$\sum_{\substack{\circ \\ \text { Ketering }}}^{\sim} \frac{\pi}{5}$			Year 7 Mathematics Core Term 5	
Lines and Angles				
1.	Angle	A measure of turn, measured in degrees ${ }^{\circ}$.		
Types of Angles				
2.	Acute	Acute angles are less than 90°.	b Acute	
3.	Right	Right angles are exactly 90°.	$\frac{\square}{\text { Right }}$	
4.	Obtuse	Obtuse angles are greater than 90° but less than 180°.	$\emptyset_{\text {obtuse }}$	
5.	Reflex	Reflex angles are greater than 180° but less than 360°.	Reflex	
Angle Rules				
6.	Parallel lines	Straight lines that stay an equal distance apart and if extended will never meet.	7	
7.	Perpendicular lines	Cross at right angles.		
8.	Angle Notation	Can use one lower-case letters, eg. θ or x. Can use three upper-case letters, eg. $B A C$.		
9.	Straight line	Angles on a straight line add to 180°.		
10.	Around a point	Angles around a point add to 360°.		

23.	Constructing Triangles (Side, Side, Side)	1. Draw the base of the triangle using a ruler. 2. Open a pair of compasses to the width of one side of the triangle. 3. Place the point on one end of the line and draw an arc. 4. Repeat for the other side of the triangle at the other end of the line. 5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.
Polygo		
24.	Polygon	A 2D shape with only straight edges.
25.	Regular	A shape is regular if all the sides and all the angles are equal.
26.	Triangle	3-sided polygon.
27.	Quadrilateral	4-sided polygon.
28.	Pentagon	5-sided polygon.
29.	Hexagon	6-sided polygon.
30.	Heptagon/Sept agon	7-sided polygon.
31.	Octagon	8-sided polygon.
32.	Nonagon	9-sided polygon.
33.	Decagon	10-sided polygon.
Sequences and graphs		
Sequences		
34.	Linear Sequence	A number pattern with a common difference.
35.	Term	Each value in a sequence is called a term.
36.		

	Term-to-term rule	A rule which allows you to find the next term in a sequence if you know the previous term.
37.	nth term (position-toterm rule)	A rule which allows you to calculate the term that is in the nth position of the sequence. n refers to the position of a term in a sequence.
38.	Finding the nth term of a linear sequence	1. Find the difference. 2. Multiply that by n. 3. Substitute $n=1$ to find out what number you need to add or subtract to get the first number in the sequence.
39.	Triangular numbers	The sequence which comes from a pattern of dots that form a triangle ($1,3,6,10,15,21 \ldots$...).
40.	Fibonacci type sequences	A sequence where the next number is found by adding up the previous two terms.
41.	Geometric Sequence	A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio, r.
Straight Line Graphs		
42.	Coordinates	Written in pairs. The first term is the x-coordinate (movement across). The second term is the y-coordinate (movement up or down).
43.	Linear Graph	The general equation of a linear graph is $y=m x+c$, where m is the gradient and c is the y-intercept.
44.	Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.
		Method 2: Gradient-Intercept Method (use when the equation is in the form $y=$ $m x+c$) 1. Plot the y-intercept. 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.
		Method 3: Cover-Up Method (use when the equation is in the form $a x+b y=c$) 1. Cover the x term and solve the resulting equation. Plot this on the x-axis. 2. Cover the y term and solve the resulting equation. Plot this on the y-axis. 3. Draw a line through the two points plotted.

45.	Gradient	The gradient of a line is how steep it is. The gradient can be positive (sloping upwards) or negative (sloping downwards), Gradient $=\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { Rise }}{R u n}$

Transformations

1.	Congruent Shapes	Shapes are congruent if they are identical, i.e. same shape and same size.
2.	Congruent Triangles	SSS (Side, Side, Side)
		RHS (Right angle, Hypotenuse, Side)
		SAS (Side, Angle, Side)
		ASA (Angle, Side, Angle)
3.	Translation	Translate means to move a shape. The shape does not change size or orientation.
4.	Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-).
5.	Rotation	The size does not change, but the shape is turned around a point.
6.	Reflection	The size does not change, but the shape is 'flipped' like in a mirror.
		Line $x=$? is a vertical line.
		Line $y=$? is a horizontal line.
		Line $y=x$ is a diagonal line.
7.	Enlargement	The shape will get bigger or smaller. Multiply each side by the scale factor.
8.	Scale Factor	The ratio of corresponding sides of two similar shapes.

