

Knowledge

Organisers

Year 7 PC3 (June Exam)

What is a 'knowledge organiser'?

A knowledge organiser is simply a collection of the all of the information which your teacher would like you to be able to **recall** from a particular topic. That means that it **does not have everything on it** for a unit of study but it does have **the most essential things to learn.**

A knowledge organiser has lots of facts and definitions on it. Did you know that there is as many new words in studying science as there is in studying a language?

A knowledge organiser does **not develop skills**, so good revision will involve **lots of practice questions** as well as learning the content of these organisers.

What do I do with it?

For most of us, the first thing that we learned at school in reception was our phonics sounds. We learned them by repetition – seeing them again and again until the association between the sound and the image stuck. We need to do the same thing with these knowledge organisers!

Your teacher will probably be using knowledge organisers as you are taught. They will be referred to in class and you should have regular small tests on what you have learned.

Our knowledge organisers are deliberately broken into small lesson sized chunks for you to learn. Typically a teacher may ask you to 'learn box 2 and 3' for a homework.

By the time you come to an assessment – an exam or test – you should already be familiar with the knowledge organisers and already know some of it. They can then be relearned as a part of the revision and assessment preparation procedure.

Retrieval Practice

A key part of learning anything is the act of trying to remember. In class, your teacher will be helping you to do this by asking lots of questions and setting quizzes. The more often you try to remember something the more likely you are to remember it. With knowledge organisers you can achieve the same thing at home.

Why are we doing this?

Research has shown that **the more you know** the **more you can learn.** By being able to recall the facts, you are able to understand more complicated ideas because you **already know what the key words mean.** You will also already have a set of ideas in your mind that the new ideas can connect to (this is often referred to as a **schema**).

What are the best techniques for memorising using a knowledge organiser?

READ COVER WRITE

Make sure you are working somewhere quiet and that you have something to write with and some paper. Focus on learning on part of the knowledge organiser only, for example box one. Read through it carefully several times. When you think you've got it, cover over the knowledge organiser and write it all down. Then check what you've been able to remember. Read the bits that you could not recall, cover and write again.

TEST ME

Once you have learned the sections, its time to see if you can remember larger amounts.

Ask a friend or family member to test you on the content of the knowledge organiser page. They don't need to be experts – only to say whether you have remembered it correctly.

TEST EACH OTHER

If you are revising with class mates, testing each other is great. By doing this you are thinking about what you need to know when you are answering questions but also when you are checking to see if your class mate is right. This works well on video calls!

MAKING FLASH CARDS

Some students find making flash cards really helps. You are thinking about what needs to be learned as you write! But don't fall into the trap of writing them and never using them! Once written they should be used regularly – you can test yourself with them or test each other!

Spaced Learning

All of the techniques work best when they are done **little and often**. Aim to repeat something you have learned a week – studies have shown that once you learn something, if you see it again after a week recall is better long term. Then again after a month... and so on.

Application

Once you have memorised some of the information, or have made a good start, it's a good idea to start trying to **use that knowledge**. Websites like **Seneca** and **Educake** provide great banks of questions for this.

7A Cells, Tissues, **Organs and Systems 1. Life Processes** If something can do all 7 life processes it is considered a 'living thing' Life They are; movement, Processes reproduction, sensitivity, growth, respiration, excretion and nutrition. Organism A living thing. Being able to move from place to place or move part Movement of themselves. Being able to make more Reproduction living things like themselves. Being able to sense and react Sensitivity to things around them. Being able to increase in size. Growth Being able to release energy Respiration through respiration. Being able to get rid of waste Excretion materials. Taking in substances (such as Nutrition food) to help carry out the other processes.

	2. Organs
Organ	A part of animals or plants
	that does an important job-
	made up of different
	tissues.
Function	The job or role something
	has.
Brain	Controls the body.
Skin	The bodies biggest organ-
	used for protection and
	sensing things.

	Take in oxygen for
Lungs	respiration and excrete
	carbon dioxide.
lleast	Pumps blood around the
Tieart	body.
Livor	Makes and destroys
Liver	substances.
Kidneys	Clean the blood and
	produce urine to excrete
	waste.
Bladder	Stores urine.
Stomach	Breaks up food.
	Breaks up food and
Sinan intestine	absorbs it.
l argo Intestino	Removes water from
Large intestine	unwanted food.
Rectum	Stores faeces (waste
Nectum	material)

	Made up of muscle tissue so		
The Heart	it can move and pump the		
The flear	blood as well as fat tissue to		
	protect it.		
Root Hair	Small hairs on the outside of		
Tissue	roots which help to take in as		
Tissue	much water as possible.		
	The tissue which carries		
Xylem Tissue	water up through plants from		
	the roots.		
	4 Cells		
	The basic units from which		
Colls	all tissues and living things		
Cella	are made from		
	When something has		
Specialised	features that allow it to do a		
	neatures that allow it to do d		
Call Sumface	particular Job.		
	Controls what enters and		
Needow	leaves the cell.		
NUCIEUS	Controis the cell.		
Cytoplasm	Jelly like substance where		
	chemical reactions happen.		
Mitochondria	(mitochondrion-singular)		
-	Where respiration happens.		
	Make food for the plant		
Chloroplasts	using photosynthesis-		
	contains chlorophyll.		
Cell Wall	Strengthens and supports		
	the cell- made of cellulose.		
Vacuole	Storage space filled with cell		
	sap.		
Plant Cell			
Cytoplas			
Cellulose cell v	val		
Mitochondrion			
Permanent vacuole			
Chloroplast			

5. Organ Systems	
Organ	A collection of organs
Systems	working together.
a:	Heart, blood vessels
System	Carries oxygen and nutrients
System	around the body.
Digostivo	Gullet, stomach, intestines
System	Breaks down food and takes
System	nutrients into the blood.
Locomotor Muscles, bones	
System	Enables the body to move.
L luin ann i	Kidneys, bladder
System	Gets rid of waste materials
System	produced in the body.
Broathing	Lungs, trachea
System	Allows exchange of gases
System	between blood and lungs.
Nervous	Brain, nerves, spinal cord
System	Allows the body to sense
System	things and react to them.
Water	Roots, stem, leaves
Transport	Transports water around the
System	plant.

Lesson	Memorised?
1. Life Processes	
2. Organs	
3. Tissues	
4. Cells	
5. Organ Systems	

7C Muscles and **Bones**

1. Mi	scles and Breathing	How the
	The movement of muscles	Heart Pun
Breathing	that allows us to take in and	Blood
8	excrete gases.	Blood
	Process by which oxygen is	Vessels
Respiration	used to release energy-	Δrteries
	produces carbon dioxide.	Arteries
	One gas is exchanged for	Capillaries
Gas	another- oxygen goes into	Capitalica
Exchange	the blood, carbon dioxide	Veins
_	leaves the blood.	
Gas	The organs that help with	Plasma
Exchange	breathing / gas exchange-	
System	lungs, trachea, diaphragm	Red Blood
Mussia Call	Can change shape- contract	Cells
Adaptations	(become short and fat) and	
Adaptations	relax (back to original shape)	Red Blood
Inhale	Breathing in	Cell
Exhale	Breathing out	Adaptatio
	The muscles in the	14/h 14 - DI -
	diaphragm contract, moving	White Bio
	it downwards. Muscles	Cells
Inhalation	between the ribs contract,	Bone
	pulling the ribs up and out.	iviarrow
	Lungs increase in size	
	allowing air to flow in.	
	The muscles in the	_
	diaphragm relax so it rises.	Bone
Exhalation	Muscles between the ribs	Structure
	relax, moving the ribs down	
	and in. Lungs decrease in	
	size pushing air out.	Skeleton
Ventilation	The movement of air into	
	and out of the lungs	
Breathing	Number of times you inhale	Backbone
Rate	and exhale in one minute.	

2. Muscles and Blood		
Pulco	The feeling of the heart	
Fuise	beating that can be felt.	
Dulas Data	The number of pulse beats	
Puise Rate	you feel in a minute.	
How the	Chambers fill with blood and	
Heart Pumps	muscle tissue contracts	
Blood	pumping the blood out.	
Blood	A tube that carries blood	
Vessels	around the body.	
Autovice	Carry blood away from the	
Arteries	heart to capillaries.	
Conillorios	Tiny blood vessels	
capiliaries	connecting arteries & veins.	
Vaina	Carry blood from capillaries	
veins	towards heart.	
-	Main part of blood- the liquid	
Plasma	part.	
	Carry oxygen in the blood-	
Red Blood	haemoglobin in cells carries	
Cells	the oxygen.	
	No nucleus (more room for	
	haemoglobin). Curved shape	
Adaptations	increases surface area to	
Adaptations	take in oxygen quickly.	
White Blood	Fight infections and keep us	
Cells	healthy.	
Bone	Where red and white blood	
Marrow	cells are made.	
	2 The Skeleten	
	Shangy hone material keeps	
	bonos light. Compact hors	
Bone	motorial is hard and strong	
Structure	Popo marrow inside hone	
	Bone marrow inside bone	
	Features mass of bone.	
Charlestern	Formed by the bones in the	
Skeleton	pody- allows for support,	
	protection and movement.	
	Made up of smaller	

vertebrae- the bodies main

support.

Skull	Made up of 22 bones-	
	protects the brain.	
Tendons	Connects muscle to bones.	
Ligaments	Connects bones together.	
Cartilago	Slippery tissue on the ends of	
Cartilage	bones.	
Elovible loint	Two or more bones meeting	
FIEXIBLE JOINT	that can be moved.	
The Human Skeleton	NUCK VERTEBRA	
4. M	uscles and Moving	
Locomotor System	The system that allows you to move parts of the body- muscles and bones.	
Biomechanics	The study of how muscles and bones work together.	
Movement	Muscles contract and pulls	

ocomotor	The system that allows you
System	to move parts of the body-
system	muscles and bones.
liomochanica	The study of how muscles
siomechanics	and bones work together.
Movement	Muscles contract and pulls
	on bone it is attached to.
Movement Antagonistic Pairs	Pairs of muscles that allow
	bones to move in two
	different directions.

Biceps and Triceps

Impulses	Messages sent from brain
Impulses	that tell muscles to contract.
Mitochondria	Where respiration happens
	in cells producing energy.
	5. Drugs
	Substances which changes
Drug	the way the body works.
	Drugs used to help people
Medicine	with illness/injury.
	Harmful / unpleasant effects
Side-Effects	of using drugs.
A	Feeling of not being able to
Addictive	cope without the drug.
Descational	Drugs taken for pleasure-
Recreational	caffeine nicotine and alcohol
Drugs	are legal recreational drugs.
Cannahis	Can cause memory loss and
Carriabis	mental illness.
Festasy	Can cause mental illness,
Lestasy	kidney damage and death.
Cocaine	Addictive and blocks arteries.
Heroin	Addictive, collapses veins,
	causes vomiting & headaches
Reaction	The time taken to respond to
Time	a stimulus.
Stimulants	Decrease your reaction time-
	impulse carried faster.
	e.g. caffeine
	Increase your reaction time-
Depressants	impulses carried slower.
	e.g. alcohol

Lesson	Memorised?
1. Muscles &	
Breathing	
2. Muscles & Blood	
3. The Skeleton	
4. Muscles & Moving	
5. Drugs	

7D Ecosystems

	1. Variation	
Habitat	The place where an	lack
indentat	organism lives.	Ada
Variation	The difference between	Aua
	organisms.	
	Type of variation where the	
Continuous	measurement can be any	Con
continuous	value in a given range.	
	e.g. height, mass	_
	Type of variation where the	Ecos
Discontinuous	measurement falls into	
Discontinuous	certain categories.	Inhe
	e.g. eye colour, blood group	Vari
Offensing	The new organism produced	Inhe
Unspring	by reproduction.	Vari
	Group of organisms that can	Bet
C	reproduce to produce	Sam
Species	offspring that can also	Spe
	reproduce.	Ider
Hybrid	The offspring of two	Twi
	different species. They	
	cannot reproduce.	

2. Adaptations			
Environment	The conditions in a habitat.		
Adaptations	Features that help an organism to survive in the environment where it lives.		
Polar Bear Adaptations	 Thick fur to keep warm small ears to stop heat loss white fur for camouflage rough soles to grip ice large feed to spread out weight / swimming 		

Cactus Adaptations	 Stem stores water 			
	 roots cover large area to 			
	absorb water			
	 no leaves to stop water 			
	loss			
	 large ears to allow heat to 			
	escape			
Jack Rabbit	 large hind legs to increase 			
Adaptations	running speed			
	 gets all its water from 			
	food, doesn't drink			
Community	All the animals and plants			
Community	that live in a habitat.			
	The community and all the			
Ecosystem	physical environmental			
	factors together.			
Inherited	Variation between features			
Variation	caused by an organism's DNA			
Inherited	Gametes contain different			
Variation	instructions for features. A			
Between	different sperm and egg			
Same	produce each offspring, so			
Species	each has different features.			
Identical	Identical because they			
Twine	develop from one fertilised			
1 101115	egg cell.			

3. Effects of the Environment		
Environmontal	Variation caused by	
Variation	environmental factors.	
variation	e.g. hairstyle, accent	
Daily Changes	Environmental changes	
Daily Changes	during the day.	
Seasonal	Environmental changes	
Changes	during the year.	
Nocturnal	Animals that are only active	
Nocturnal	at night.	
Nocturnal	Excellent eyesight	
Animal	Nocturnal owls have superb	
Adaptations	hearing as well and can fly.	
Dociduous	Trees that lose their leaves	
Deciduous	in winter to stop water loss.	

	Trees with tougher leaves		
Evergreen	that don't lose much water		
U	so they keep them all year.		
	Organisms become inactive		
Hibernation	in winter so they don't		
	need food		
	Pirds fly to warmor places		
Migration	for winter to find food		
4. Effect	ts on the Environment		
	What an organism needs		
_	to survive and grow-		
Resources	oxygen, food, water, etc.		
	for animals.		
_	The numbers of a specific		
Population	organism.		
	Represents what eats		
Food Chain	what in a habitat		
	$Grass \rightarrow harp \rightarrow lyny$		
	Organisms compete over		
Competition	the resources that they		
competition	need		
	Formed by joining		
Food M/ob	rormed by joining		
rood web	together all food chains in		
F	an ecosystem.		
FOOD Web Exa			
Top predator	woiverine woir		
(a predator that is not prey)	111 275		
X	ivnx 1		
Carnivore (consumer and goshawk			
predator)			
Herbivore, vole	moose		
consumer (eats other			
organisms)	snowshoe beetle		
Producer (makes its			
own food) grass			
	grey willow aspen		

	Organisms in an
Interdependent	ecosystem all depend on
	one another.
Predator	Eats another animal.
Prey	Eaten by another animal.

5. Transfers in Food Chains				
Food Chain	Represent energy passed			
Arrows	betwee	en orga	nisms.	
	Energy	is lost a	at each s	tage
	along a food chain due to			
Energy Flow	being released by respiration			
	for mov	vement	etc. and	l some
	food re	mains	undigest	ed.
	Diagrar	n show	ing num	ber of
	each oi	rganism	n at each	stage
	of a foo	od chair	า.	-
Pyramid of				
Numbers			fox	
		rat	obits	
		lettuce	nlante	
		lettuce	e plants	
Pesticides	Poison	that kil	ls pests.	
Docto	Organisms that cause			
Pesis	problems.			
Developent	Poisons that are not broken			
Persistent	down in nature.			
Deisens in s	Poisons get more			
Poisons in a	concentrated the further			
Food Chain	along a food chain.			
	Persistent pesticide used in			
TUU	the UK that caused bird shells			
וטט	to become weak and break			
	easily. Banned in 1984.			

Lesson	Memorised?
1. Variation	
2. Adaptations	
3. Effects of the	
Environment	
4. Effects on the	
Environment	
5. Transfers in Food	
Chains	

7E Mixtures and Separation

1. Mixtures		
	Two or more substances	
Mixture	jumbled together but not	
	joined together.	
	A mixture of a solid and liquid,	
Succession	where the solid bits are heavy	
Suspension	enough to settle out if the	
	mixture is left to stand.	
	A mixture of a solid, liquid or	
	gas in a solid, liquid or gas	
Colloid	where the substances do not	
	settle out if left to stand.	
	Spread out without settling	
Dispersed	out, such as the bits in a	
	colloid.	
00000	Cannot be seen through-	
Opaque	colloids are opaque / cloudy.	
Colution	When a substance has	
Solution	dissolved in a liquid.	
	Light can pass through and it	
Transparent	can be seen through- solutions	
-	are transparent.	
	Something through which a	
Filter	liquid is passed to remove	
	suspended pieces of solid.	

	2. Solutions
Solvent	The liquid in which a
	substance dissolves to make
	a solution.
Solute	The substance that has
	dissolved in a liquid to make
	a solution.
Dissolve	When a substance breaks up
	into such tiny pieces in a
	liquid that it can no longer be
	seen and forms a solution.

Soluble	Describes a substance that		
	can dissolve in a liquid.		
Conservation of Mass	The total mass of a solution is the same as the mass of the dissolved substance plus the mass of the liquid at the start.		
Saturated	A solution that contains so much dissolved solute that no more solute can dissolve in it.		
Solubility	The amount of a substance that dissolves in a particular solvent at a particular temperature to make a saturated solution.		
	3. Evaporation		
Evaporation	When a liquid changes into a gas. Can be used to separate a liquid from the solid dissolved in it.		
Sodium Chloride	The scientific name for table salt that we use on our food.		
Rock Salt	When sodium chloride is found in thick layers of rock underground.		
Extracting Rock Salt	Can be dug up or mined. Water can be pumped into layers of salt underground, dissolving the sodium chloride which is then pumped to the surface and heated to evaporate the water, leaving behind sodium chloride.		
Boiling	When there is liquid turning into a gas in all parts of a liquid- creates bubbles of gas in the liquid.		
Boiling Point	The temperature at which a liquid boils.		

4.	Chr	omatography		
		Used to separate	C	Cor
Chromatography		substances dissolved in a		
_		mixture.		
		A concentrated dot of a		
		mixtures is placed at the	F	our
		bottom of special		
		chromatography paper.		
Paper		The bottom of the paper		
Chromatogra	phy	is dipped into a solvent		
U	• •	(such as water). As the		
		solvent moves up the	0	Dist
		paper is carries the	1	App
		dissolved substances.		-
		A solution that contains a		
		large amount of solute		
Concentrated	ł	dissolved in a small		
		amount of solvent.		
		The results of	5	Sola
		chromatography such as		
		a dried piece of paper for		
Chromatogra	m	naper chromatography		
		showing when the		
		dissolved solids have	_	
		heen senarated		Le
		Different substances in a		1
		mixture are carried at		1.
How		different speeds		
chromatogra	nhv	depending on how		2.
works	עייא	soluble they are which		
		sonariates them out from		3.
		each other	_	
		each other.		4.
	5.	Distillation		
	Sep	arating water from the		E
Desalination salt		s in salty/sea water to		э.
pr	pro	duce fresh drinking water.	_	
	The	process of separating a		
liqu Distillation eva		id from a mixture by		
		porating the liquid and		
Distillation	the	n condensing it to be		
	coll	ected.		

Water as a gas.

Steam

Condenses	When a substance changes from its gas state into its liquid state.
Pure	A single substance that does not have anything else in it. (Pure water only contains water and no dissolved solutes)
Distillation Apparatus	The steam rises and then goes down the inner tube of the Liebly condenser is filled with then goes down the inner tube of the Leblo condenser the steam is cooled a solution. When the flask is heated the aldis bahard. Arti-burning granules stop vident boling, when ould sub the flask and be a hazard.
olar Still	Energy from the Sun is used to evaporate salty/dirty water which is then condensed, forming pure/clean water.

Lesson	Memorised?
1. Mixtures	
2. Solutions	
3. Evaporation	
4. Chromatography	
5. Distillation	

K	7H Atoms, Elements and	Earth's Crust	Made up of oxygen, iron, silicon, aluminium, calcium and other elements.	Mercury	The only metal that is liquid at room temperature.	Thermal Decompositior	Using heat compound metals fror	to break down a - used to extract m their
Kettering scienceAcadem	Molecules	Naturally Occurring Elements	Usually found as compounds, some found pure. Can be extracted from compounds by	4. I Silicon Dioxide	Making Compounds The most common compound in the Earth's crust-found in sand guartz	Thermal Decor Mercury oxide	compounds nposition of \rightarrow mercury	s. f Mercury Oxide + oxygen
Particles	Tiny pieces of matter that make		simple chemical reactions. What an element is like, its	Dioxide	and granite.	Carbonates	Compound metal, cark	ls containing a oon and oxygen.
Atoms	The simplest particles of matter	Properties	appearance and how it behaves.	Forming	The first stage often involves heating a mixture of	Calcium Carbonate	Found in lir and marble	mestone, chalk e.
Elements	A substance made up of one type of atom.	Recycling	Using a material again to save resources and make sure we don't run out.	Compounds	elements. Energy is often given out when elements react to form compounds. Compound formed by	Thermal Decor Carbonate Copper carbon	nposition of ate \rightarrow coppe	f Calcium er oxide + carbon
	Two or more atoms joined together in a group.	Carbon	graphite. The different properties of each form are	Iron Sulfide	heating a mixture of iron and sulfur. Formed between atoms	Test for Carbon	Carbon dio limewater	xide turns cloudy.
Molecules	••	3.1	joined together.	Bonds	when compounds are formed.	Dioxide	A compour two eleme	nd that contains nts plus oxygen
Compound	Two or more different atoms joined together.	Common Metal	Solid, high melting point, strong, flexible, malleable,	Iron Sulfide Properties	sulfur using a magnet but iron sulfide is not magnetic.	-ate	will end in (e.g. zinc sı zinc, sulfur	-ate. ulfate contains [.] and oxygen)
compound	•••	Properties	heat and electricity.	Metal Ores	compound of a metal.			
Mixturo	Two or more substances jumbled together but not chemically joined	Metals	elements are metals- found on the left side of the periodic table.	Naming Compounds	compound is a metal its name goes first. the non-metal at the end of the compound's	Lesson 1. The Air W	e Breathe	Memorised?
WILLUIE	together.	Common Non-Metal	Low melting points, brittle, not shiny and poor conductors of heat and		name has its name changed so it sends in -ide.	2. Earth's Ele	ements	
Periodic Table	A table that lists all of the known elements.	Properties	electricity.	5.0	A change in which one or	3. Metals an Metals	d Non-	
A :	A mixture of different gases-	Malleable	into shape.	Reaction	more new substance is formed	4. Making		
AIr	dioxide	Flexible	Able to bend without breaking.	Word Equati	on Used to model chemical	5. Chemical	Reactions	
Pure	A substance made up of a single element/compound and nothing else.	Conductor	A substance that allows something to pass through it (e.g. heat, electricity).	Reactants	The starting substances- written on left of word	J. Chemical		L
Chemical	2. Earth's Elements The 1 or 2 letters given to each	Brittle	Not easily bent- breaks under pressure.	Products	equation. The new substances made- written on right of word			
Symbols	element	Magnetic	the only magnetic elements		equation.			

7I Energy

	1. Energy from Food
Energy	Needed to live, helps us to grow and repair our bodies, move and keep warm. Food is a source of energy.
Joule	A unit for measuring energy.
Kilojoule	1000J = 1kJ
Diet	The food that a person eats.
Weight	The amount of force with which gravity pulls things- measured in Newtons (N).
Balanced Diet	Eating a variety of foods to provide all the things that the body needs.
Nutrients	Substances needed from food.

2. Energ	gy Stores and Transfers		
Transferred	When energy is moved from		
mansieneu	one store into another.		
Forces	A push, pull or twist and a		
101003	type of energy transfer.		
Electricity	A way of transferring energy		
Liectricity	through wires.		
Other Energy	By heating, sound and light,		
Transfers			
	When energy is captured		
Stored	within an object and can be		
Storeu	moved to another store by		
	energy transfers.		
Chomical	Energy stored in chemicals		
Chemical	(such as food, fuel and		
LIIEIBY	batteries).		
Kinetic	Energy stored in moving		
Energy	things.		
Thermal	Enorgy stored in hot objects		
Energy	Lifergy stored in not objects.		

Strain	Energy stored in stretched or			
Energy	squashed objects. Also called			
Lileigy	elastic potential energy.			
Gravitational	Energy stored in objects in			
Potential	otential high places that can fall			
Energy	down.			
Nuclear	Energy stored inside			
Fnergy	materials (also called atomic			
Lifergy	energy).			
law of	The idea that energy can			
Conservation	never be created or			
of Energy	destroyed, only transferred			
or Energy	from one store to another.			
	3. Fuels			
	A substance that contains a			
	store of chemical or nuclear			
Fuel	store of chemical of fluciear			
	transferred			
	Used in nuclear power			
Nuclear	stations to generate			
Fuels	electricity.			
	A radioactive metal that can			
Uranium	be used as a nuclear fuel.			
Generate To produce electricity.				
	A fuel formed from the dead			
Fossil Fuels	remains of organisms over			
	millions of years.			
	A fossil fuel made from the			
Coal	remains of plants.			
	A fossil fuel made from the			
0.1	remains of microscopic dead			
OII	plants and animals that lived			
	in the sea.			
	A fossil fuel made from the			
	remains of microscopic dead			
Natural Gas	plants and animals that lived			
	in the sea.			
Non	An energy resource that will			
NON-	run out because we cannot			
Renewable	renew our supplies of it			

	An energy resource that will			
Renewable	never run out (such as solar			
	power)			
Piofuela	A fuel made from plants or			
Biotueis	animal droppings.			
	Can be used as a fuel by			
Hydrogen	combining with oxygen from			
1	the air to produce electricity.			
4. Uth	er Energy Resources			
Solar Power	Generating electricity using			
	energy from the Sun.			
	Flat plats that use energy			
solar Panel	from the Sun to heat			
	water.			
	Flat panels that use energy			
Solar Cell	transferred by light from			
	the Sun to produce			
	electricity.			
	A large power station using			
olar Power	the Sun to heat water to			
Station	make steam which then			
	generates electricity.			
	Generates electricity using			
Wind Turbine	energy transferred from			
	the wind.			
Jud rool oot at at a	Electricity generated by			
Tyuroelectric	moving water turning			
ower	turbines and generators.			
	Electricity generated using			
Jeotnermal	heat from rocks			
ower	underground.			
	Carbon dioxide + water \rightarrow			
hotosynthesi	s glucose + oxygen			
5.	Using Resources			
Fossil Fuel	Cheap compared to the			
Advantages	others and convenient to			
-wainages	use in cars/vehicles.			
Fossil Fuel	Non-renewable			
icadvantago	Releases polluting gases			
isauvantages	when burnt.			

luclear	No polluting gases
Advantages	generated.
lucloar	Non-renewable
Vicadvantagos	Very expensive
Jisauvantages	Dangerous waste materials
Renewable	No polluting gases
Advantages	Renewable
) on our oblo	Most not available all the
	time and only available in
Jisauvantages	specific locations.
	Fossil fuels are making the
limate	earth warmer due to the
Change	carbon dioxide given off
	when they are burnt.
	How much of the energy
fficiency	transferred by a machine is
	useful.
laing Loss	Using efficient appliances,
Sing Less	insulating homes, public
ossii rueis	transport/walking/cycling

Lesson	Memorised?
1. Energy from Food	
2. Energy Stores and Transfers	
3. Fuels	
4. Other Energy Resources	
5. Using Resources	

7J Current Electricity

1. Switches and Current			
Component	Something in a circuit.		
	Closing a switch completes the		
Switch	circuit allowing the current to		
	flow.		
Bulbe	Electricity flowing through		
Duibs	makes the filament glow.		
	The amount of electricity		
Current	flowing around a circuit.		
	Measured in amperes (A).		
Current in	Current is not used up as it		
a Series	goes around the circuit, it is		
Circuit	the same everywhere.		
Ammeter Used to measure current.			
	Cell circuit symbol		
$- \bigcirc -$	Bulb circuit symbol		
_~~	Switch circuit symbol		
-A-	Ammeter circuit symbol		

2. Models for Circuits		
Models	A way of showing or representing something.	
Advantages of Using Models	Allow us to help think about complicated ideas in science.	
Charges	An electric current is a flow of charges carrying energy from the cells to the components.	
Conductors	Charges can move through them easily (e.g. metals).	
Insulators	Charges cannot move through them easily.	

Andal Examin						
	The boiler transfers energy to the water and the					
ow through them.	pump pushes the water through the pipes.					
	× /					
In the radiator, energy	is transferred All the water stays in the pipes. If you measure					
from the hot water to	the room. the amount of water flowing, you will get the same reading at X and Y, but the water at Y would be storing less energy than the water at X.					
	•Boller represents the cell					
Vodel	• Pipes represent the wires					
xample	 The radiator represents a 					
xplanation	component					
•	 Water represents the 					
	current					
2 Sorie	and Parallal Circuits					
5. Serie	A singuit with all the					
eries Circuit	A circuit with all the					
	components in one loop.					
eries Circuit						
Diagram						
Parallel	A circuit with branches that					
Circuit	split apart and join again.					
	┌╺╸┥┠───┐					
Parallel						
`ircuit	\uparrow					
Jiagram						
agram						
	Each bulb/component can be					
Darallol	turned on individually. If one					
arallel Tircuit	bulb/component breaks the					
dvantages	components in other					
wantages	branches stay on (unlike a					
	series circuit).					
The current splits when it						
Current in a	reaches a branch. The current in all the branches					
Parallel						
Circuit	add up to the current in the					
	main part of the circuit.					

Risk

will cause harm.

	If you add bulbs into a series circuit the current gets smaller and the bulbs	Electricity Risks	Can cause fi the body an from workin	res, burns to d stop the heart g.	
Adding Bulbs	dimmer. In a parallel circuit if you add bulbs on different branches they stay bright.	Poducing	Don't touch parts of plug things into s	bare metal gs, don't poke ockets, keep	
4 (1	anging the Current	Risks	water away	from electricity,	
	A way of saying how much energy is transferred by		don't plug to into a socke a damaged v	oo many things t and never use wire.	
Voltage	cell helps push the charges around the circuit.	Fuse	A wire that melts if the current is too high, breakin the circuit.		
Valtus at au	Measured in volts (V).	Circuit	Cuts off the	current if it is	
voitmeter	Used to measure voltage.	Breaker	too high.		
Connecting	across a component.	Plug Wires	Live and neutral wires ma an appliance work; earth wire is for safety.		
a Voltmeter					
Voltage in a	The voltage across all the		wire		
Series	components adds up the	Plug Diagram	neutral		
Circuit	voltage across the cell.		pin		
Resistance	How difficult it is for electricity to flow through something.		The cable g stops the wi being pulled from the pin		
	A component that makes it				
Resistor	difficult for electricity to flow-				
	reduces size of current.	Lesson		Memorised?	
-(v)-	Voltmeter circuit symbol	1. Switches a Current	and		
	Resistor circuit symbol	2. Models fo	2. Models for Circuits 3. Series and Parallel Circuits		
-	Variable resistor circuit symbol	3. Series and Circuits			
5.	Using Electricity	4. Changing	the		
Hazard	Something that could cause harm.	Current			
Diala	The chance that a hazard	5. Using Elec	ctricity		

7L Sound

1. Making Sounds			
Making	Sounds are made by		
Sounds	something vibrating.		
Intoncity	How loud or soft a sound is-		
intensity	its volume.		
Pitch	How high or low a sound is.		
	The number of vibrations		
Froquency	each second.		
Frequency	The higher the frequency the		
	higher the pitch.		
Hortz (Hz)	The units for measuring		
	frequency.		
	The size of vibrations.		
Amplitude	The bigger the amplitude the		
	louder the note.		
Humans	Two flaps (vocal folds) across		
Making	the windpipe vibrate when		
Sounds	air moves across them.		
Grasshoppers	Male grasshoppers chirp by		
Making	rubbing one leg against a		
Sounds	wing.		
Gorillas	Male gorillas thump their		
Making	chests or thump the ground		
Sounds	to threaten other males.		

2. Moving Sounds Sounds can only travel Moving through a medium (a solid, Sounds liquid or gas). A completely empty space. Vacuum Sound cannot travel through. Tiny pieces of matter that Particles make up everything. Sound Air particles vibrate and cause nearby particles to Moving **Through the** vibrate so the vibrations

spread through the air.

Air

Sound Wave	Formed by the moving		
Sound wave	vibrations.		
	The air particles are pushed		
Pressure	together in some place (high		
Wave	pressure) and spread out in		
	other places		
Sound Wave	The number of waves passing		
Frequency	a point per second.		
Sound Mouro	The distance moved by air		
Amplitude	particles as the sound wave		
Amplitude	passes.		
	Energy is transferred from		
Enorm	one place to another by		
Energy	sound waves. They do not		
	transfer particles.		
Speed of	Sound travels faster in solids		
Speed of	because the particles are		
souna	close together.		
	As you move away from a		
	source of sound, the energy		
ivioving	carried has spread out		
Away from A	further so there is less energy		
Source			
	for your ear to detect- it		

	 sound waves enter the ear canal. 	Echolocati
How Ears Detect Sounds	 the eardrum (a thin membrane) vibrates. vibrations pass to the tiny bones which amplify the vibrations. vibrations pass to the liquid inside the cochlea. tiny hairs inside the 	Sonar
	cochlea detect vibrations and create electrical	Longitudin Waves
	signals (impulses). 6. impulses travel along the auditory nerve to the	Transverse Waves
	brain.	Transverse
How Microphones Detect Sounds	Sounds make a thin sheet of materials (a diaphragm) vibrate and electrical circuits convert these vibrations into electrical currents.	ampiltude
Decibels (dB)	The units for measuring the loudness of a sound.	➡ Direction of Tre
Auditory Range	The range of frequencies an organism can hear 20Hz – 20000Hz in humans	Superposit
Infrasound	Sounds below 20Hz	
Ultrasound	Sounds above 20000Hz	Superposit
	4. Using Sound	Diagram

	4. Using Sound
Licing Sound	Sound is often used for
Using Sound	communication.
Transmitted	Energy from sound waves
Transmitteu	goes through some materials.
Deflected	Energy from sound waves
Kellecteu	bounces off some materials.
Licing High	 Treat injuries
	 Clean delicate objects by
Frequency	making tiny bubbles that
waves	loosen dirt when the burst.
Echo	A reflected sound

Echolocation	Used by animals (bats, dolphins, etc.) to find their way around/find prey.			
Sonar	Pulse of ultrasound is given off and reflected by the sea bed. It is then detected by sonar equipment to find the depth.			
<u>5.</u>	Comparing V	Vaves		
Longitudinal Particles vibrate in same				
Transverse Waves Particles vibrate at right angles to direction wave moving.		rate at right rection wave is		
Transverse Wave Diagram				
Piertine of Temp				
Superposition As waves pass through each other their effects add up cancel out.				
Superposition Diagram				
Lesson		Memorised?		
1 Making C	ounde			

Lesson	Memorised?
1. Making Sounds	
2. Moving Sounds	
3. Detecting Sounds	
4. Using Sound	
5. Comparing Waves	

K	8B Plants and their	Inhe Varia Gam
Kettering science _{Academy}	Reproduction	Zygo
1. Classif	ication and Biodiversity	
Classification	Sorting organisms into groups based on their characteristics.	Asex Repr
Kingdoms	The five largest groups (each can be split into smaller groups)- animals, fungi, protoctists, prokaryotes and plants.	Runr
Plants	Members of the plant kingdom have cellulose cell walls, are multicellular and make their own food.	
Scientific Name	We give organisms scientific names using the names of the last two groups- the genus and the species.	Tube
Scientific Name Advantages	Scientific names are agreed around the world so there is no confusion. Some species have the same common	Usin; Repr
Biodiversity	name in different places. The number of difference species in an area.	Plant
Advantages of High Biodiversity Extinct	Recover faster from disasters and useful substances can be found (medicines). When an organism dies out	carpel - the fema reproduc organ
2. Typ	pes of Reproduction	

2. Types of Reproduction		
Sexual	Two organisms breeding to	
Reproduction	produce offspring.	
	The offspring of two	
Hybrids	different species- they are	
	not fertile.	
Fertile	Can produce offspring.	
renne	Call produce offspring.	

rited	Characteristics inherited		
ation	from parents (due to DNA).		
ietes	Sex cells		
	The fertilised egg cell		
ote	formed when the male and		
	female gamete join.		
	Reproduction involving		
cual	only one parent- produces		
roduction	offspring identical to the		
	parent (clones).		
	An example of asexual		
	reproduction used by		
nors	strawberry plants. They		
	spread over the ground		
	and sprout roots to grow		
	new identical plants.		
	An example of asexual		
	reproduction used by		
	potato plants. They are		
ers	underground stems		
	(potatoes) that contain a		
	store of food that can grow		
	into a new plant.		
	Gardeners take cuttings of		
6 Asexual	leaves/stems to grow new		
ouuction	plants quickly and cheaply.		

	Brightly coloured petals, nice					
Plant	ant scent and nectar attract					
Adaptations	animals (mainly insects). The	· · · ·				
for Animal	structure also makes it easie					
Pollination	for animals to pick up / leave					
	pollen grains.					
Dianat	Pollen is smooth and light to					
Plant	float through air. large					
Adaptations	anthers and stigmas hang					
for wind	outside the flower to catch					
Pollination	the wind.					
C - If	Pollen grains from a plant					
Self-	land on the stigma of the	-				
Pollination	same plant.					
Cross-	Pollen transferred from one					
Pollination	plant to another.					
		1				
4. Fert	ilisation and Dispersal					
	Formed when a pollen grain					
Pollen Tube	reaches a stigma of the same					
r onen rube	species. It grows down to the					
	ovule.					
	The egg cell and the male					
Fortilisation	gamete from the pollen grain					
rentinsation	join together to form a					
	zygote.					
Coll Division	The process by which the cell					
Cell Division	splits into two.					
Fundamenta	Formed when the cells divide					
Embryo	again and again.					
	The ovule becomes a seed.	-				
Seed	Inside the seed is the embryo					
	and a food source.					
	Hart outer coating of seed to					
Seed Coat	protect it.					
Germinate	The seed starts to grow.					
	The ovary swells up and					
Fruit	forms the fruit around the					
	seed.					
Seed	The spreading of seeds away					
Dispersal	Dispersal from the parent plant.					

ttracting	Fruits are fleshy, soft, juicy				
	and taste good to attract				
Animais	animals for seed dispersal.				
	Se	eds are pass	ed out by		
gested	an	imals in thei	r faeces.		
	W	ind water ar	nd explosions-		
Other Seed		eful so that r	new plants		
Dispersal	aren't in competition with				
Aethods	th	the narent plant			
	un	e parent plai	11.		
5. Ger	mi	nation and	Growth		
		What a pla	nt needs to		
Resources		grow/germ	inate.		
		The process	of releasing		
Respiration		anorgy from glucoso			
ocniration W	No	d Equation	i giucose.		
respiration v	VOI	u Equation			
glucose + oxy	/ger	n → carbon di	oxide + water		
Dormant		Slow life pro	cesses but still		
		alive- such a	is in a seed.		
hotosynthesis		A process that plants use			
notosynthesis		to make their own food.			
hotosynthe	sis	Word Equat	ion		
arbon dioxide +	wate	er	alucose + oxvaen		
		-	3		
tarch		Glucose is converted to			
laftn		starch to store it.			
		Traps light energy			
Chloroplasts		needed for			
•		photosynthesis.			
nterdependent		Organisms that depend			
		on one another			
on one another.					
Lesson			Memorised?		
1. Classificat	ior	1&			
Biodiversity					

Lesson	Memorised?
1. Classification & Biodiversity	
2. Types of Reproduction	
3. Pollination	
4. Fertilisation & Dispersal	
5. Germination & Growth	

8H Rocks

1. Rocks and Their Uses			
Geologist	A scientist who studies rocks		
	and the Earth.		
Rocks	Naturally occurring substances		
	made up of different grains.		
Grains	Made from one or more		
	chemical compounds.		
Minerals	The chemical compounds in		
	rocks- rocks are mixtures of		
	different minerals.		
Texture	The combination of sizes and		
	shapes of grains in a rock.		
Interlocking Crystals	The grains all fit together with		
	no gaps. They are hard and do		
	not wear away easily.		
	Some rocks have rounded		
Rounded	grains with gaps in between.		
Grains	They are not strong and can be		
	worn away more easily.		
Porous	Rounded grain rocks can		
	absorb water because it gets		
	into the gaps.		
Permeable	Water can run through.		
Cement	A building material made from		
	limestone.		
Gravel	A mixture of cement, sand and		
	gravel.		

•	Formed when molten rock			
Igneous	cools down			
ROCKS	e.g. basalt, granite			
Magma	Molten rock			
	Magma that reaches the			
Lava	Earth's surface.			
	Formed when molten rock			
Small	cools down fast due to less			
Crystals	time for particles to become			
-	ordered.			
	Formed when molten rock			
Large	cools down slowly due to			
Crystals	more time for a large grid			
	pattern to form.			
	Igneous rocks formed from			
Extrusive	cooling lava above the			
	surface.			
	Igneous rocks formed			
Intrusive	underground.			
	Formed by pressure and			
	heat changing other rocks.			
Metamorphi	c e.g. Schist, gneiss (both			
Rocks	formed from granite) slate			
	(from mudstone) and marble			
	(from limestone)			
	Always made from			
Metamorphi	interlocking crystals which			
ROCK Texture	may form coloured bands.			
• ···				
3. Weathering and Erosion				
	When rocks are broken up by			
Weathering	physical, chemical or			
	biological processes.			
	When rocks are broken up by			
	chemical reactions.			
Chemical	e.g. gases in air making			
Weathering	rainwater slightly acidic which			
	then reacts with minerals in			
	rock wearing them away.			
	When rocks are broken up by			
Biological	living organisms.			
Weathering	e.g. growing plants splitting			
	rocks apart with their roots.			

Physical Weathering	When rocks are broken up by physical processes. e.g. changes in temperature causing expansion and contraction over time, cracking rocks.		The Rock Cycle
Expanding	Rocks get bigger when they are heated.		
Contracting	Rocks get smaller when they are cooled.		
Freeze- Thaw Action	Water gets into cracks in rocks, freezes, expands and then forces the crack to get bigger		5 Native State
Erosion	The movement of loose and weathered rock.	C	Dres
Abrasion	When rock fragments bump into each other and are worn away.		Extracting Dres
Sediment	Bits of rock and sand in streams or rivers.		Aining
Glacier	Rivers of ice that move slowly but can transport large pieces		Problems
	of rock.	F	Rare
4. 9	Sedimentary Rocks		Vietals
Sedimentary Rocks	Formed when layers of sediment build up over time followed by compaction then cementation. <i>e.g. sandstone, mudstone</i>	F	Recycling Recycling Advantag
Compaction	Pressure forces water out from the gaps between grains squashing the grains closer together.		Lesson 1. Rocks Uses
Cementation	Dissolved minerals between the gaps act as a glue and 'cement' the grains together.		Metamo 3. Weat Erosion
Sedimentary Rock Texture	rounded grains. Properties depend on the type of		4. Sedim
	sediment that forms them.		5. Mate Earth

5. Materials in the Earth			
Native	Metals found a	s pure elements	
State	in rocks.		
Ores	Rocks that contain enough of a metal / metal compound to be worth mining.		
Extracting Ores	Ores are obtained by mining, then crushed and chemical reactions used to obtain the metal.		
Mining Problems	Damages the environment by destroying habitats and causes pollution.		
Rare	Hard to obtain which makes		
Metals	them expensive.		
Recycling	Using a material again.		
	Cuts down on pollution from		
Recycling	mining and landfill sites, allows		
Advantages	supplies to last longer and requires less energy.		
Lesson		Memorised?	
1. Rocks and their Uses 2. Igneous and			
Metamorphic			
3. Weathering and Erosion			
4. Sedimentary Rocks			
4. Sedime	ntary Rocks		