	*Common	Hydroxide: OH-	cross	electrons in the outer shell of each		(н +
<u> </u>	atoms.	compound	Nitrate: NO ₃ -	diagram	atom, with electrons drawn as dots		
**Size of	The number of electrons	ions	Sulfate: SO ₄ ²⁻		or crosses.		
charge	transferred affects the size of		Sulfite: SO ₃ ²⁻	*Hydrogen,	Two overlapping circles both		\checkmark \land \land
l	charge: losing two electrons		Carbonate: CO ₃ ²⁻	H ₂	labelled H. One pair in the overlap.		(O(())) C()) O)
	makes a 2+ charge, gaining three	di di a	Ammonium: NH ₄ ⁺		Two overlapping circles labelled H		
at at a	electrons makes a 3- charge.	**Including	If you need more than one, put	chloride,	and Cl. One pair in the overlap, 6		
**How many	Metals: however many electrons	compound	brackets around it. E.g. Mg(OH) ₂	HCI	electrons around Cl.		\frown
electrons are	are in the outer shell	ions in		**Oxygen,	Two overlapping circles both		(Н)
gained or	Non-metals: however many	formulae		O ₂	labelled O. Two pairs in the		
lost?	electrons are needed to fill the	*Ionic lattice	The structure of ionic		overlap, 4 electrons around each		(н 🍅 С 🔅 н)
I	outer shell.		compounds: a repeating 3D	sk ska a a	0.		
*Electrostatio	A force of attraction between a		pattern of alternating positive and negative ions.	**Water,	Three overlapping circles in a line		(н)
force	positive and negative particle.	**Crystal	A piece of material with a	H₂O	labelled H, O, H. A pair in each		
*lonic bond	When two oppositely charged	Crystar	regular shape and straight edges	**Carbon	overlap, 4 electrons around O.		<u> </u>
	ions are held together by an		formed by the regular pattern of	**Carbon	Three overlapping circles in a line		
	electrostatic force.		ions in an ionic lattice.	dioxide, CO₂	labelled O, C, O. Two pairs in each overlap, 4 electrons around each		
		L			O.		
				**Mothana	J. Five circles with one in the centre		
				ivietitalle,	Five circles with one in the centre		

CH₄


labelled C and 4 labelled H around

it. A pair in each overlap.

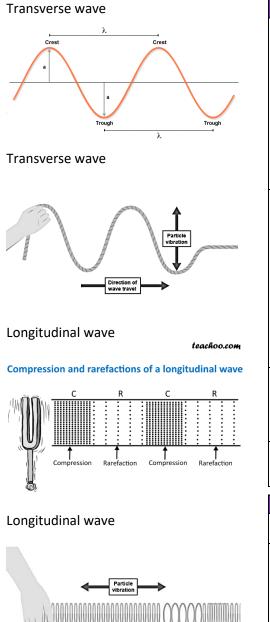
5. Co	ovalent structures		Allo
*Molecule	A particle made from two or	*Allotrope	A d
	more atoms bonded together.		elei
*Simple	A structure made of small		ato
molecular	molecules in which a few		diff
structure	atoms join together to form a	*Carbon's	Gra
	small particle.	allotropes	full
**Structure of	Atoms in a molecule are held	**Graphite	Str
molecular	together by strong covalent		car
substances	bonds. Neighbouring		wit
	molecules are held close by		bet
	weak intermolecular forces.		Pro
**Intermolecular	A weak electrostatic force		eas
force	that holds two neighbouring		Use
	molecules together.	**Diamond	Str
**Melting point	Low because melting only		4 a
of simple	needs a little energy to break		Pro
nolecular	weak intermolecular forces.		Use
compounds		**Graphene	Str
**Electrical	Do not conduct because there		ato
onductivity of	are no electrons that are free		Pro
simple molecular	to move.		exc
compounds			Use
*Examples of	Hydrogen gas, oxygen gas,		ma
imple molecular	water, carbon dioxide,	**Buckminster	Str
substances	methane.	fullerene	mo
Giant molecular	A structure made of a		Pro
tructure	repeating pattern of atoms		Use
	covalently bonded together.	**Carbon	Str
*Melting point	High because melting requires	nanotubes	car
of giant	breaking strong covalent		pat
nolecular	bonds.		Pro
compounds			exc
**Electrical	Do not conduct (except		Use
conductivity of	graphite) because there are		ma
•	no electrons free to move.		
compounds		7	. м
*Examples of	Silicon dioxide (silica),		A la
•	diamond, graphite.		surr
substances			delo
*Polymer	A large molecule made of a		Elec
,	small unit repeated many		sing
	times.		aroi
*Monomer	A small molecule that can be		The
	joined together many times to		betv
	form a polymer.	-	
	ionna polymen.		met dolo


6.	Allotropes of carbon
llotrope	A different structural form of an
	element made of the same
	atoms just bonded together
	differently.
arbon's	Graphite, diamond, graphene,
otropes	fullerenes
Graphite	Structure: stacked sheets of
	carbon in a honeycomb pattern
	with delocalised electrons
	between them.
	Properties: sheets slide apart
	easily, excellent conductor
	Uses: lubricants
Diamond	Structure: Repeating pattern of
	4 atoms bonded to 4 others.
	Properties: Extremely hard.
	Uses: Cutting tools and drills
Graphene	Structure: A single layer of
	atoms in a honeycomb pattern.
	Properties: Very strong,
	excellent conductor.
	Uses: None yet, but potentially
	many.
Buckminster	Structure: Ball-shaped
lerene	molecules of C_{60} .
	Properties: Low melting point
	Uses: None
Carbon	Structure: Cylinders made of
notubes	carbons bonded in a honeycomb
	pattern.
	Properties: Very strong,
	excellent conductors
	Uses: Strong and flexible
	materials, electronics.

7. Metallic bonding	
*Structure of	A lattice of positive metal ions
metals	surrounded by a cloud of
	delocalised electrons.
**Delocalised	Electrons that are not bound to a
electrons	single atom but move freely
	around many.
**Metallic	The electrostatic attraction
bonding	between the lattice of positive
	metal ions and the cloud of
	delocalised electrons.

**Electrical	Metals are good conductors
conductivity	because the electrons are free to
of metals	move.
**Comparing	Metals with more electrons in
the	the outer shell – such as Al – are
conductivity	better conductors than those
of metals	with fewer – such as Li – because
	there are more delocalised
	electrons that are able to move.
*Malleable	When a substance dents when it
	is hit instead of shattering.
**Malleability	Metals are malleable because
of metals	the atoms are arranged in
	regular sheets and these sheets
	can easily slide over each other
	when hit.
**Melting	High because melting them
point of	requires breaking the strong
metals	force of attraction between the
	lattice of metal ions and the
	cloud of delocalised electrons.

**Properties	High melting point, does not
of giant	conduct electricity (except
molecular	graphite), insoluble in water.
compounds	
**Properties	High melting point, does conduct
of metallic	electricity, insoluble in water.
compounds	
**Bonding	The ideas and drawings that we
models	use to explain the bonding of
	atoms.
**Problems	 Dot and cross diagrams make
with	electrons seem different, they are
bonding	not
models	- Atoms appear stationary but are
	actually vibrating
	 Atoms don't appear to be
	touching when they actually are.



8. Bonding models	
**Classifying	The properties of a material can
materials	be used to determine the type of
	bonding in it.
**Properties	High melting point, often soluble
of ionic	in water, solid does not conduct
compounds	electricity, liquid/solution does.
**Properties	Low melting point, does not
of simple	conduct electricity, sometimes
molecular	soluble in water.
compounds	

P4 Waves

1 Describing ways			
	1. Describing waves		
Waves	Transfer energy without		
	transferring matter.		
Oscillate	When particles vibrate backwards		
	and forwards or up and down.		
Transverse	Waves in which particles oscillate		
waves	at right angles to the direction of		
	energy movement. E.g., waves on		
	the surface of the water, some		
	seismic waves and light waves (all		
	electromagnetic waves).		
Longitudinal	Waves in which particles oscillate		
waves	parallel to the direction of energy		
	movement. E.g., sound waves		
	and some seismic waves.		
Medium	The material that waves travel		
	through. Light (all		
	electromagnetic waves) waves		
	are the only waves that have no		
	medium.		
Seismic	Waves of vibrating rock caused by		
waves	earthquakes.		
Frequency, f	The number of waves that pass a		
	point every second.		
Hertz, Hz	The unit of frequency. 1 Hz = 1		
	wave per second.		
Period, T	The length of time it takes for a		
-	single wave to pass.		
Wavelength,	The distance in m from the top of		
λ	one wave to the top of the next.		
Amplitude, a	The maximum distance a particle		
or A	vibrates away from its resting		
	point,		
Velocity, v	The speed of a wave in m/s.		
velocity, v	The spece of a wave in m/s.		

Direction of wave travel

	2. Wave speeds
Speed,	wave speed (m/s)
distance and	$\underline{-} \frac{distance(m)}{distance(m)}$
time	time (s)
	X
	$v \times t$
	Wave speed = v
	Distance = x
	Time = t
Speed,	wave speed $\left(\frac{m}{s}\right)$
frequency and	= frequency (Hz)
wavelength	\times wavelength (m)
	V
	$f \times \lambda$
	Wave speed = v
	Frequency = f
	Wavelength = λ
Measuring	Time how long they take to
wave speed	travel a certain distance.
	(stopwatch)
	Distance between two
Changing	points.(tape measure) Waves travel at a different
speed	speed in a different medium.
	Light is slower in water than air.
	ctical – Investigating waves
CP4 - Aim	To measure the speed of waves
	in a liquid and a solid.
CP4 – Water	1. Count the number of waves
vaves 1	in 10 s and use this to find
	the frequency.
	 Measure the wavelength with a ruler
	Wave speed = frequency x
	wavelength
CP4 – Water	1. Time how long a wave takes

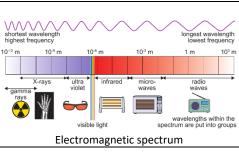
to pass two points, 0.3 m

apart. Wave speed = dist / time

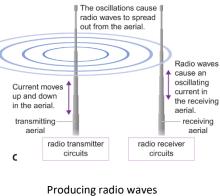
waves 2

rr	
	 Hit suspended metal bar
in a solid	with hammer and measure
	the frequency using an app.
	Measure the metal bar – double
	the length gives the wavelength
	4. Refraction
Refraction	Bending of waves when they
	enter a new medium at an
	angle.
Interface	The boundary between two
	media (mediums) such as air
	and water.
Normal	An imaginary line drawn at
	90° to where light hits an
	interface (boundary).
Angle of	The angle between an
incidence	incoming light ray and the
	normal.
Angle of	The angle between the normal
refraction	and a ray of light that has
	been refracted.
Travelling from	Light bends towards the
air to glass or	normal
water	
Travelling from	Light bends away from the
glass or air to	normal.
water	
Explaining	Light waves slow down as they
refraction	go from air to water. The
	'bottom' of the wave hits the
	water and slows down first,
	causing refraction.
	0

Lesson	Memorised?
1. Describing waves	
2. Wave speeds	
3. Core practical – Investigating waves	
4. Refraction	



P5 Light and the Electromagnetic waves


1. E	lectromagnetic waves
	A group of waves that all travel
waves	at the same speed (speed of
	light) in a vacuum, and are all
	transverse.
Speed of light	300,000,000 m/s (3 x 10 ⁸ m/s)
Frequency	The number of waves that pass
	a point every second.
	One hertz (Hz) is one wave per
	second.
Wavelength	The distance between a point
_	on one wave and the same
	point on the next wave.
EM wave	All are transverse, all travel at
similarities	the speed of light.
EM wave	Different frequencies, different
differences	wavelengths.
Visible light	The only type of EM radiation
	that our eyes can detect.
Interface	The boundary between two
	different materials.
Refraction and	Light travels at different
wave speed	speeds in different materials
	causing it to refract when
	hitting the interface at an
	angle.
Prisms and the	Different wavelengths slow
colour	down by different amounts
spectrum	when they hit glass causing
	each colour to refract
	differently.
Infrared	Light split into a spectrum.
discovery	Thermometer placed on every
	colour plus next to red. Red
	was hot, next to red was
	hottest.

2. Core practical – Investigating refraction	
Normal	A line at right angles to the
	interface.

Angle of	Angle between the incident ray	
incidence	and the normal.	
Angle of	Angle between the refracted ray	
refraction	and the normal.	
CP5 – Aim	To explore how changing the	
	angle of incidence changes the	
	angle of refraction.	
CP5 - Setup	Place a glass block on a sheet of	
	paper, point a beam of light	
	from a ray box at it, trace around	
	the block and draw in the light	
	ray.	
СР5 -	Use a protractor to draw a	
Measurement	normal, then measure the angles	
	of incidence and refraction.	
СР5 -	Repeat 5 times, from 5 different	
Variations	angles, including head-on.	
CP5 - Results	The greater the angle of	
	incidence, the greater the angle	
	of refraction.	
	ectromagnetic spectrum	
EM spectrum	<u>R</u> ubbish <u>M</u> emories <u>I</u> nclude	
mnemonic	<u>V</u> isiting <u>U</u> r <u>X</u> <u>G</u> irlfriend	
EM spectrum –	Radio waves, microwaves,	
lowest to highe		
frequency or		
	ultraviolet, X-rays, gamma	
energy	rays.	
EM spectrum –	rays. - Gamma rays, X-rays,	
EM spectrum – lowest to highe	rays. Gamma rays, X-rays, est ultraviolet, visible light,	
EM spectrum –	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio	
EM spectrum – lowest to highe wavelength	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves.	
EM spectrum – lowest to highe	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM	
EM spectrum – lowest to highe wavelength EM spectrum	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves.	
EM spectrum – lowest to highe wavelength EM spectrum EM Radiation	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible	
EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes	
EM spectrum – lowest to highe wavelength EM spectrum EM Radiation	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere,	
EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the atmosphere	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere, most is absorbed.	
EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere, most is absorbed. es For radiation absorbed by the	
EM spectrum – lowest to highe wavelength EM spectrum EM Radiation and the atmosphere	rays. Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves. The full range of types of EM waves. Some EM radiation (visible light, radio waves) passes through the atmosphere, most is absorbed.	

Visible light uses	Illumination, photography
Infrared uses	Short-range communications
	(TV remotes), fibre optics,
	cooking (grills and toasters),
	security cameras, thermal
	images.
Microwave uses	Microwave ovens, mobile
	phone and satellite
	communications.
Radio wave uses	Radio and TV signals,
	communications between
	controllers and spacecraft,
	satellite communications.
Producing radio	Oscillating electricity in a
waves	metal rod produces radio
	waves.
Receiving radio	Radio waves absorbed by a
waves	metal rod cause electrical
	oscillations.

5. Using the short wavelengths		
Fluorescence	Absorbing ultraviolet and re-	
	emitting it as visible light.	
Ultraviolet uses	Security marking, fluorescent	
	lamps, detecting forged bank	
	notes and disinfecting water.	
X-ray uses	Observing the internal	
	structure of objects, airport	
	security scanners and medical	
	X-rays.	
Gamma ray	Sterilising food and medical	
uses	equipment, and the detection	
	of cancer and its treatment.	

6. EM radiation dangers		
Infrared	Surface heating causing skin	
dangers	burns.	
Microwave	Absorbed by water causing it	
dangers	to heat up $ ightarrow$ internal heating	
	of body cells.	
Ionisation	High-energy radiation causes	
	ions to form in our cells,	
	damaging DNA and causing	
	cancer.	
Ultraviolet	Damage to surface cells and	
dangers	eyes leading to skin cancer and	
	eye conditions.	
X-ray dangers	Cancer, mutation or damage to	
	cells in the body.	
Gamma ray	Cancer, mutation or damage to	
dangers	cells in the body.	

Lesson	Memorised?
1. Electromagnetic	
waves	
2. Core practical –	
Investigating refraction	
3. The electromagnetic	
spectrum	
4. Using the long	
wavelengths	
5. Using the short	
wavelengths	
6. EM radiation dangers	