

Year 7 Mathematics Developing HT 5

Angles and lines		
1.	Polygon	A 2D shape with only straight edges. Rectangle, Hexagon, Decagon, Kite etc
2.	Regular	A shape is regular if all the sides and all the angles are equal.
З.	Names of Polygons	$\begin{array}{l} 3\text{-sided} = \text{Triangle} \\ 4\text{-sided} = \text{Quadrilateral} \\ 5\text{-sided} = \text{Pentagon} \\ 6\text{-sided} = \text{Pentagon} \\ 6\text{-sided} = \text{Heptagon/Septagon} \\ 8\text{-sided} = \text{Heptagon/Septagon} \\ 8\text{-sided} = \text{Octagon} \\ 9\text{-sided} = \text{Octagon} \\ 10\text{-sided} = \text{Decagon} \\ 10\text{-sided} = \text{Decagon} \\ \hline \\ $
4.	Angles in a Triangle	Angles in a triangle add up to 180°.

		Line $y = ?$ is a horizontal line.
		Line $y = x$ is a diagonal line .
		Reflect shape C in the line $y = x$
		y y y y y y y y x y x y
		Fractions, decimals and percentages
1.	Fraction	A mathematical expression representing the division of one integer by another. Fractions are written as two numbers separated by a horizontal line . $\frac{2}{7}$ is a 'proper' fraction. $\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2.	Numerator	The top number of a fraction. In the fraction $\frac{3}{5}$, 3 is the numerator.
3.	Denominator	The bottom number of a fraction. In the fraction $\frac{3}{5}$, 5 is the denominator.
4.	Simplifying Fractions	Divide the numerator and denominator by the highest common factor. $\frac{20}{45} = \frac{4}{9}$
5.	Equivalent Fractions	Fractions which represent the same value. $\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} \text{ etc.}$

6.	Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common denominator . Ascending means smallest to biggest. Descending means biggest to smallest. Put in to ascending order : $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$. Equivalent: $\frac{9}{12}$, $\frac{8}{12}$, $\frac{10}{12}$, $\frac{6}{12}$ Correct order: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$
7.	Adding or Subtracting Fractions	Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator. $\frac{2}{3} + \frac{4}{5}$ Multiples of 3: 3, 6, 9, 12, 15 Multiples of 5: 5, 10, 15 LCM of 3 and 5 = 15 Then just add or subtract the numerators and keep the denominator the same. $\frac{2}{3} = \frac{10}{15}$ $\frac{4}{5} = \frac{12}{15}$ $\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
8.	Percentage	Number of parts per 100. 31% means $\frac{31}{100}$
9.	Finding 10%	To find 10%, divide by 10 10% of £36 = 36÷10=£3.60
10.	Finding 1%	To find 1%, divide by 100

	1% of £8 = 8÷100 = £0.08

Transformations

Year 7 Mathematics Developing HT 6

1. Translation Translate means to move a shape. The shape does not change size or orientation. R Q 4 3 o 4 🕨 3 4 🕨 2. Column In a column vector, the top number moves left (-) or right (+) and the bottom Vector number moves up (+) or down (-) $\binom{2}{3}$ means '2 right, 3 up' $\begin{pmatrix} -1 \\ -5 \end{pmatrix}$ means '1 left, 5 down' 3. Rotation The size does not change, but the **shape is turned around a point**. Use tracing paper. Rotate Shape A 90° anti-clockwise about (0,1) X' Y' Reflection 4. The size does not change, but the shape is 'flipped' like in a mirror.

		Line x =? is a vertical line. Line y =? is a horizontal line. Line y = x is a diagonal line. Reflect shape C in the line y = x
5.	Enlargement	The shape will get bigger or smaller. Multiply each side by the scale factor. Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'
6.	Describing Transformatio ns	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. - Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
7.	Congruent Shapes	Shapes are congruent if they are identical - same shape and same size . Shapes can be rotated or reflected but still be congruent.
8.	Congruent Triangles	4 ways of proving that two triangles are congruent:

		1. \$\$\$ (Side Side)
		2. RHS (Right angle Hypotenuse Side)
		3. \$A\$ (Side Angle Side)
		4. ASA (Angle, Side, Angle) or AAS
		ASS does not prove congruency.
		$A \underbrace{\begin{array}{c} C \\ 61 \\ 73 \\ B \end{array}}^{C} B \underbrace{\begin{array}{c} B \\ 73 \\ E \end{array}}^{Rcm} F$
		BC = DF
		$\angle ABC = \angle EDF$
		$\angle ACB = \angle EFD$
		∴ The two triangles are
		congruent by AAS.
9.	Similar Shapes	Shapes are similar if they are the same shape but different sizes . The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal.
10.	Similar Triangles	To show that two triangles are similar, show that: 1. The three sides are in the same proportion 2. Two sides are in the same proportion, and their included angle is the same 3. The three angles are equal
		y 85° 40° x z x Z X Z